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Hybrid-order topological
superconductivity in a topological metal
1T’-MoTe2
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One key challenge in the field of topological superconductivity (Tsc) has been the rareness of material
realization. This is true not only for the first-order Tsc featuringMajorana surfacemodes, but also for the
higher-order Tsc,which hostMajorana hinge andcornermodes. Here,wepropose a four-step strategy
thatmathematicallyderives comprehensiveguidingprinciples for thesearchanddesign formaterials of
general higher-order Tsc phases. Specifically, such recipes consist of conditions on the normal state
and pairing symmetry that can lead to a given higher-order Tsc state. We demonstrate this strategy by
obtaining recipes for achieving three-dimensional higher-order Tsc phases protected by the inversion
symmetry. Following our recipe, we predict that the observed superconductivity in centrosymmetric
MoTe2 is a hyrbid-order Tsc candidate, which features both surface and corner modes. Our proposed
strategy enables systematic materials search and design for higher-order Tsc, which can mobilize the
experimental efforts and accelerate the material discovery for higher-order Tsc phases.

A recent breakthrough in the theory of topological superconductors (Tsc) is
that certain crystalline symmetries can protect a rich variety of higher-order
Tsc phases1–16, featuring different patterns of Majorana corner or hinge
modes (see Fig. 1a for an example). These higher-order Tsc phases can
intrinsically exist without utilizing proximity effects and are distinct from
the well-known first-order Tsc with Majorana edge or surface modes17–19.
For instance, two-dimensional (2D) superconductors with rotational9,15 or
inversion7,8,10,13 symmetries can host Majorana corner modes, as shown
from both mathematical analyses using real-space classification7,15 and
numerical observations in a candidate material, monolayer WTe2

7.
However, despite the rapid theoretical development and extensive

experimental efforts made over the past decades, unambiguously confirmed
materials hosting either first- or higher-order Tsc phases remain extremely
rare, especially beyond 1D. This is partly because, unlike topological insula-
tors, the topology inTsc phases is determined not only by the electronic band
structures but also by the pairing symmetry. Progress in Tsc material dis-
covery is therefore hindered by the lack of systematic guiding principles for
material searchanddesign that arederived fromfundamental understanding.

Anatural strategy todesign the topologyof the superconducting state is
to identify the necessary normal state properties and pairing symmetry. In
this regard, there is a sharp contrast between first-order and higher-order
Tsc: To achieve a first-order Tsc, having the correct pairing symmetry alone

canbe sufficient regardless ofwhether thenormal state is topological, e.g., an
order parameter of Δ = px+ ipy is well known to lead to a first-order Tsc
withMajorana edgemodes17. In contrast, to achieve a higher-order Tsc, past
works have shown that the normal state topology can play an essential role
on top of the pairing symmetry5,7,9,12,13,20,21.

Here, we propose and demonstrate a four-step strategy to system-
atically obtain guiding principles for identifying and designing candidate
materials of higher-order Tsc. Our strategy is described as follows for
superconductingmaterials from a given space groupG. In Step 1, we find all
possible first- and higher-order Tsc phases and their Majorana boundary
patterns by a real-space classification analysis22–28 (Fig. 1a). In Step 2, we
derive the set of superconducting topological invariants κsc that can diag-
nose these Majorana boundary patterns from the superconducting band
structures, following a protocol developed by some of us13. In Step 3, we
identify the set of topological invariantsκn that characterize thenormal-state
topology and fermiology. In Step 4, we obtain the function fΔ that relates the
two sets of invariants by

κsc ¼ f ΔðκnÞ ð1Þ

for all possible pairing symmetries Δ in space group G. From the master
equation, Eq. (1), guiding principles for the normal state properties
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described by κn and pairing symmetry Δ can be systematically obtained for
different higher-order Tsc phases labeled by κsc.

To demonstrate our strategy, an ideal material platform is group-VI
transition metal dichalcogenides (TMD), many of which exhibit intrinsic
superconductivity with highly tunable normal states exhibiting spin-orbit
couplings or band topology29–39. For example, pressure-induced super-
conductivity was recently discovered in 3DMoTe2 in the centrosymmetric
1T 0 structure40, where the normal state was proposed to possess higher-
order band topology41,42. Motivated by the observed superconductivity in
1T 0-MoTe2, we will demonstrate our strategy on 3D Tsc protected by the
inversion symmetry. Following the recipe derived from Eq. (1), we predict
that 1T 0-MoTe2 is a plausible Tsc candidate with both first- and higher-
order topology that hosts surface and corner modes. We support this pre-
diction by a density functional theory (DFT) calculation and microscopic
mean-field analysis using a realistic 44-band tight-binding model.

Results
Step 1: Majorana boundary patterns
Motivated by the superconducting centrosymmetric MoTe2

40, we consider
3D time-reversal superconductors in the simplest inversion-symmetric
space group (space groupNo. 2), which contains the inversion symmetry I
and the three translation symmetries Tr̂ , r = x, y, z. Such superconductors
are described by a Bogoliubov de Gennes (BdG) Hamiltonian
HBdG ¼ P

kΨ
y
kHðkÞΨk , where

HðkÞ ¼ hðkÞ ΔðkÞ
Δ kð Þy �h �kð Þ*

� �
; ð2Þ

the Nambu basis Ψk ¼ ð̂ck;"; ĉk;#; ĉy�k;"; ĉ
y
�k;#Þ>, and the indices for

degrees of freedomother than spin s = ↑, ↓ are suppressed.Here, the normal
state h(k) is invariant under the inversion operation I ðkÞhðkÞI ðkÞ�1 ¼
hð�kÞ with I ð�kÞI ðkÞ ¼ 1. For the superconducting gap Δ(k), we focus
on the odd-parity cases where I ðkÞΔðkÞI ð�kÞ�1 ¼ ηΔð�kÞ with gap
parity η =− 1. Together with the particle-hole and time-reversal symme-
tries P and T , the symmetry group of H(k) obeys the following group

relations:

T 2 ¼ �1; P2 ¼ 1; I 2
BdG ¼ 1

T ;P½ � ¼ 0; T ; IBdG

� � ¼ 0; fP; IBdGg ¼ 0;
ð3Þ

where IBdG ¼ diag ðI ; ηI Þ is the BdG inversion operator that acts on the
Nambu basis, and translations simply commute with all other symmetries.
Importantly, for odd-parity superconductors, IBdG and P anticommute so
that the particle hole partners have opposite parities.

