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Twice hidden string order and competing phases in the spin-1/2

Kitaev—Gamma ladder

2,34

Erik S. Serensen®' and Hae-Young Kee

Finding the Kitaev spin liquid in candidate materials involves understanding the entire phase diagram, including other allowed
interactions. One of these interactions, called the Gamma (I') interaction, causes magnetic frustration and its interplay with the
Kitaev (K) interaction is crucial to comprehend Kitaev materials. Due to the complexity of the combined KI' model, quasi-one-
dimensional models have been investigated. While several disordered phases are found in the 2-leg ladder, the nature of the
phases are yet to be determined. Here we focus on the disordered phase near the antiferromagnetic I' limit (denoted by Al phase)
next to the ferromagnetic Kitaev phase. We report a distinct non-local string order parameter characterizing the Al' phase, different
from the string order parameter in the Kitaev phase. This string order parameter becomes evident only after two unitary
transformation, referred to as a twice hidden string order parameter. The related entanglement spectrum, edge states, magnetic
field responses, and the symmetry protecting the phase are presented, and its relevance to the two-dimensional Kitaev materials is
discussed. Two newly identified disordered phases in the phase diagram of KI' ladder is also reported.
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INTRODUCTION

Over the course of investigating spin S = 1/2 two-dimensional
(2D) honeycomb Kitaev materials'~, candidates of long-sought
quantum spin liquids, an additional bond-dependent spin
exchange term named Gamma (I interaction® was found along
with the bond-dependent Kitaev (K) interaction’®. Unlike the
standard Heisenberg interaction, both the Kitaev and the T
interactions are highly nontrivial and extremely frustrated. While
the same sign of K and I cancels the frustration leading to
magnetically ordered phases, the regions with different signs of
these interactions are highly frustrated®. Since these two
interactions are known to dominate over other symmetry-
allowed interactions in the emerging candidate material a-RuCls,
the combined Kitaev-Gamma (KI') model has attracted consider-
able attention in the theoretical community and it is widely
accepted®™ ' that a realistic description of a-RuCl; should be
sought in the regime with antiferromagnetic (AFM) Gamma (I > 0)
and ferromagnetic (FM) Kitaev (K < 0) interactions. Understanding
the phases that arise in this frustrated regime of the 2D
honeycomb KI'-model is therefore of crucial importance.

This particular region of the KI-model has been extensively
studied by a range of numerical methods®. Despite detailed
studies, the nature of the phase next to the FM Kitaev spin liquid
arising due to AFM T interaction remains controversial. Most
studies have found that it is in a disordered phase'?"'°, denoted
by KI'SL for KT spin liquid, or nematic paramagnets, but functional
renormalization approaches found magnetically ordered phases?°
while variational Monte Carlo calculations®' observed a narrow
disordered phase next to the FM Kitaev spin liquid with most of
the antiferromagnetic I' region dominated by a zig-zag ordered
phase.

Motivated by such discrepancy, another approach to investigate
the 2D limit of the KI' model was taken by starting from low-
dimensional models with the hope of furthering the under-
standing of the honeycomb model by determining the phases of

n-leg (brick-wall) models. Despite the obvious challenge in
connecting the two limits, it is reasonable to expect that potential
spin liquid phases arising in the honeycomb model should
correspond to regions where the n-leg models display disordered
phases. Such an approach was employed earlier for the pure
Kitaev model®2. Disordered phases in the anisotropic Kitaev 1-leg
chain were found, and they were characterized by non-local string
order parameters (SOPs)?2. It has also been shown that the
isotropic Kitaev 2-leg ladder model exhibits a disordered phase,
characterized by an unconventional SOP different from that of the
anisotropic chain Kitaev phase®.

The one-dimensional (1D) chain and ladder version of the KI
model were investigated numerically with very high precision, as
the reduced dimensionality allows access to bigger system
sizes?>* 28, In the 1D chain model, it was found that the pure
Gamma model belongs to a Luttinger liquid phase governed by
the gapless hidden SU(2) Heisenberg chain, a fact revealed after a
6-site transformation, i.e, a duality mapping®*?°. A study of the
same KI' model on a quasi 1D ladder using DMRG and iDMRG
techniques'®*° found a magnetically disordered phase, posses-
sing a small gap near the AFM pure Gamma limit. This phase
surrounding the pure AFM Gamma point next to the FM Kitaev
phase (denoted by FK) was referred to as the Al phase. Even
though the Al phase in the ladder occurs in the same part of the
phase diagram as the proposed KTSL in the 2D limit, a distinct
name was introduced, as it is yet to be determined how the Al
phase is connected to the 2D limit KT'SL.

While it is clear that there is no magnetic order in this phase, the
precise nature of the Al' phase has not yet been settled due to its
complex nature. The presence of a gap indicates that the Al-phase
is likely a symmetry-protected topological (SPT) phase3'-33. If so, it
is of important to identify a corresponding SOP, edge states, and
the symmetry that protects this phase, which are characteristic of
the SPT, and to determine how this phase responds to an external
magnetic field. If strong evidence for a non-trivial SPT nature of
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Fig. 1 The KrI ladder and corresponding phase diagram. a A strip
of the KI" honeycomb lattice corresponding to a two-leg KI" ladder
with alternating x and y bonds along the leg and z-bond between
the chains, with the numbering of the sites used throughout the
paper. The dotted z-bonds arise from imposing periodic boundary
conditions in the direction perpendicular to the ladder. However, all
z-bonds are taken to have equal strength. The dashed red line
indicates the partition used for pgz while the dashed blue line
indicates the partition used for p,s. b Schematic phase diagram of
the KI" ladder, Eq. (1), for T'> 0.

the AT phase can be established, it would establish a next step to
the proposed KTSL in the 2D limit. In the following sections, we
will systematically examine these inquiries and provide compre-
hensive responses. To perform a thorough analysis, we start by
reviewing the full phase diagram prior to focusing on the nature
of the Al phase. As shown below, we also report two other
disordered phases.

RESULTS
Model
The KI' Hamiltonian is given by

Ha = > KSIS|+ (s + Ssy) 0

(id)ye(y.z)

where (q, B) takes on the values (y, 2)/(x, 2)/(x, y) for y =x/y/z, and
(i,jy refers to the nearest neighbor sites. An alternative
representation of the honeycomb lattice is as a brick-wall lattice?,
and its two-leg limit with periodic boundary conditions is simply a
ladder shown in Fig. 1a. The dotted bonds indicate Kitaev z-bonds
arising from periodic boundary conditions, and we shall always
take such bonds to be identical to the regular (solid) z-bonds, in
which case the honeycomb strip can be viewed as a regular
rectangular ladder.
We parameterize the model by taking

K=cos¢, and T =sing, (2)

and interpolate between the Kitaev and T interactions by varying
¢. Our main interest is in the region with ¢/m € [0, 1] where I'>0
and the Kitaev term, K, changes from AFM to FM at ¢ = 71/2, as this
region is relevant to most two-dimensional (2D) Kitaev candidate
materials. The total number of sites in the ladder (including both
legs) is denoted by N.