To obtain all possible Majorana boundary patterns that a 3D time-
reversal centrosymmetric superconductor can support, we first compute the
classification group Cr for crystalline Tsc phases described by HBdG, then
examine the boundary signature of each phase. This can be achieved by
using a well-developed real-space classification method called the Topolo-
gical Crystal Approach13,22–28,43–46. The key idea is that although it is hard to
compute Cr directly in the presence of nonlocal crystalline symmetries, one
can dissect the full 3D superconductor into lower-dimensional building
blocks that respect only the local internal symmetries but not the nonlocal
crystalline symmetries. Specifically, these building blocks are db-dimen-
sional topological states with 0 ≤ db ≤ 3, where their classification groups
and boundary modes have been well studied in the prior literature18 (see
“Methods” section). By stacking these building blocks into different con-
figurations that respect all the symmetries and checking various consistency
conditions13, we can determine the Majorana boundary signature of each
configuration. These topologically distinct configurations with different
Majorana signatures are dubbed topological crystal states, where each of
themprovides aminimalmodel for each of theTsc phases. Importantly, any
3D superconducting material that respects a given set of crystalline sym-
metries can be adiabatically connected to a certain topological crystal
state13,23,25. We therefore expect that the Majorana boundary pattern we
obtain for a topological crystal state can also be found in a realistic lattice
model for a superconductor in the same Tsc phase.

The classification group Cr for our current case of 3D time-reversal
superconductors with inversion and translation symmetries is obtained
using this approach as follows. First, we identify that the nontrivial building
blocks are the time-reversal 1D, 2D, and 3D Tsc states hosting Majorana
end, edge, and surface modes, respectively. These building blocks can be
stackedonWyckoff positions in different symmetry-allowed configurations
to form inversion-symmetric 3D superconducting states with different
Majorana boundary patterns. By identifying all inequivalent and robust
configurations and excluding those that lead to atomic superconductors
without Majorana modes, we find that the real-space classification group is
given by Cr ¼ ðZ×Z4Þ× ðZ4Þ3 × ðZ2Þ3 (see “Method” section).

Next, for each phase captured in Cr, we now discuss the Majorana
signature and the protecting symmetries obtained from its building block
configuration and will leave the explicit forms of topological invariants to
Step 2. Specifically, we find that theZ factor in Cr corresponds to first-order
strong phases with Majorana surface modes, which can be trivialized by
breaking the time-reversal symmetry and is described by a nonzero integer
topological invariant N3. The first Z4 factor corresponds to inversion-
protected higher-order strong phases with Majorana hinge and corner
modes. While the ðZ2Þ3 corresponds to weak phases protected by two
translation symmetries along the xy, yz, or xz-directions, the ðZ4Þ3 corre-
sponds to the mixed phases protected by the inversion and/or translation
symmetries.We label themby topological invariantsκimixed, i = x, y, z, where
the κimixed ¼ 1 phases are purely protected by the translation symmetry
along i-direction, the κimixed ¼ 2 phases are protected simultaneously by the
inversion and translation symmetries, and the κimixed ¼ 3 phases are the
stackings of the former two. Note that if we quotient out the phases with an
even topological invariant N3, the classification group of the strong phases
Z×Z4 becomesZ8, consistent with thefindings in previousworks that did
not consider N3

6,8,11. With this adjustment, the real-space classification
group becomes Cr ¼ Z8 × ðZ4Þ3 × ðZ2Þ3.

The resulting Majorana signatures for these strong, weak, and mixed
Tsc phases are summarized in Fig. 1a, which we obtain by systematically

Fig. 1 | Majorana boundary patterns for all possible 3D time-reversal super-
conducting phases in space groupNo. 2. Schematics that show the correspondence
between our derived symmetry indicators (SIs) κssc, κ

m;i
sc , κw;ijsc and the Majorana

boundary patterns (colored by pink) on a cubic geometry for 3D time-reversal
superconductors with inversion and translation symmetries. TheMajorana patterns
and the explicit forms of SIs are obtained in Steps 1 and 2, respectively, and their
correspondence is derived from the basis-matching procedure in Step 2. Note that
the Majorana surface modes associated with the winding number N3 are not shown
here. Nonetheless, since the strong SI κssc detects the evenness and oddness ofN3, the
strong phases with odd κssc still show one copy of the surface modes.
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checking the robustness and consistency relations when stacking the
building blocks13 (see the details for this standard procedure of Topological
Crystal Approach in “Methods” section).Among theseTsc phases, there are
first-order phases with Majorana surface states, higher-order Tsc phases
withMajorana hinge or cornermodes, as well as a rich variety of Tsc phases
with different dimensionalMajoranamodes, which is dubbed hybrid-order
Tsc phases.

Step 2: superconducting state topological invariants κsc
We now turn to the momentum space to derive explicit forms of a set of
topological invariants κsc ¼ fN3; κ

s
sc; κ

m;i
sc ; κw;ijsc g, i, j = x, y, z, which can

diagnose the complete Majorana boundary signatures for a given cen-
trosymmetric superconductor (see Fig. 1a). In the following, we show that
N3 is the well-known 3D winding number18,47–49 for 3D time-reversal Tsc,
while κssc, κ

m;i
sc , and κw;ijsc for the strong,mixed, andweakphases are functions

of band symmetry data at the high-symmetry points (TRIMs) only. Such
invariants are termed symmetry indicators (SIs)6,8,10,11,14,50–58. In particular,
we find that the SI for the strong phases κssc detects both the higher-order
phases and the evenness and oddness of N3.