Phase diagram

A full phase diagram is shown in Fig. 1b. It is obtained by various
quantities presented in the next subsection. Moving from ¢ = 0 to
m, the AFM Kitaev phase (denoted by AK), a FM phase denoted by
FMy,, AT, and FK phases are found consistent with the earlier
works'830. At the special point ¢ = /4, the FMy, phase can be
mapped to the ferromagnetic Heisenberg ladder by applying a
local unitary Us transformation (see Supplementary Note 1), and is
therefore gapless. However, for ¢ # m/4 a small gap appear, as we
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Fig. 2 Entanglement spectrum and susceptibility for ¢/m<0.5.
iDMRG results for: a Entanglement spectrum from p,, red dashed
line in Fig. 1a. b Entanglement spectrum from pg, blue dashed line in
Fig. 1a. The numbers refer to the degeneracy of the eigenvalue. ¢ x5.
Two distinct phases, SPT, and SPTg, are visible between the FMy,
and AT phase. The red shading between ¢/m = 0.428-0.442 denotes
a transitional region of limited convergence due to a field instability.

show in Supplementary Note 3. Surprisingly, two additional
phases denoted by SPT, and SPT; can be identified between
the FMy, and Al' phases. As we will show below, they are
magnetically disordered and display the characteristics of SPT
phases, i.e, doubled entanglement spectrum. Beyond ¢ =, the
rung singlet phase denoted by RSy, phase delineates the FK
phase.

In addition to the expected Kitaev phases AK and FK the
appearance of the FMy, and RSy, phases are well established in
the KI' honeycomb and n-leg models. After the local Us
transformation®®, corresponding to local spin rotations, at ¢ =71/
4 and 571/4, i.e, K=T, the KI' 2D honeycomb model is equivalent
to the FM and AFM Heisenberg model, respectively. The
application of the Ug transformation is specified in Supplementary
Note 1. To understand the nature of the other three phases, AT,
SPT, and SPTg, we first performed a detailed analysis of the
entanglement spectrum.

Entanglement spectrum

Our results for the entanglement spectrum, as well as for the
susceptibility, x7, are shown in Figs. 2, 3. Due to the complexity of
the phase diagram, we split it into two regions centered around
the AT phase: Fig. 2 represents the left part of the Al and Fig. 3 the
right part of the Al' phase. We consider two different partitions
shown in Fig. 1a corresponding to p4 and pg. In both Figs. 2, 3
iDMRG results are shown for both partitions with ps shown in
panel (a) and pg in panel (b) with xf}) in panel (c).

To the left of the Al-phase, two other phases SPT, and SPTg are
clearly separated from the FMy, and Arl, as noted from their
entanglement spectrum for p,. Furthermore, the double degen-
eracy of the entanglement spectrum shown in Fig. 2b from pg is a
clear signal of a SPT phase®*~3". Note that there is only a weak
signature in x, of the transition between the two phases, visible at
¢ =0.3956m in Fig. 2¢, corresponding to a small discontinuity in
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Fig. 3 Entanglement spectrum and susceptibility for ¢/m> 0.5.
iDMRG results for: a Entanglement spectrum from p,, red dashed
line in Fig. 1a. b Entanglement spectrum from pg, blue dashed line in
Fig. 1a. The numbers refer to the degeneracy of the eigenvalue. ¢ x5.
The AI" FK and RSy, phases are clearly delineated.

Xg- While the FMy, phase appears abruptly at ¢ =0.3823r, the
transitions between the Al phase and SPTg phase at ¢ ~0.4357 is
not discernible in x§. The blurriness of the transition is likely due to
a field-induced phase that pinches off to a single point at zero
field at the AT-SPTj transition, thereby obscuring it. We note that,
the quantum critical points (QCPs) are immediately noticeable in
the entanglement spectra.

Moving to the right within the Al' phase which encompass the
point =1, the transition to the FK phase from the Al phase
occurs at ¢ = 0.88271(5)m, which is clearly visible in the entangle-
ment spectra as well as x5, as shown in in Fig. 3. The transition
between the RSy, and FK phases at ¢ = is less apparent in the
structure of the entanglement spectrum in Fig. 3a, b. However,
from the results for x% in Fig. 3¢ this transition is immediately
visible, and it was also noted that the second derivative of A,
clearly detects the transition3°

Similar to the AK phase, none of the phases SPT,, SPTg, Al and
FK has any long-range magnetic ordering, nor is there any
indication of nematic (quadropolar) or chiral ordering. As
discussed in Supplementary Note 2, all four phases are gapped
with a finite sizeable correlation length. The difference between
them is captured in the entanglement spectrum. In the SPT,, SPTg
and FK (and AK) phases, the entanglement spectrum have all
entries doubled when considering pg. For the Al-phase, the same
applies to the spectrum for p,. Since an entanglement spectrum
where all eigenvalues have degeneracy larger than one is a
signature of a topological non-trivial phase, in the next section, we
investigate the projective symmetry analysis to confirm their non-
trivial topology prior to presenting associated non-local SOPs.

Projective symmetry analysis

With the SPT,, SPTg, Al and FK phases as potential SPT phases, it is
of considerable interest to investigate the projective representa-
tions3337742, of a site symmetry R. This has been done for S =1
chains®’~*2 and ladders*® and also for S = 1/2 ladders*'**%’, The
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Fig. 4 Unit cells of the Ug transformed ladder. Two unit cells of
HY, the KI" ladder after the U local transformation with N = 6n sites.

a Two regular unit cells with regular open boundary conditions
(OBC). b Two slanted unit cells with slanted OBC.

matrices U can be obtained from the generalized transfer matrices
in iDMRG calculations as described in ref. 4

For the KT ladder, it is a significant simplification to consider the
transformed model obtained after applying the Ug transformation.
This transformation maps the or|g|na| Hamiltonian Hyr to the
transformed ladder, denoted by H . Under the Ug transformation
the x, y and z-bonds of the KF ladder are transformed into
anisotropic Heisenberg bonds, x/, y' and Z' in the following
manner:

X' 1 —KS{Sf —T(S/S/ +5S)
' —KS/S| —T(S{S] +57S}) 3)
7 —KS;S — (S5 +5/S))

In the transformed ladder Hy¢ model, the definition of x, y’ and
Z'-bonds, can pictorially be represented as shown in Fig. 4a. See
Supplementary Note 1. We will consider two different open
boundary conditions (OBC) as shown in Fig. 4. The unit cells
depicted in panel (a) are referred to as regular unit cells with
regular OBC, while the ones in panel (b) are referred to as slanted
unit cells with slanted OBC.

In order to understand the symmetries of the matrix product
state (MPS) wave-function, it is useful to write it in the canonical
form#9-52;

1 2 N||. .
Wy = S mUAmI L ANMMY ), @
Jiseedn

where the Mj[:] are complex matrices and the M™, real, positive,
square diagonal matrices. In the iDMRG formulation, the set of
matrices on any unit cell becomes the same M;" = M;, M = M for
all n, although they may vary within the unit ceII For the
translationally invariant state, it can be shown3**3 that for any
(site) symmetry operation g, represented in the spin basis by the

unitary matrix, £;(g), the M; matrices must transform as>**%:

> 3(g)My = €°UT (g)MU(9), )
j/

where the unitary matrix U(g) commutes with the M matrices and
€ is a phase factor. With D denoting the bond dimension, the U
matrices form a D-dimensional projective representation of the
symmetry group of the wave-function, and they can be
determined from the unique eigenvector of the generalized
transfer matrix3**® with eigenvalue |A| = 1, where the generalized
transfer matrix is defined as

Toa o8 —Z Zz "My ap

If the largest eigenvalue is |]A] < 1, the symmetry is not a property
of the state being considered. The projective representation is

;a’ﬁ ) /\ﬁ/\ﬁ (6)
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Table 1. Summary of projective analysis.

Phase O o o ogins
SPT, 1 1 -1 -1
SPT, 1 1 —1 —1

Al -1 -1 1 1

FK 1 1 -1 -1

The superscript regular refers to the unit cell from Fig. 4a, while the
superscript slanted refers to the unit cell from Fig. 4b. Negative values
indicate that the state transforms non-trivially.

reflected in the fact that if (g)X(h)=X(gh), then
U(g)U(h) = €""U(gh), 7)

where the phases ¢(g, h) are characteristic of the topological

phase.
Let us now consider the site symmetries, R* and R defined as
Rf =™, R} =€™, Ri=em™. (®)

The Hamiltonian Hg¢ is invariant under the operators [[,R!, with
Yy =X, y,z with distinct quantum numbers for the low-lying states.
If these symmetries are respected, their representations can differ
by a phase, ¢(Ry, R,) that must obey e#®xRy)=+1:

UR\U(RY) = +U(RY)U(RY). )

Furthermore, the non-trivial value ¢#®~%) = —1 can only occur if

all eigenvalues of the entanglement spectrum are at least twice
degenerate®*. The phase factor can then be isolated by defining*®
Oz,x2, = %Tr(U(RX)U(RY)UT(RX)U*(RY)), (10)
with D the bond dimension, with similar definitions for other pairs
of operators in Eg. (8). In the above definitions it is understood
that the transformations are applied throughout the lattice and in
order to obtain the matrices U, generalized transfer matrices
representing the relevant unit cell has to be considered.

The site symmetries, R*, R’ and R?, forming the dihedral
group, D, are respected by both of the unit cells in Fig. 4a, b.
Using generalized transfer matrices obtained from unit cells of the
shape shown in Fig. 4a when studying the Al-phase and of the
slanted shape shown in Fig. 4b when studying the FK, SPT,, and
SPTg phases, we obtain

Oz,xz, = -1, amn

for the SPT,, SPTg, AT, and FK phases.

Similar analysis can be made for the time-reversal (TR)
symmetry, defined by /\/Ij—>zjf [ei"sy}ﬂ, j*,, with x denoting
complex conjugation. In this case, it can be established that*
UrpUsp = €A1 where the phase ¢(TR,TR) cannot be
absorbed into the definition of Urg. One should note that for
most other symmetries, with the notable exception of inversion,
similar considerations will lead to U?=¢€?1 in which case the
phase ¢ in fact can be absorbed into the definition of U. For
instance, this is the case for U(R®) discussed above. However, for
time reversal the phase factor e#(T*™) can directly be extracted
by defining®®:

Or = %Tr(UTRu;R), (12)

and again one finds that ¢ (TR, TR) = 0,7, so that Org =+ 1. As an
example, for the S = 1 Heisenberg spin chain in the Haldane phase
it is known that Oz,, 7, = —1, Op= —13%%.

Using generalized transfer matrices obtained from unit cells of
the shape shown in Fig. 4a for the Al-phase and of the slanted
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Fig. 5 Pictorial view of KG transformations. The two transforma-
tions from the original KI' model to Hy¢, and the subsequent
transformation to Hyq are sketched. The type of order parameter for
each Hamiltonian is indicated.

shape for the FK, SPT,, and SPTg phases, we obtain
Or=-1, (13)

consistent with the presence of a doubled entanglement
spectrum in all cases. As was the case for Oz, z,, if the unit cells
are interchanged, one finds instead O =1.

A summary of our results from the projective analysis are
provided in Table 1, negative values indicate that the state
transforms non-trivially. For all 4 phases, it is seen that a unit cell
can be chosen for which the state transforms non-trivially under
both the TR and Oz, 7z, symmetries.

Based on the above analysis of entanglement spectrum and
projective symmetry, we conclude that Al' phase is an SPT phase.
It is then important to further identify its SOP that differentiates
this phase from the other disordered phases.

Twice hidden string order

To establish a non-local string order parameter (SOP) characteriz-
ing the Al' phase, we need to exploit a non-local unitary
transformation that maps the original Hamiltonian with OBC to
a new Hamiltonian that exhibits a local long-range order>*>¢, We
found that it is difficult to identify such non-local transformation
starting from the original Hgr, but it can be achieved by first
applying the Ug transformation to arrive at HKF It is then p055|ble
to define a non-local unitary transformation W, mapping H Ptoa
new local Hamiltonian. We denote the resulting Hamlltonlan
where four-spin terms appear, by Hgq. For the parameters
relevant for the Al-phase, Hyq exhibits long-range order in the
spin-spin correlation functions, corresponding to a local order
parameter. Due to the application of two separate unitary
transformations, one might consider the resulting order to be
twice hidden.

The non- Iocal unitary operator W for a N-site ladder with OBC

that maps H to Hkq takes the following form
w= T[] wik.
Jj+1<k
jodd, kodd (14)
j=1,... N=3
k=3,... N—1

With the individual w(j, k) given as follows:
w(j, k) = &5 )5, (1s)

and W' = W. The OBC are here crucial for the mapping to be exact.
Evidently, all w(jk) are unitary and therefore also W, and
w(j,k),w(l,m)] =0 Vj,k,I,m. Note that this is a different labeling
of the unitary operator introduced in Refs. 2>, It can also be shown
that other combinations of the spin operators S® appearing in Eq. (15)
lead to equivalent unitary operators, for instance, A (SH5) g
another valid choice. However, the specific choice made in Eq. (15)
will influence the type of ordering that is observed in Hyq, as well as
the specific form of Hyq. Schematically, the transformations can be
viewed as shown in Fig. 5. The detailed form of Hyq after the W
transformation on Hf{,ﬁ is presented in Supplementary Note 4.
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Fig. 6 Spin correlations in the Hkxq model at ¢ =0.85m. DMRG
results with N = 384 for the correlation function 4(S"(0)S™(r)) versus
distance, r along one leg of the ladder. r =0 corresponds to site 47.
Results are for Hyxq with ¢ =0.857 and r is measured in lattice
spacings along the leg.

We first discuss the ordering in Hyxq where we denote the spins
by S where the double prime represents the two transforma-
tions of spin from the original Hamiltonian. It is then convenient to
study correlation functions of the form 4(5"%(0)S"%(r)) along the
legs of the ladder with r measured in lattice spacings along the
leg. To avoid boundary effects, r = 0 is usually taken to correspond
to a site in the bulk of the chain. In Fig. 6 we show results for 4(S"
¥(0)S™(r)) starting from site 47 with ¢ = 0.8571. Long-range order is
clearly present. Similar results can be obtained for the other leg of
the ladder as well as for 4(5"%(0)S"*(r)). However, due to the choice
of spin operators in the definition of w in Eqg. (15), there is no
ordering in 4(5”"(0)5”"(r)).