First, we calculate the momentum space classification group Ck to
determine the nature of each topological invariant. Our calculation is per-
formedusing a classificationmethod for topological crystalline phases called
Twisted Equivariant K Theory59.We find that the full classification group is
given byK ¼ Z9, which consists of a subgroupZ defined on the entire 3D
Brillouin zone (BZ) and a subgroupK0 ¼ Z8 restricted only to the TRIMs
(see “Methods” section). Since this subgroup Z originates from 3D class-
DIII Tsc18 (see Table 3 inMethod), the phases captured by theZ subgroup
can be labeled by the well-known integer 3D winding number18,47–49 for 3D
time-reversal Tsc with Majorana surface modes (see Eq. 36 in ref. 18). On
the contrary, the phases in theK0 subgroup are labeled by the SIs κssc, κ

m;i
sc ,

and κw;ijsc . These phases include strong, weak, andmixed phaseswith various
Majorana signatures, as well as all atomic superconductors, which do not
host Majorana boundary modes. After removing the contribution from
atomic superconductors {AS}, we find that the remaining Tsc phases with
non-trivial band topology at TRIMs are classified by Ck ¼ K0=fAS g ¼
Z8 × ðZ4Þ3 × ðZ2Þ3 (see “Methods” section). Therefore, the momentum-
space classification Ck is consistent with the real-space classification Cr we
find in Step 1.

Having shown that the topological invariants that correspond toCk are
SIs,wenowderive the explicit SI expressions that candiagnose theMajorana
signatures of the Tsc phases in Ck (see Fig. 1a). Specifically, these SIs were
proposed to be different linear combinations of a Z-invariant6 defined at
each of the eight TRIMs k = Γ,X,Y, Z,U, T, R, S:

κηsc ¼
X
k

αηknk; nk ¼
1
2

Nþ½HðkÞ� � Nþ½Href ðkÞ�
� �

; ð4Þ

where N+[HBdG(k)] is the number of even-parity occupied states of
HamiltonianH(k), andHref(k) is a trivial BdGHamiltonian that serves as a
reference point13 (see our choice of Href(k) in “Methods” section).

The coefficients fαηkg for these SIs are further obtained by performing a
basis matching procedure13, where we establish a transparent correspon-
dence between the resulting SIs κηsc and the Majorana patterns shown in
Fig. 1a. Specifically, to ensure that the Z8, Z4, and Z2 SIs correspond
exclusively to the strong,mixed, andweak phases, respectively, we explicitly
check the SI values κssc, κ

m;i
sc , and κw;ijsc for the real-space minimal models we

obtained in Step 1 for each of the strong,mixed, andweak Tsc phases in Fig.
1a (see “Methods” section). These minimal models are models for different
topological crystal states built by different building block configurations,
where Majorana signatures are evident (see “Methods” section). This pro-
cedure is necessary because without it, the Z8, Z4, and Z2 SIs in general
would each correspond to some profound mixture of strong, mixed, and
weak phases due to a basis ambiguity13. Finally, we arrive at the following SI
expressions for time-reversal invariant Tsc phases with inversion and

translation symmetries:

κssc ¼ P
k2TRIMs

nk mod 8;

κm;z
sc ¼ nZ þ nU þ nT þ nR mod 4;

κm;x
sc ¼ nX þ nS þ nU þ nR mod 4;

κm;y
sc ¼ nY þ nS þ nT þ nR mod 4;

κw;xysc ¼ nS þ nR mod 2;

κw;yzsc ¼ nU þ nR mod 2;

κw;xzsc ¼ nT þ nR mod 2;

ð5Þ

where the superscripts s,m,w stand for strong,mixed, andweakphases. The
SIs for this symmetry class have been reported in previos works ref. 6,11
without performing the basis matching procedure. Therefore, the explicit
correspondence between the SIs and theMajorana boundary signatureswas
not explicitly established in previous works. This set of SIs satisfies the bulk-
boundary correspondence so that they can fully distinguish not only all the
distinct band topology in the bulk, but also all the Majorana boundary
patterns shown in Fig. 1a.We expect that these SIs are applicable to realistic
material-based models since these minimal models are adiabatically
connected to any lattice model in the same Tsc phases.

Before moving on to Step 3, we point out that the complete Majorana
signatures are characterizedbynot just the SIswefind inEq. (5), but also the
3D winding numberN3. In fact, the winding numberN3 and SIs κ

η
sc are not

mutually independent. Specifically, the parity of κssc for strong phases is
equal to the winding number N3 modulo 247–49. In “Methods” section, we
explicitly show that the pair ðN3; κ

s
scÞ is isomorphic to the group ðZ×Z4Þ,

which agrees with the real space classification. In terms of the winding
number N3 and the SI for strong phases κssc, first-order Tsc is indicated by
ðN3 > 0; κ

s
sc ¼ 0; 1Þ, higher-order Tsc is indicated by ðN3 ¼ 0; κssc ¼ 2; 4Þ,

and all other cases correspond to various hybrid-order Tsc phases.

Step 3: normal-state invariant κn
To characterize the normal state, we adapt the topological invariant for
time-reversal topological crystalline insulators (TCI) in the same space
group, which contains the inversion I and translation symmetries Tr̂ . The
invariant for such strong TCI phases was proposed to be aZ4 integer that
depends on the electron band parity data at the TRIMs k only54:

κsI ¼
1
4

X
k2TRIMs

Nþ½hIðkÞ� � N�½hIðkÞ�
� �

mod 4; ð6Þ

where the superscript s stands for strong phases,N±[hI(k)] is the number of
even- and odd-parity occupied bands in the Hamiltonian hI(k) for the
insulator. The TCI phases with κ0strong ¼ 1; 2; 3 exhibit electronic surface
modes, hinge modes, and a combination of both, respectively.