Using the inverse of the non-local unitary operator W from Eq.
(14) the above results for 4(5¥(0)S™(r) is reproduced as a non-

local string order correlation function in He¢ where we denote the

spin variables by S =0/2. We find (S”S”,) is given by
o) = 4S7S) = (1)

r
1y v\ g
<02 (k|:|3 (ot )0,+1 > reven (16)

r=1
<o’2y (kI:[s 02’) o4 > rodd

Note that, to fully reproduce the results for Hcq shown in Fig. 6
with the string correlation function in (16) for Ht, a relabeling of
the sites needs to be done that we have skipped for clarity.

We can now apply the inverse Us transformation (see
Supplementary Note 1) to the above expressions for ¢’(r) to
determine the string order correlation functions that define the
Al-phase in the original Hyr:

2(r) =Ug' (@), a7)

with the U;' transformation detailed in Supplementary Note 1.

The SOP in Hyr Hamiltonian is then given by

= =maxZ(r). (18)
r—oo

It is interesting to note that for a small r, for example r=7,

=Y(r=7) corresponds to the plaquette operator found in the pure

Gamma model in the honeycomb lattice®’.

In Fig. 7 we show iDMRG results for =¥ (orange circles). The inset
shows iDMRG results for =¥(r) versus r at ¢p = 0.85m which at large r
can be compared to the results for Hxq shown in Fig. 6. Note that
the results in Fig. 6 show the correlations along a leg, whereas the
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Fig. 7 String order parameters in the Al and surrounding phases.
iDMRG results for the string order parameters in the Hyr and Hﬁ?
models, shown alongside DMRG results for Hkq. Orange circles, &/
for Hyr. The inset shows Z(r) versus r at ¢p = 0.857 for Hxr. Magenta
circles, DMRG results for %, for Hxq. Light blue circles, PZ,,, for
Hye. Green circles, Z for Hye.

inset in Fig. 7 show results from both legs without including the
sign and the relabeling of the sites. Due to the different methods
used, there is not an exact equivalence for very small values of r.

We emphasize that the appearance of a non-local SOP in the Al
phase of Hyr is equivalent to the presence of long-range order in
Hkaq. Hence, =¥ is non-zero throughout the Al-phase and goes to
zero at the critical points delineating this phase. It is absent in the
other disordered phases, SPT,, SPTg and FK, and thus uniquely
defines the Al phase.

With the identification of the Al-phase with regular long-range
ordering in the Hyq model, it is natural to ask if a regular (local)
order parameter can also be identified for the SPT,- and SPTg-
phases in the Hyq. However, all local order parameters that we
have investigated have not shown any ordering in the SPT,- and
SPTg-phases for Hkq. Extending the string-order correlation
function defined for the S=1 Haldane chain, a heuristic string-
order correlation function has been proposed for S=1/2 ladders
by pairing two S = 1/2°%°, Following the numbering of Fig. 1a, if
¢ =53, 4 55, are the sum of two diagonally situated spins, one
defines®®>°:

i+r—1
O:ven (I’) = <Tfl exp <i77 Z T?) TgH>' (19)

I=i+1

The associated SOP is non-zero in the phase surrounding ¢ =0 in
Hka°, corresponding to the AFM Kitaev (AK) phase in Hr. The
magenta points in Fig. 7 show our results for (0%, for the Hkq
model, which clearly is non-zero in the SPT,- and SPTg-phases.
This is consistent with the nonexistence of a local order parameter
in these two phases for Hxq. We note that, due to the heuristic
nature of &%, it is not clear how to associate it with a local order
in a related model. Since Hyr and H¢ are related by a local unitary
transformation, any ordering in the SPT,- and SPTg-phases in
either model would immediately be apparent in both, and we
have not observed any for either model.

Building on the above results for &%, for Hkxq we propose a
closely related heuristic string order correlation function for H=¢ in
the following way: Define I = S5, — S5, ; as the difference of two

diagonally situated spins, following the numbering from Fig. 1a.
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We then have

i+r—1
Piven(r) = <I exp (Iﬂ Z T,) ,+r> (20)
I=i+1

with 17 = 7, 4 S, , as above. Results for szen versus ¢ obtained
from IDMRG calculations with Hge are shown in Fig. 7 as the light
blue points. The FK, SPT, and SPTg-phases are clearly defined by a
non-zero Peven. By applying Ug T to the definition of Peyen it is
stralghtforward to perform S|m|Iar calculations using Hgr by
evaluating Ug'(P3,.,(r)). Even though the definition Peyen is
heuristic, we mterpret this result as a verification of the SPT nature
of the FK, SPT,- and SPTg-phases.

For the FK-phase, it is also instructive to consider an even
simpler heuristic string order correlation function, Z defined as
follows??

i+r
i

We consider this string correlator for H or equivalently to Hyr
through application of Ug'. Results for Z are shown in Fig. 7
versus ¢ (green points) as obtained from iDMRG calculations.
Throughout the FK-phase Z is almost identical to 1, dropping to
zero at the transition to the Al-phase. However, we note that Z
remain sizable throughout much of the RSy,-phase, reflecting its
heuristic nature.

Edge states and response to magnetic field

Another signature of SPT phases is the presence of edge states
under OBC related to a ground state degeneracy. For the SPT
phases in the KI ladder, it is clear from the degeneracy of the
entanglement spectrum that we need to consider different shapes
of clusters (regular vs. slanted OBCs) for the different SPT phases.
In this section, we excluswely study the original Hamiltonian Hyr
and do not consider Hx¢ nor Hyq. For AT phase, we use N=4n
with the regular OBC and for the remaining SPT phases, we use
the slanted OBC with N=4n+2 in order to have an equal
number of the different bond types.

We first demonstrate the presence of edge states in the SPT
phases. For the AT’ phase, results for the 16 lowest states with the
regular OBC at ¢ = 0.85m are obtained using ED (see Supplemen-
tary Fig. 7). Four low-lying states below the gap are clearly present.
With increasing N, these 4 states quickly become degenerate
while the gap stabilizes at a finite value. Similar results can be
obtained for the AK and FK phase using the slanted cluster, and a
degeneracy of 4 is also observed for this case (see Supplementary
Fig. 8). For the SPT,- and SPTg-phases, it has not been possible to
produce reliable results in the same manner, likely due to the
significantly larger correlation lengths.

To understand the nature of the edge-states, let us explore how
the AK, FK, and Al phases respond to an external magnetic field.
An external magnetic field introduces an additional term in the
Hamiltonian of the form H' = g,ugB - Sot, where S =35, g, is
the Landé factor and ug the Bohr magneton. Following ref. 38 we
denote the 4 states ¢y, Y, Y3 and Y, and consider Sy 4 in this
four-fold degenerate space by defining

Sl = (W) [Seoralws), v.B=1,2,3,4. (22)

Here, the components of the total spin S, are usually taken to
be identical to x,y,z but given the underlying honeycomb
structure we shall find it useful to instead consider a=a, b, ¢
corresponding to the three directions [11 — 2], [1 — 10] and [111]
that correspond to the perpendicular and parallel to the z-bond,
and perpendicular to the plane of the honeycomb (or n-leg brick-
wall), respectlvely One then finds that the eigenvalues of the
matrices (S{ota) for four corresponding degenerate states are
simply given by (s4 — 54 0, 0).
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Fig. 8 Eigenvalues of total spin in the AK, FK and AT phases. The
eigenvalues s, =5, of the total spin S,=3 ;57 in the four
degenerate ground-states, in zero field. Results are from ED. a AK-
phase at ¢ = —0.08m with N=14,18...30 b FK-phase at ¢ =0.95m
with N=14,18...30, ¢ Al'-phase at ¢ =0.85m with N=12,14,...30
(filled symbols).

Our ED results for s, are shown in Fig. 8. For the AK phase at
¢ =—0.08m, shown in Fig. 8a, we find s,~3/4, s,~1/2 and
sc~0.85. Similarly, for the FK-phase at ¢y = 0.95m, shown in Fig. 8b,
we find s, =1, s, ~ 2 and s, = 3/4. In both cases, we expect some
variation in the values of s, as ¢ is tuned. We note that for both
the FK and Al phase, the values of s, quickly saturate at a small,
finite value as N is increased. This is indicative of excitations
localized at the edges as opposed to an actual magnetically
ordered ground-state which should show s, continually growing
with N. A calculation of s, for the SPT, and SPTg-phases do not
yield clear results for the range of N available with ED, as discussed
in Supplementary Note 6. In a realistic experimental setting, the
presence of impurities will always create finite open segments of
ladders, with a resulting Curie-law behavior. The response to an
applied magnetic field is in that case highly anisotropic and the
low temperature Curie-law response should show a strong
directional dependence3®*'3 with x,(T), xo(T) and x(T) clearly
distinguishable. The results for the Al-phase, shown in Fig. 8¢, are
even more intriguing. They are not only more anisotropic, but only
Sp IS non-zero, approaching a value close to 2 at ¢ =0.85m. At a
slightly different point in the Al-phase with ¢ = 0.8m we instead
find s, ~4/3 but again only s, is non-zero. This implies that the
phase does not respond at all to a field applied along the a and ¢
directions, effectively g,, g.~ 0.

To gain a clearer picture of how the ladder in the Al phase
responds to a magnetic field applied along the b-direction, we
have performed ED calculations in the presence of a small field in
the b-direction. The resulting site dependent magnetlzatlon
(S” ) can then easily be obtained for the a,b and ¢-directions.
Our results are shown in Fig. 9 for N =24 as obtained from the
ground-state with a small field in the b-direction of 0.002 at ¢/
m=0.85 in the Al-phase. The green, blue and cyan colors
represent positive expectation values, whereas orange, red and
pink colors indicate negative values, with the size of the points
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Fig. 9 Ground state magnetization in an infinitesimal field in the
AT phase. ED results with N = 24 for (5°<) in the lowest state in the
AG phase at ¢/m=0.85 with a field in the b-direction of strength
0.002. The green, blue and cyan colors indicate positive values while
orange, red, and pink indicate negative values. The size of the circles
are proportional to the value of (5*°<). a(5%), b(S?), ¢(Sf).

proportional to the expectation value. The response along the a, ¢
directions is completely symmetric in the positive and negative
directions, yielding .57 = 0. However, along the b-direction the
response is much larger, and we clearly find 3,5° # 0 consistent
with the results shown in the Sl (See Fig. S9) (c). With the field
along the b-direction, sizeable excitations are visible at both ends
of the ladder.

The response of the edge states to a magnetic field correlates
with the lifting (or absence of lifting) of the degeneracy in the
entanglement spectrum. As previously discussed, non-trivial
indices in the projective analysis can only arise if the degeneracy
of all states in the entanglement spectrum (ES) is larger than one.
This implies that if a finite strength of the perturbation is needed
to remove the degeneracy, then a phase transition does not occur
until that strength is reached and the phase persists till that point.
On the other hand, if the degeneracy is lifted for any non-zero
strength of the perturbation, the symmetry protection is broken
without an associated phase transition. We can then investigate
the response of the degeneracy of the ES to a magnetic field in
the a, b and ¢ directions. This is shown in Fig. 10 for the AK, FK,
and Al phases. For simplicity, we focus exclusively on the
difference in the two largest eigenvalues A =A; — A, and in each
case we employ the reduced density matrix that has a two-fold
degeneracy at zero field.

As can be seen in Fig. 10a the degeneracy in the ES for the AK
phase is immediately lifted by a field in any of the three directions
which correlates with the response of the edge-states (See Fig. S9a
in the SI). However, the response is rather weak, and a relatively
large field has to be applied to see a significant splitting. For the
FK phase, we have a similar effect as shown in Fig. 10b, but in this
case the response is much stronger. However, for the Al phase,
where we show results in Fig. 10c, it is clear that a field in the a
direction of around h, = 0.06 is needed to lift the degeneracy of
the ES. For a field applied in the ¢ direction, a significantly larger
field is needed. On the other hand, a field in the b direction
immediately induces a large splitting in the entanglement
spectrum even for infinitesimal field strengths. Since the
degeneracy remains intact in the a and ¢ directions, we conclude
that the SPT character of the Al phase persists with respect to a
field applied in the a and ¢ directions.

The AT phase is then protected by the product of time-reversal
(TR) and m rotation around the b-axis (R,), TRx Ry, the only
remaining symmetry®® when the field is in the ac¢ plane, but
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Fig. 10 The Schmidt gap in the AK, FK and Al phases. The splitting
of the entanglement spectrum A =A; — A, from iDMRG calculations
with a field in the a, b and ¢ directions. a AK-phase at ¢ = —0.08m
using pp. b FK-phase at ¢ = 0.95m using pg. ¢ Al'-phase at ¢ = 0.85m
using pa.

broken when it is along the b-axis. Hence, if a field is applied in the
ac plane, a transition to the trivial polarized state can only occur at
finite field strengths with potentially other phases intervening
before the polarized state is encountered. Several such transitions
were observed for the Al' phase (denoted by KI'SL) for a field in
the ¢ direction’®3C. On the other hand, the FK phase is not
protected by the TRx R, symmetry, and if a field is applied in the
¢ direction the ES degeneracy is lost as shown in Fig. 10b.
However, the field induced FK phase can still be distinguished
from the polarized state.

DISCUSSION

Our initial inquiry in this paper pertains to the nature of the Al
phase and whether there exists a defining quantity for its
characterization. For example, the Kitaev phases (AK and FK) in
the ladder display the character of SPT phases. It is likely that AT is
another SPT phase. If so, we expect all the signatures of the SPT
such as the degeneracy of the entanglement spectrum, ground
state degeneracy under OBC, and the presence of a SOP. Using the
iDMRG, DMRG, and ED techniques, we indeed found that the
entanglement spectrum is degenerate and there exists four-fold
ground state degeneracy under the regular OBC in the AT phase. It
is interesting to note that the same results were obtained for the
Kitaev phases, AK and FK, but under the slanted OBC.

Despite such clear signatures of the SPT, determining the
corresponding SOP in the Al' phase has been challenging. We
found that the string order correlation function is related to
ordinary local order in a regular correlation function in a model
Hyq obtained only after two consecutive unitary transformations.
Hence, we term this order as ‘twice’ hidden.