To adapt this Z4 invariant κ
s
I for characterizing the metallic normal

states h(k) in Eq. (2), we now allow it to take both integers and half integers
values:

κsn ¼ κsI jhI ðkÞ!hðkÞ ¼ 0;
1
2
; 1; � � � ; 7

2
: ð7Þ

Depending on the normal-state fermiology, there are two cases: When all
the Fermi surfaces are away from TRIMs, κsn remains aZ4 integer and the
normal state can be viewed as a doped TCI that carries the same band
topology as the underlying TCI state.When the Fermi surfaces circle at least
one TRIM, κsn may be a half integer or integer, depending on the number of
Fermi pockets circling TRIMs and the topology of the fully occupied bands.
For instance, doping a higher-order TCI with hinge modes will lead to a
normal state of κsn ¼ 2 if Fermi pockets are away fromTRIMs. In contrast, a
doped trivial insulator with an even-parity electron pocket at k = Γ is
characterized by κsn ¼ 1

2. Note that each band is two-fold degenerate due to
the time-reversal and inversion symmetries. Note that instead of rigorously
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describing the topology of the normal state, κsn should be viewed as a
computational device for obtaining the recipes in Step 4.Moreover, κsn is not
restricted to simple doped topological insulators, but applicable to general
cases where the Fermi level cuts throughmultiple connected bands since κsn
is not sensitive to the order of band parities.

Step 4: recipes for higher-order Tsc states
Equipped with the superconducting and normal state strong invariants κssc
and κsn, which are Z8 and Z4 numbers respectively, we are now ready to
obtain themaster equation inEq. (1) that relate the two.Although κssc and κ

s
n

in Eqs. (5) and (7) are written in terms of the BdG and normal bands,
respectively, the relation fΔ between them can be found in the weak-pairing
limit where κssc can be expressed in terms of the normal band parities for a
given pairing symmetryΔ. Theweak-pairing limit is the limit where the gap
is smaller than the normal band spacings, which is mostly true for super-
conductors with low Tc. This is done by expressing the Z-invariant nk at
each TRIM k in Eq. (4) in terms of the normal band parities as6,13

nk ¼
1
2

Nþ½hðkÞ� � N�½hðkÞ�� �
: ð8Þ

Given Eqs. (8), (5), and (7), we find that the relating function fΔ has a simple
form

κssc ¼ 2κsn; ð9Þ

when the superconducting gapΔ is parity-odd. In contrast,when thepairing
gapΔ is parity-even, the classification is trivial such that all superconducting
invariants κisc vanish57. This indicates that an even-parity time-reversal
nodeless gap always leads to a topologically trivial superconductor without
Majorana modes even when the normal state is topological.

Fromthe relation inEq. (9),we candeduce recipes forhigher-orderTsc
phases that consist of conditions on the normal state κsn in the presence of
odd-parity pairing gap Δ. Here, we discuss two example recipes. First, if the
normal state is a doped strong TI labeled by κsn ¼ 1 whose Fermi surfaces
are away from TRIMs, introducing an odd-parity gap will drive the system
into a second-order Tsc with Majorana hinge modes since κssc ¼ 2. Physi-
cally speaking, these Majorana hinge modes are leftover normal-state sur-
face states that cannot be gapped out by the superconducting gap due to the
odd-parity nature. Second, if the normal state is a doped higher-order TI
featuring inversion-protected hinge modes (κsn ¼ 2), we expect an exotic
third-order Tsc with Majorana corner modes (κssc ¼ 4) when the system
develops an odd-parity pairing gap. For the metallic normal state to have
κsn ¼ 2, the doping-induced Fermi pockets can either be away fromTRIMs,
or there can be pairs of Fermi pockets that have opposite band parities at
TRIMs. The latter case is relevant to the MoTe2 case, as shown below. For
both recipes, the superconducting gap has to be not only odd-parity but also
time-reversal symmetric.When theFermipockets are away fromTRIMs, an
example gap is a spin-triplet px-wave gapwhose nodal line does not intersect
with the Fermi pockets.When the Fermi pockets circle TRIMs, an example
gap is a 3He-B-phase-like Balian-Werthammer (BW) gap with winding
number N3 = 1: ΔBWðkÞ / kx∣ "" � ##�þ iky∣ "" þ ##�þ kz ∣ "# þ
#"i18,19. Nonetheless, on top of the Majorana corner modes indicated by
κssc ¼ 4, we also expect Majorana surface modes indicated by the non-zero
3D winding number N3. In a realistic superconductor, depending on the
actual hopping parameters and on-site potentials, coexisting Majorana
corner and surface modes could experience various levels of hybridization
effects.

Symmetry indicators in MoTe2
The second recipe suggests that superconducting MoTe2 in the cen-
trosymmetric lattice structure is a plausible candidate for such a third-order
TscwithMajorana cornermodes. This is because previousDFTcalculations
on 1T 0-MoTe2 have reported higher-order band topology along with Fermi
pockets located at TRIMs41,42. In the following, we will numerically obtain

the Majorana boundary signatures in superconducting MoTe2 to examine
our prediction made from the last recipe. To this end, we need to numeri-
cally compute the full set of SIs fκssc; κm;i

sc ; κw;ijsc g, i, j = x, y, z since the exis-
tence of mixed and weak phases is also important for determining the full
Majorana boundary signatures. Specifically, we perform a DFT calculation
on centrosymmetric MoTe2 in an experimentally relevant geometry60

without the spin-orbit coupling, usingViennaAb-initio SimulationPackage
(VASP)61,62. Amonoclinic primitive unit cell contains 4Mo atoms and 8 Te
atoms (Fig. 2a). Calculation details are described in “Methods” section. We
add an on-site Coulomb repulsion (Hubbard U) term of 3.0 eV for the Mo
4d orbitals, within the DFT+Umethod63, since it was shown that with this
addition, the calculated band structure agree well with the experimental
angle-resolved photoemission spectrum (ARPES)40.