To understand the symmetry that protects the Al phase, we
also investigated the effects of the external magnetic field. From
the magnetic field response, we noted that the Al phase is
completely inert to the magnetic field when the field is applied in
the a and ¢ directions, which correspond to perpendicular to the
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z-bond and the ladder plane, respectively. Accordingly, the
entanglement spectrum degeneracy remains intact when
the field is applied in the a and ¢ directions. This is in contrast
to the effect of applying the magnetic field along the b direction,
i.e., parallel to the z-bond, which immediately lifts the degeneracy
of the entanglement spectrum. We note that the product of TR
and Ry, TRx R, symmetry, is preserved when the magnetic field
is applied in the ac-plane, which is valid for the generic
honeycomb Kitaev model beyond the ladder®°. Thus, we conclude
that the Al is protected by the TRx R, symmetry. Another
intriguing implication from the magnetic field study is that the
edge state in the Al phase is not a isotropic free spin-1/2 unlike
the standard S=1 Haldane SPT. They act like spinless modes
under the field in a and ¢ directions. Further studies are needed to
fully understand the nature of the zero-energy modes at the
boundary of the system with the regular OBC.

In the context of Kitaev materials, let us revisit our motivations
for investigating the Al phase in the ladder model. As previously
mentioned in the introduction, the majority of d® Kitaev materials
prominently feature FM Kitaev and AFM T interactions. However,
ongoing debates persist regarding the specific phase that arises in
this region. Several numerical studies have suggested the
presence of magnetic disorder'>™'°, while others have indicated
a maghnetically ordered phase, such as a zig-zag order?'. Should a
zig-zag order indeed be manifest in the 2D limit, we would
anticipate observing the same ordering pattern in the 2-leg
ladder, as the magnetic unit cell of the zig-zag can be captured in
the ladder geometry. This is indeed the case for the Kitaev-
Heisenberg ladder model, where the zig-zag, stripy, and FM
ordered phases reported in the 2D honeycomb clusters are found
in the ladder geometry?.

Our findings have substantiated the presence of disordered
state in the ATl phase of the 2-leg ladder, categorizing it as a SPT
phase characterized by a SOP. The 2D limit can be constructed by
stacking the ladders, and one possibility of the resulting 2D phase
is a stacked SPTs with edge modes known as a weak-SPT®'.
However, the coupling between the ladders may generate a new
phase or critical point. It is interesting to note that the evolution
from a stacked weak-SPT chains to a gapless critical point
supporting edge modes that do not hybridize with bulk modes
was reported in the extended anisotropic Kitaev model approach-
ing from the dimer limit®2. Our findings hint at the possibility that
as the 2D limit is approached, the Al phase may become a 2D spin
liquid, denoted as the KT spin liquid. However, we cannot rule out
a possibility of large unit cell®®* or incommensurate?® magnetic
orders whose magnetic unit cells are beyond the ladder geometry,
and a definitive resolution to this question remains a subject for
future investigation.

METHODS

Numerical Methods

We use a fully parallelized implementation®® of the Lanczos
algorithm to perform the exact diagonalizations (ED) of ladders
with up to N=30 using both open and periodic boundary
conditions. In addition to exact diagonalizations, we use finite size
density matrix renormalization group®~’° (DMRG) to study both
the KI model, Eq. (1) and Hy¢ under both periodic (PBC) and open
(OBC) boundary conditions, with the main part of our results
obtained from the infinite DMRG’%”" (iDMRG) variant of DMRG.
The iDMRG calculations were performed with unit cells of 12, 24 or
60 sites. Typical precision for both DMRG and iDMRG are ¢ < 10~ "'
with a bond dimension in excess of 1000.
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Energy susceptibility

To determine the phase diagram we study the susceptibility
derived from the ground-state energy per spin, eg:

e

9¢*’
At a quantum critical point (QCP) it is known”? that, for a finite
system of size N, the energy susceptibility diverges as

Xe ~ N2/v—(d+z) ) (24)

Xp = (23)

Here v and z are the correlation and dynamical critical exponents
and d is the dimension. Hence, x° only diverges at the phase
transition if the critical exponent v is smaller than 2/(d + z). For the
present case we have d=1 and if we assume z=1, then a
divergence is observed only if v< 1.

Entanglement entropy and spectrum, Schmidt gap

When studying the ladder shown in Fig. 1a it is important to realize
that there are different ways of partitioning the system in two
partitions of size x and N — x. This is crucial when considering the
bipartite von Neumann entanglement entropy, EE, as well as for the
entanglement spectrum’? of central importance for understanding
topological properties>*73~7>, Both are obtained from the spectrum
of the reduced density matrix, p,, of either one of the two partitions.
Here we focus on two specific partitions shown in Fig. 1a as the red
and blue dashed lines. With the numbering in Fig. 1a, they
correspond to either an odd (N/2-1, red) or even (N/2, blue) number
of sites in the partitions. We refer to the density matrix derived from
the former case with N/2-1 as pg and to the latter case with N/2 as
pa. We mainly focus on the case where the number of sites in the
partition is close to the mid-point, either N/2 — 1 (pg) or N/2 (p,). but
when considering the bipartite entanglement entropy, we let the
number in the partition vary but only consider an even number of
sites in the sub system corresponding to moving the blue dashed
line in Fig. 1a along the ladder. For a subsystem, A, of size x the
entanglement entropy is defined by:

EE(x) = —Trp, Inp,. (25)

Our results for EE(x) can be found in Supplementary Note 2. The
eigenvalues, I, of the reduced density matrix, p,, correspond to
the Schmidt decomposition, I, = /\2 and thereby the entanglement
spectrum’3, which then will depend on whether p, or pg from Fig.
1a is used. The Schmidt gap is then defined as A; — A,.

DATA AVAILABILITY

The data that support the findings of this study are available at https://doi.org/
10.5281/zenodo.10443031, or alternatively from the corresponding authors upon
reasonable request.

CODE AVAILABILITY

The code used to generate the data used in this study is available from the
corresponding author upon reasonable request.

Received: 17 July 2023; Accepted: 2 January 2024;
Published online: 15 January 2024

REFERENCES

1. Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phe-
nomena in the strong spin-orbit regime. Annu. Rev. Condens. Matter Phys. 5,
57-82 (2014).

2. Rau, J. G, Lee, E. K-H. & Kee, H.-Y. Spin-orbit physics giving rise to novel phases in
correlated systems: Iridates and related materials. Annu. Rev. Condens. Matter
Phys. 7, 195-221 (2016).

Published in partnership with Nanjing University


https://doi.org/10.5281/zenodo.10443031
https://doi.org/10.5281/zenodo.10443031

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

. Takagi, H., Takayama, T., Jackeli, G., Khaliullin, G. & Nagler, S. E. Concept and

realization of Kitaev quantum spin liquids. Nat. Rev. Phys. 1, 264-280 (2019).

. Trebst, S. & Hickey, C. Kitaev materials. Phys. Rep. 950, 1-37 (2022).
. Rousochatzakis, I, Perkins, N. B., Luo, Q. & Kee, H.-Y. Beyond Kitaev physics in

strong spin-orbit coupled magnets. Preprint at http://arxiv.org/abs/2308.01943
(2023).

. Rau, J. G, Lee, E. K-H. & Kee, H.-Y. Generic spin model for the honeycomb iridates

beyond the Kitaev limit. Phys. Rev. Lett. 112, 077204 (2014).

. Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2-111

(2006).

. Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin-orbit coupling limit:

From Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102,
017205 (2009).

. Janssen, L, Andrade, E. C. & Vojta, M. Magnetization processes of zigzag states on

the honeycomb lattice: Identifying spin models for a-RuCl; and Na,IrOs. Phys. Rev.
B 96, 064430 (2017).