When the superconducting gap is small, fully gapped, and parity-odd,
which can be energetically favored in the presence of nearest-neighbor
attractions, we can obtain the set of SIs fκssc; κm;i

sc ; κw;ijsc g following Eq. (5).
This is equivalent to obtaining the BdG band parities from the BdG
Hamiltonian consisting of a normal state constructed by theDFTbands and
a small pairing gap that is fully gapped and parity-odd.We find that the full
set of SIs is given by

κssc ¼ 4; κm;i
sc ¼ κw;ijsc ¼ 0 for i; j ¼ x; y; z ð10Þ

at a chemical potential μ =− 46 meV below the Fermi level. Table 1 shows
the numbers of bands with positive parity and negative parity at the 8 time-
reversal invariant momentum (TRIM) points at μ =− 46 meV marked by
an arrow in Fig. 2c.We have checked that the SIs do not change without the
U value orwith spin-orbit coupling. Besides the computed SIs, there is also a
non-zero winding number N3 given the considered BW pairing gap ΔBW.
We expect thatN3 is even since the computed strong SI κssc ¼ 4 is even and
there are two Fermi pockets at this chemical potential μ (see Fig. 2b) that
each develops an N3 = 1 BW gap.

Fig. 2 | Crystal structure, Fermi surface, and band structure of 1T’-MoTe2.
a Crystal structure of MoTe2 (Mo: blue, Te: gray) with the lattice vectors. b Fermi
surfaces at chemical potential μ =− 46 meV below the Fermi level in the BZ. cDFT
Band structurewithout SOCwhere the μ value used in b ismarkedwith an arrow and
a maroon solid line.
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Corner modes in MoTe2
According to the SIs in Eq. (10) and the winding numberN3, we expect that
centrosymmetricMoTe2 with odd-parity pairing is a hybrid-order Tsc with
Majorana corner modes (see the κssc ¼ 4 phase in Fig. 1a) on top of
Majorana surface modes. To numerically verify this expectation, we con-
struct a 44-band tight-binding model for MoTe2 based on 44 Wannier
functions obtained using WANNIER9064–66. The 44 Wannier functions
consist of dxy, dyz, dxz, dx2�y2 , and dz2 orbitals of all four Mo sites and px, py,
and pz orbitals of all eight Te sites in the unit cell. The constructed tight-
binding model reproduces the DFT band structure in the energy range of
[-6,3] eV relative to the Fermi level (Fig. 5a). Details can be found in
“Methods” section.

Using this tight-bindingmodel as the normal state, we construct a BdG
Hamiltonian with the superconducting gap being the BWgapΔBW given in
the second recipe in Step 4.We consider the BW gap since the normal state
has Fermi surfaces at TRIMs (Fig. 2b) such that this is the simplest gap
structure under which the superconductor is parity-odd but also fully
gapped. By diagonalizing the constructed BdG Hamiltonian on a 3D open
geometrywith a systemsizeofL = 9 (Weare limited to a small systemsize by
the computing power and the not-so-sparse realistic model), we find near-
zero-energy eigenstates that are localized at a pair of inversion-related
corners (Fig. 3), where the choice of which corners is likely determined by
the microscopic positions of Wannier orbitals.

Importantly, instead of exact zero-energy modes well-separated from
other finite-energy quasiparticle states, these low-energy corner modes are
burried in a gapless spectrum (see Fig. 3a). This is expected from the surface
modes indicated by the non-zero 3Dwinding numberN3, but not captured
by the SIs. Consequently, the hybridization between the surface and corner
modes can open a small gap and induce some degree of delocalization of the
corner modes into the surfaces. This effect is visually not evident in Fig. 3b
sincewe choose a chemical potential μ atwhich the hybridization strength is

likely small to demonstrate the existence of corner modes, but is evident in
the gapless spectrum in Fig. 3a. Therefore, our numerically observed near-
zero energy corner modes in Fig. 3 supports our prediction that 3D cen-
trosymmetric MoTe2 is a hybrid-order Tsc with κssc ¼ 4 and a non-zero
winding number N3 at the chemical potential μ with an odd-parity super-
conducting gap ΔBW.

Discussions
The effect of hybridization between different dimensional Majorana
boundary modes has not been systematically investigated before, but prior
studies on topological insulators have shown analytically and numerically
that boundary modes can survive the hybridization with higher-
dimensional states67,68. In our hybrid-order Tsc case, our numerical results
in Fig. 3 also support the robustness of cornermodes in 1T 0-MoTe2with any
odd-parity superconducting gap. In the actual material, whether the corner
modes appear at zero- or near-zero energies depends on the coexistence of
surface modes and the hybridization strength. Although the pairing sym-
metry is yet to be determined experimentally, given the observed super-
conductivity and our prediction of possible hybrid-order Tsc, we urge
further experimental efforts in investigating the superconducting properties
of 1T 0-MoTe2. We expect that the predicted boundary signatures can be
detected by scanning tunneling microscope or through transport
measurements.