. Winter, S. M. et al. Models and materials for generalized Kitaev magnetism. J.

Condens. Matter Phys. 29, 493002 (2017).

. Hermanns, M., Kimchi, I. & Knolle, J. Physics of the Kitaev model: fractionalization,

dynamic correlations, and material connections. Annu. Rev. Condens. Matter Phys.
9, 17-33 (2018).

. Catuneanu, A, Yamaji, Y., Wachtel, G, Kim, Y. B. & Kee, H.-Y. Path to stable

quantum spin liquids in spin-orbit coupled correlated materials. npj Quantum
Mater. 3, 23 (2018).

. Gohlke, M., Wachtel, G., Yamaji, Y., Pollmann, F. & Kim, Y. B. Quantum spin liquid

signatures in Kitaev-like frustrated magnets. Phys. Rev. B 97, 075126 (2018).

. Gohlke, M., Chern, L. E,, Kee, H.-Y. & Kim, Y. B. Emergence of nematic paramagnet

via quantum order-by-disorder and pseudo-goldstone modes in kitaev magnets.
Phys. Rev. Res. 2, 043023 (2020).

. Yamada, T., Suzuki, T. & Suga, S.-l. Ground-state properties of the K—I model on a

honeycomb lattice. Phys. Rev. B 102, 024415 (2020).

. Lee, H.-Y. et al. Magnetic field induced quantum phases in a tensor network study

of Kitaev magnets. Nat. Commun. 11, 1639 (2020).

. Luo, Q,, Zhao, J., Kee, H.-Y. & Wang, X. Gapless quantum spin liquid in a hon-

eycomb I magnet. npj Quantum Mater. 6, 57 (2021).

. Gordon, J. S, Catuneanu, A, Serensen, E. S. & Kee, H.-Y. Theory of the field-

revealed Kitaev spin liquid. Nat. Commun. 10, 2470 (2019).

. Yilmaz, F., Kampf, A. P. & Yip, S. K. Phase diagrams of kitaev models for arbitrary

magnetic field orientations. Phys. Rev. Res. 4, 043024 (2022).

Buessen, F. L. & Kim, Y. B. Functional renormalization group study of the kitaev-I'
model on the honeycomb lattice and emergent incommensurate magnetic
correlations. Phys. Rev. B 103, 184407 (2021).

Wang, J., Normand, B. & Liu, Z.-X. One proximate Kitaev spin liquid in the K—J—T
model on the honeycomb lattice. Phys. Rev. Lett. 123, 197201 (2019).

Feng, X.-Y., Zhang, G.-M. & Xiang, T. Topological characterization of quantum
phase transitions in a spin—% model. Phys. Rev. Lett. 98, 087204 (2007).
Catuneanu, A, Serensen, E. S. & Kee, H.-Y. Nonlocal string order parameter in the
s= % Kitaev-Heisenberg ladder. Phys. Rev. B 99, 195112 (2019).

Yang, W., Nocera, A, Tummuru, T., Kee, H.-Y. & Affleck, |. Phase diagram of the
spin-1/2 Kitaev-Gamma chain and emergent su(2) symmetry. Phys. Rev. Lett. 124,
147205 (2020).

Yang, W., Nocera, A, Serensen, E. S., Kee, H.-Y. & Affleck, I. Classical spin order near
the antiferromagnetic Kitaev point in the spin% Kitaev-Gamma chain. Phys. Rev. B
103, 054437 (2021).

Luo, Q., Zhao, J., Wang, X. & Kee, H.-Y. Unveiling the phase diagram of a bond-
alternating spin—%Kfl' chain. Phys. Rev. B 103, 144423 (2021).

Serensen, E. S., Gordon, J., Riddell, J.,, Wang, T. & Kee, H.-Y. Field-induced chiral
soliton phase in the kitaev spin chain. Phys. Rev. Res. 5, L012027 (2023).
Serensen, E. S., Riddell, J. & Kee, H-Y. Islands of chiral solitons in integer-spin
kitaev chains. Phys. Rev. Res. 5, 013210 (2023).

Chaloupka, Jcv & Khaliullin, G. Hidden symmetries of the extended Kitaev-
Heisenberg model: Implications for the honeycomb-lattice iridates A,IrOs. Phys.
Rev. B 92, 024413 (2015).

Serensen, E. S., Catuneanu, A., Gordon, J. S. & Kee, H.-Y. Heart of entanglement:
Chiral, nematic, and incommensurate phases in the Kitaev-Gamma ladder in a
field. Phys. Rev. X 11, 011013 (2021).

Wen, X. G. Topological order in rigid states. Int. J. Mod. Phys. B4, 239 - 271
(1990).

Gu, Z-C. & Wen, X.-G. Tensor-entanglement-filtering renormalization approach
and symmetry-protected topological order. Phys. Rev. B 80, 155131 (2009).
Wen, X.-G. Colloquium: Zoo of quantum-topological phases of matter. Rev. Mod.
Phys. 89, 041004 (2017).

Pollmann, F., Turner, A. M., Berg, E. & Oshikawa, M. Entanglement spectrum of a
topological phase in one dimension. Phys. Rev. B 81, 064439 (2010).

Published in partnership with Nanjing University

E.S. Serensen and H. Kee

35.

36.

37.

38.

39.

40.

41.

42,

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54,

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

npj

Pollmann, F., Berg, E, Turner, A. M. & Oshikawa, M. Symmetry protection of
topological phases in one-dimensional quantum spin systems. Phys. Rev. B 85,
075125 (2012).

Schuch, N., Pérez-Garcia, D. & Cirac, |. Classifying quantum phases using matrix
product states and projected entangled pair states. Phys. Rev. B 84, 165139
(2011).

Chen, X,, Gu, Z.-C. & Wen, X.-G. Classification of gapped symmetric phases in one-
dimensional spin systems. Phys. Rev. B 83, 035107 (2011).

Liu, Z-X,, Liu, M. & Wen, X.-G. Gapped quantum phases for the s =1 spin chain
with Dy, symmetry. Phys. Rev. B 84, 075135 (2011).

Chen, X, Gu, Z-C. & Wen, X.-G. Complete classification of one-dimensional
gapped quantum phases in interacting spin systems. Phys. Rev. B 84, 235128
(2011).

Liu, Z.-X., Chen, X. & Wen, X.-G. Symmetry-protected topological orders of one-
dimensional spin systems with D, + T symmetry. Phys. Rev. B 84, 195145 (2011).
Liu, Z-X, Yang, Z-B., Han, Y.-J,, Yi, W. & Wen, X.-G. Symmetry-protected topolo-
gical phases in spin ladders with two-body interactions. Phys. Rev. B 86, 195122
(2012).

Chen, X,, Gu, Z-C, Liu, Z-X. & Wen, X.-G. Symmetry protected topological orders
and the group cohomology of their symmetry group. Phys. Rev. B 87, 155114
(2013).

Chen, J.-Y. & Liu, Z.-X. Symmetry protected topological phases in spin-1 ladders
and their phase transitions. Annals of Physics 362, 551-567 (2015).

Ueda, H. & Onoda, S. Symmetry-protected topological phases and transition in a
frustrated spin—% XXZ chain. Phys. Rev. B 90, 214425 (2014).

Kariyado, T. & Hatsugai, Y. Topological order parameters of the spin—% dimerized
Heisenberg ladder in magnetic field. Phys. Rev. B 91, 214410 (2015).