Methods
Topological crystal approach
In this section, we explain how we perform the Topological Crystal
Approach in Step 1. First, we need to perform a real-space cell-decom-
position to break the full unit cell down to 0D, 1D, 2D, and 3D building
blocks that do not respect any non-local crystalline symmetries (see Fig. 4).
We denote the dimension of the building block as db. The db = 3 building
block is the 3d time-reversal invariant topological superconductor in AZ
class DIII (3d TSC). Decorating the 3-cells with this building block simply
gives the usual 3d TSC with a non-trivial strong indicator κstrong = 1. The
db = 2 building block is the 2d time-reversal invariant topological super-
conductor in AZ class DIII (2d TSC). 2d TSCs will be decorated on the
2-cells. The db = 1 building block is the 1d time-reversal invariant Kitaev
chain (1d TSC), which will be decorated on the 1-cells. Finally, we also have
db = 0 building block, which is described by a 0d BdG Hamiltonian. The
resulting topological crystals and the superconductors that are adiabatically
connected to these states are regarded as atomic superconductors (ASC),
which are superconducting analog of atomic insulators.We view such ASC
as topologically trivial because they do not host topologically protected
boundary zero modes on open geometries. By quotienting out the ASC, we

Fig. 3 | Near-zero-energy corner modes in superconducting 1T′-MoTe2 with an
odd-parity gap. a The BdG spectrum for MoTe2 at a chemical potential labeled in
Fig. 2c and with a BW gap ΔBW on a finite lattice of 9 × 9 × 9 unit cells computed by
Krylov method. The gap between the blue states is due to both the finite-size effect
and a likely small hybridization between the Majorana corner and surface modes.

b The spatial probability distribution ∣ψm∣2 of the near-zero-energy BdG eigenstates
ψm labeled in blue in a, demonstrating the existence of corner modes when the
hybridization is small. The geometry preserves the inversion symmetry, and ax, ay, az
are the lattice constants in x, y, z directions, respectively.

Table 1 | The numbers of occupied bands Ne, positive-parity
bandsn+, andnegative-parity bandsn−at the 8TRIMpoints at
μ =− 46meV for MoTe2

μ =− 46meV Γ X U Z Y R S T

Ne 68 72 72 68 72 72 72 72

n+ 38 36 36 34 36 36 36 36

n− 30 36 36 34 36 36 36 36

To make the comparison easy, we double the number of bands.
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find that the classification of topological superconductors with non-trivial
boundary modes are given by ðZ×Z4Þ×Z3

4 ×Z
3
2. Table 2 shows the

decoration patterns of the topological crystals and their corresponding
symmetry indicators. The ðZ×Z4Þ factor contains the strong first, second
and third order TSCs. We denote the strong first, second, and third order
TSCs by (a, b, c), where a is an integer corresponding to the strong first-
order TCS only protected by the internal symmetry in class DIII, b and c are
Z2 number corresponding to the strong second and third order TCSs (the
first two entries in Table 2). Physically, a is characterized by the 3Dwinding
number. They satisfy the following non-trivial stacking relations57:

ð1; 0; 0Þ þ ð1; 0; 0Þ ¼ ð2; 1; 0Þ;
ð1; 0; 0Þ þ ð�1; 0; 0Þ ¼ ð0; 1; 0Þ;
ð0; 1; 0Þ þ ð0; 1; 0Þ ¼ ð0; 0; 1Þ:

ð11Þ

Note that the phases with even winding numbers are completely decoupled
from the higher order phases, i.e., we can freely stack the phases labeled by
(2n, 0, 0) without affecting the higher order phases. One can check that the
tuple (a, b, c) satisfying Eq. (11) is isomorphic to ðZ×Z4Þ. If we label the
group element in ðZ×Z4Þ as (g, h), the generator ofZ(1, 0) corresponds to

the 3dTSCwithwindingnumber 1: (1, 0, 0), and it’s inverse element (−1, 0)
corresponds the phase (−1, 1, 1). The Z4 is generated by the second order
phase (0, 1, 0). Due to the non-trivial stack rules, the phase labeled by
(2, 0, 0) is in fact the (2,− 1) element in the group ðZ×Z4Þ. To better reveal
the higher-order topology, it’s convenient to quotient out the subgroup
generated by (2, 0, 0) and the resulting group is C ¼ Z8 labeled by (a, b, c)
but now a is a Z2 number with the stacking rule (1, 0, 0)+
(1, 0, 0)≅ (0, 1, 0).

Momentum space topological invariants
In this section, we discuss our calculation and results in Step 2, where we
obtain the momentum-space topological invariants by calculating the
equivariant K group ϕK ðτ;cÞ;�3

G ðBZÞ using the Atiyah-Hirzebruch Spectral
Sequence (AHSS)13,15,59. Please see refs. 13,15,59 for an introduction to the
well-developed Equivariant K Theory and AHSS. Here, we present the
essential results of our calculation. The elements Ep;�n

2 in the E2 page of the
AHSS are summarized in Table 3.

To showthat theE2 page is the limitingpageE∞, onehas to calculate the
third differential, which is a non-trivial task. We give a physical argument
below to show that the E2 page is the limiting page.

Each element in the E2 page can be characterized by topological
invariants defined in the subspaces of BZ. Topological invariants on 0-cells
are classifiedbyE0;�3

2 ¼ Z8. The explicit formof eachZ invariant is defined
in Eq. (4). By quotienting out the contribution of ASC, they give the sym-
metry indicators. There is a Z invariant defined on the 3-cell. This can be
naturally identifiedwith the 3Dwinding numberN3

18 that characterized the
3D TSC in class DIII. It has been shown that the parity of the strong
symmetry indicator κssc agrees with the 3D winding number N3 modulo
247–49:

κssc mod 2 ¼ N3 mod 2 ð12Þ

This is consistent with the conjecture that the E2 page is the limiting page.
Moreover, since there is a non-trivial relation between κssc and N3, the
formation group extension that we use to obtain the fullK group has to be
non-trivial:

1 ! Z ! K ! Z8 ! 1: ð13Þ

Upon quotienting out the contribution of ASC, theK group should agree
with the classification from the Topological Crystal Approach:
ðZ×Z4Þ×Z3

4 ×Z
3
2 in real space. The mixed SIs κm;x

sc , κm;y
sc , κm;z

sc and weak
indicators κw;xysc , κw;yzsc , κw;xzsc simply correspond to theZ3

4 ×Z
3
2 factor. The

ðZ×Z4Þ factor that corresponds to the strong phases requires further
discussion. The strong SI κssc itself is aZ8 number.However, strong phases
are, in fact, characterized by a pair of invariants ðN3; κ

s
scÞ with the con-

straint Eq. (12). Taking into account the constraint in Eq. (12), the pair
ðN3; κ

s
scÞ can be parametrized as ð2nþ ðκssc mod 2Þ; κsscÞ, where n is an

integer. One can check that the pair ð2nþ ðκssc mod 2Þ; κsscÞ indeed
satisfies the group multiplication rule of ðZ×Z4Þ. If we quotient out the
subgroup generated by an even winding number ðN3; κ

s
scÞ ¼ ð2n; 0Þ, we

obtain ððκssc mod 2Þ; κsscÞ 2 Z8.

Table 2 | The topological crystals and symmetry indicators

Symmetry indicators Decorations

(2; 0, 0, 0; 0, 0, 0) feð2Þ2 þ eð2Þ4 g
(4; 0, 0, 0; 0, 0, 0) feð1Þ1 þ eð1Þ4 þ eð1Þ6 þ eð1Þ7 g
(0; 1, 0, 0; 0, 0, 0) feð2Þ2 g
(0; 0, 1, 0; 0, 0, 0) feð2Þ1 g
(0; 0, 0, 1; 0, 0, 0) feð2Þ3 g
(0; 2, 0, 0; 0, 0, 0) feð1Þ4 þ eð1Þ6 g
(0; 0, 2, 0; 0, 0, 0) feð1Þ1 þ eð1Þ4 g
(0; 0, 0, 2; 0, 0, 0) feð1Þ2 þ eð1Þ5 g
(0; 0, 0, 0; 1, 0, 0) feð1Þ3 g
(0; 0, 0, 0; 0, 1, 0) feð1Þ4 g
(0; 0, 0, 0; 0, 0, 1) feð1Þ5 g
The first column lists the symmetry indicators for the strong, mixed, and weak phases in the fol-
lowing order: ðκstrong ; κzmixed ; κ

x
mixed ; κ

y
mixed; κ

xy
weak ; κ

yz
weak ; κ

zx
weakÞ. The second list the topological crys-

tals, presenting as the decoration of the building blocks on the p-cells.

Table 3 | The E2 page we find from our calculation

AZ class n p = 0 p = 1 p = 2 p = 3

DIII 3 Z8 1 – –

AII 4 Z9 1 – –

CII 5 – 1 –

C 6 – – Z

According to theTopological Phenomena Interpretation13, the threediagonal entries represent theK
groups restricted on p = 0-, 1-, 2, and 3-cells for the 3D class-DIII superconductors with inversion
symmetry. These three entries together give rise to the full K group.

Fig. 4 | The cell decomposition for the Topological Crystal approach. Cell
decomposition of the unit cell for space group P�1 (#2). The origin is chosen at the
center of the unit cell. Colored faces are inequivalent 2-cells. Bold blue lines are
inequivalent 1-cells. Red dots are inequivalent 0-cells.
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Reference Hamiltonian Href

In this section, we reviewwhy a referenceHamiltonianHref is needed
8,13 and

how we make the choice ofHref. In K theory, a K group can be viewed as a
formal difference between two vector bundles B1 and B2. In Karoubi’s for-
mulation, the difference is represented by a triple [B,H1,H2], where B is the
vector bundle whose base space is the BZ and vector space is formed by the
occupied states of the Hamiltonian Hi, and H1 and H2 are the flattened
Hamiltonians.

We can further associate different equivalence classes of triples
[B,H,Href] with distinct gapped phases ofmatter. To do so, instead of using
different referenceHamiltoniansH2 fordifferent triples, it is crucial todefine
a ‘trivial’ Hamiltonian Href as the universal reference Hamiltonian (i.e., set
H2 =Href) for all triples. For superconductors, a natural choice for the
reference Hamiltonian is BdG Hamiltonian formed by a vacuum state,

Href ¼ diagðIN ;�IN Þ; ð14Þ

whereN is the number of normal bands. In Eq. (4), we always use Eq. (14) as
the reference Hamiltonian.

Basis ambiguity of symmetry indicators
In this section, we discuss the basis ambiguity in the calculation of SIs and
how to determine the basis for SIs such that the SIs have a transparent
correspondence to the Majorana boundary signatures. SIs are defined as
elements in the quotient group X ¼ K0=fAS g, where K0 ¼ Z8 is the
classification of the topological invariants defined at TRIMs (the winding
number is not included here since the atomic superconductors have a zero
winding number), and fAS g ¼ Z× 8Z× ð4ZÞ3 × ð2ZÞ3 is the classifica-
tion group of the topological invariants for the atomic superconductors.
More specifically, it can be written as a matrix:

MAS ¼ a1 a2 a3 a4 a5 a6 a7 a8
� �

; ð15Þ

where each column vector contains the set of 0d invariants nk at TRIMs
generated by a atomic superconductor sitting at a Wyckoff position in the
real space. The explicit matrix form can be found in Ref. 6. To proceed, we
compute the Smith normal form to find the linearly independent bases:

UMASV ¼ λ ð16Þ

where U and V are the transformation matrices for the momentum-space
and real-space bases respectively, and λ is a diagonal matrix:

λ ¼

1

2I3
2I3

8

0
BBB@

1
CCCA: ð17Þ

From the fact that Mf 0
V ¼ U�1λ, we can now extract the linearly inde-

pendent basis. Specifically, the new real-space basis vectors are given by

MASV ¼ a01 a02 a03 a04 a05 a06 a07 a08
� �

; ð18Þ

where fa0ig are column vectors rotated by the transformationmatrixV from
{ai}. The new momentum-space basis vectors are given by

U�1 ¼ b01 b02 b03 b04 b05 b06 b07 b08
� �

; ð19Þ

where fb0jg are column vectors rotated by U−1 from {bj} at j = TRIMs. Since
the two sets of new bases are related by

a0i ¼ b0iλi; ð20Þ

where λi denotes the diagonal element of λ, we can span the 0D invariant
group for atomic superconductors {AS} and K in the same set of linearly
independent bases.