Ogino, T, Furukawa, S., Kaneko, R, Morita, S. & Kawashima, N. Symmetry-
protected topological phases and competing orders in a spin—% XXZ ladder with a
four-spin interaction. Phys. Rev. B 104, 075135 (2021).

Ogino, T., Kaneko, R.,, Morita, S. & Furukawa, S. Ground-state phase diagram of a
spin-l frustrated XXZ ladder. Phys. Rev. B 106, 155106 (2022).

Pollmann, F. & Turner, A. M. Detection of symmetry-protected topological phases
in one dimension. Phys. Rev. B 86, 125441 (2012).

Vidal, G. Efficient classical simulation of slightly entangled quantum computa-
tions. Phys. Rev. Lett. 91, 147902 (2003).

Vidal, G. Classical simulation of infinite-size quantum lattice systems in one
spatial dimension. Phys. Rev. Lett. 98, 070201 (2007).

Pérez-Garcia, D., Verstraete, F,, Wolf, M. M. & Cirac, J. I. Matrix product state
representations. Quantum Inf. Comput. 7, 401 (2007).

Orus, R. & Vidal, G. Infinite time-evolving block decimation algorithm beyond
unitary evolution. Phys. Rev. B 78, 155117 (2008).

Pérez-Garcia, D., Wolf, M. M., Sanz, M., Verstraete, F. & Cirac, J. . String order and
symmetries in quantum spin lattices. Phys. Rev. Lett. 100, 167202 (2008).
Kennedy, T. & Tasaki, H. Hidden symmetry breaking and the Haldane phase in
S=1 quantum spin chains. Commun. Math. Phys. 147, 431-484 (1992).
Kennedy, T. & Tasaki, H. Hidden Z2xZ2 symmetry breaking in Haldane-gap
antiferromagnets. Phys.Rev. B45, 304-307 (1992).

Oshikawa, M. Hidden Z, X Z, symmetry in quantum spin chains with arbitrary
integer spin. J. Condens. Matter Phys. 4, 7469-7488 (1992).

Rousochatzakis, I. & Perkins, N. B. Classical spin liquid instability driven by off-
diagonal exchange in strong spin-orbit magnets. Phys. Rev. Lett. 118, 147204
(2017).

Kim, E. H., Fath, G, Sélyom, J. & Scalapino, D. J. Phase transitions between
topologically distinct gapped phases in isotropic spin ladders. Phys. Rev. B 62,
14965-14974 (2000).

Fath, G., Legeza, O. & Sélyom, J. String order in spin liquid phases of spin ladders.
Phys. Rev. B 63, 1525-5 (2001).

Cen, J. & Kee, H.-Y. Determining Kitaev interaction in spin-s honeycomb mott
insulators. Phys. Rev. B 107, 014411 (2023).

You, Y., Devakul, T., Burnell, F. J. & Sondhi, S. L. Subsystem symmetry protected
topological order. Phys. Rev. B 98, 035112 (2018).

Nanda, A., Agarwala, A. & Bhattacharjee, S. Phases and quantum phase transitions
in the anisotropic antiferromagnetic Kitaev-Heisenberg-I magnet. Phys. Rev. B
104, 195115 (2021).

Rayyan, A, Luo, Q. & Kee, H.-Y. Extent of frustration in the classical Kitaev-I model
via bond anisotropy. Phys. Rev. B 104, 094431 (2021).

Lauchli, A. M., Sudan, J. & Serensen, E. S. Ground-state energy and spin gap of
spin-3 Kagomé-Heisenberg antiferromagnetic clusters: large-scale exact diag-
onalization results. Phys. Rev. B 83, 212401 (2011).

White, S. R. & Noack, R. M. Real-space quantum renormalization groups. Phys. Rev.
Lett. 68, 3487-3490 (1992).

White, S. R. Density matrix formulation for quantum renormalization groups. Phys.
Rev. Lett. 69, 2863-2866 (1992).

npj Quantum Materials (2024) 10


http://arxiv.org/abs/2308.01943

npj

E.S. Serensen and H. Kee

10

67. White, S. R. Density-matrix algorithms for quantum renormalization groups. Phys.
Rev. B 48, 10345-10356 (1993).

68. Schollwock, U. The density-matrix renormalization group. Rev. Mod. Phys. 77,
259-315 (2005).

69. Hallberg, K. A. New trends in density matrix renormalization. Adv. Phys. 55,
477-526 (2006).

70. Schollwéck, U. The density-matrix renormalization group in the age of matrix
product states. Ann. Phys. 326, 96-192 (2011). January 2011 Special Issue.

71. McCulloch, 1. P. Infinite size density matrix renormalization group, revisited.
Preprint at https://arxiv.org/abs/0804.2509 (2008).

72. Albuquerque, A. F., Alet, F., Sire, C. & Capponi, S. Quantum critical scaling of
fidelity susceptibility. Phys. Rev. B 81, 064418 (2010).

73. Li, H. & Haldane, F. D. M. Entanglement spectrum as a generalization of entan-
glement entropy: Identification of topological order in non-abelian fractional
quantum hall effect states. Phys. Rev. Lett. 101, 010504 (2008).

74. Cho, G. Y., Ludwig, A. W. W. & Ryu, S. Universal entanglement spectra of gapped
one-dimensional field theories. Phys. Rev. B 95, 115122 (2017).

75. Cho, G. Y., Shiozaki, K., Ryu, S. & Ludwig, A. W. W. Relationship between symmetry
protected topological phases and boundary conformal field theories via the
entanglement spectrum. J. Phys. A Math. Theor. 50, 304002 (2017).

76. Fishman, M., White, S. R. & Stoudenmire, E. M. The ITensor Software Library for
tensor network calculations. SciPost Phys. Codebases 4 (2022).

ACKNOWLEDGEMENTS

The authors thank A. Catuneanu and J. Gordon for fruitful discussions during the initial
stages of this work. We acknowledge the support of the Natural Sciences and Engineering
Research Council of Canada (NSERC) through Discovery Grants (No. RGPIN-2017-05759
and No. RGPIN-2022-04601). H.-Y K. acknowledges the support of CIFAR and the Canada
Research Chairs Program. This research was enabled in part by support provided by
SHARCNET (sharcnet.ca) and the Digital Research Alliance of Canada (alliancecan.ca). Part
of the numerical calculations were performed using the ITensor library”®.

AUTHOR CONTRIBUTIONS

Density-matrix renormalization group and exact diagonalization calculations were
performed by E.S.S. H.-Y.K. initiated the project. All authors managed the project and
wrote the manuscript.

npj Quantum Materials (2024) 10

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/541535-024-00621-x.

Correspondence and requests for materials should be addressed to Hae-Young Kee.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

Published in partnership with Nanjing University


https://arxiv.org/abs/0804.2509
https://doi.org/10.1038/s41535-024-00621-x
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Twice hidden string order and competing phases in the spin-1/2 Kitaev–Gamma�ladder
	Introduction
	Results
	Model
	Phase diagram
	Entanglement spectrum
	Projective symmetry analysis
	Twice hidden string�order
	Edge states and response to magnetic�field

	Discussion
	Methods
	Numerical Methods
	Energy susceptibility
	Entanglement entropy and spectrum, Schmidt�gap

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