The explicit form of the symmetry indicators is given by

κ � U�n; ð21Þ

where �n is the set of 0d invariants. There is however a basis ambiguity in
calculating the Smith normal form:

λ ¼ UMASV ð22Þ

¼ ðUL�1ÞðLMASR
�1ÞðRVÞ; ð23Þ

¼ ~U ~MAS
~V : ð24Þ

While the symmetry indicator group remains unchanged, the explicit form
of the symmetry indicators is now given by

~κ � ~U�n: ð25Þ

Therefore, there is no unique explicit expression for the symmetry indica-
tors without further input. To fix a canonical basis, we need to match with
the real-space classification, and we choose a basis such that the strong,
mixed, and weak phases are all separated.

Ab-initio calculations
Our DFT calculation is performed for centrosymmetric bulk β-MoTe2
(nonsymmorphic space group #11 P21/m, point group C2h) with the
experimental geometry60, in the absence of spin-orbit coupling, using
VASP61,62. The experimental lattice constants and angles are as follows60:
a = 6.330, b = 3.469, c = 13.860 angstrom, β = 93.55∘, and α = γ = 90∘. The
real space lattice vectors are a1 ¼ aêx , a2 ¼ bêy , and
a3 ¼ c cos βêx þ c sin βêz , where êx;y;z are unit vectors in Cartesian coor-
dinates. There are four Mo atoms and eight Te atoms in a monoclinic
primitive unit cell. The inversion center of our atomic coordinates in the
primitive unit cell is set to the origin. We use projector-augmented wave
(PAW) pseudopotentials69 within the Perdew-Burke-Ernzerhof (PBE)
generalized gradient approximation70. Each Mo atom has 6 valence elec-
tronswhicharenominally singly occupied at thefive 4dorbitals andat the 5s
orbital. Each Te atom has 6 valence electrons which are nominally occupied
at the 5p orbitals and 5s orbitals. The HubbardU value of 3.0 eV is used for
theMo 4d orbitals, within the DFT+Umethod63 as implemented in VASP,
following ref. 40.We sample kpoints of 10 × 20 × 5withΓpoint centered for
the self-consistent calculation. The cutoff of the kinetic energy is set to
400 eV. We consider 54 bands.

In order to compute the topological indices Z8, Z4, and Z2
13 or the

indices in Eq. (5), we calculate parity values of all bands at the eight TRIM k
points, from the wave function of the self-consistent calculation using two
different codes (Wang, D., https://github.com/obaica/vasp_wavecar_
parity)71. The TRIM points are Γ = (0.0, 0.0, 0.0), X = (0.5, 0.0, 0.0),
U = (0.5, 0.0. 0.5), Z = (0.0, 0.0, 0.5), Y = (0.0, 0.5, 0.0), S = (0.5, 0.5, 0),
T = (0.0, 0.5, 0.5), andR = (0.5, 0.5, 0.5). Here the coordinates of the k points
are in terms of the reciprocal lattice vectors b1 ¼ ð̂ex � cotβêzÞ2π=a,
b2 ¼ 2π=bêy , and b3 ¼ 2π=cêz . Note that the MoTe2 crystal has non-
symmorphic group. The atoms in the crystal have twofold screw symmetry
along the y axis, t(b2/2)C2y (where t(b2/2) is a translationalong the yorb2 axis
byb2/2),mirrorplane t(b2/2)σxzabout thexzplane, and inversion symmetry.
The twofold screwsymmetrygives twofolddegeneracyatk = π/bplane in the
absence of spin-orbit coupling and each degenerate band consists of a band
with positive parity and a band with negative parity72. Therefore, there is
always twofold degeneracy at theY,R, S, andT points with an equal number
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of positive-parity bands and negative-parity bands. For visualization of the
Fermi surfaces, we use the c2x program73 and the XCrysDen program74.

Construction of the 44-band tight binding model
From the above VASP calculation, we then compute hopping integrals and
construct a tight-binding model based on 44 Wannier functions (WFs),
usingWANNIER90 code version 1.264–66. The 44Wannier functions consist
of dxy, dyz, dxz, dx2�y2 , and dz2 orbitals of all four Mo sites and px, py, and pz
orbitals of all eight Te sites in the unit cell. We use the same number of k
points as the VASP calculation and set the minimum energy of disen-
tanglement as zero. Only disentanglement65 is applied without maximum
localization of theWFs.All disentagledWFs are centered at the atomic sites.
We exclude the bottom most eight bands from the VASP calculation in
order to generate the WF-44 tight-binding model. These eight bands have
the same numbers of positive parity bands and negative parity bands. Fewer
numbers of WFs than 44 orbitals would produce neither atomic-orbital-
shapedWFs nor poor agreement with the VASP band structure. Figure 5a
shows the comparisonbetween theDFTband structure (solid black) and the
44-band tight-binding model (dashed red). They are in good agreement
with each other. This band structure is similar to the band structure with
spin-orbit coupling (Fig. 5b).

Data availability
Most of the source datafiles can be found on the following publicly available
website: https://github.com/Kyungwha/beta-MoTe2_centrosymm_TB_
WF44. The rest of the source data cannot be made publicly available
upon publication because they are too large to be uploaded/downloaded.
However, they canbe easily generated from the source datafiles providedon
the github site.

Code availability
The source codes used to generate the findings of this study are available on
the website https://github.com/Kyungwha/beta-MoTe2_centrosymm_
TB_WF44.
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