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Nb3Cl8: a prototypical layered Mott-Hubbard insulator
Sergii Grytsiuk1, Mikhail I. Katsnelson 1, Erik G.C.P. van Loon 2 and Malte Rösner 1✉

Despite its simplicity and relevance for the description of electronic correlations in solids, the Hubbard model is seldom inarguably
realized in real materials. Here, we show that monolayer Nb3Cl8 is an ideal candidate to be described within a single-orbital
Hubbard model, constructed within a “molecular” rather than atomic basis set using ab initio constrained random phase
approximation calculations. We provide the necessary ingredients to connect experimental reality with ab initio material
descriptions and correlated electron theory, which clarifies that monolayer Nb3Cl8 is a Mott insulator with a gap of about 1.4 to
2.0 eV depending on its dielectric environment. Comparisons to an atomistic three-orbital model show that the single-molecular-
orbital description is adequate and reliable. We further comment on the electronic and magnetic structure of the compound and
show that the Mott insulating state survives in the low-temperature bulk phases of the material featuring distinct experimentally
verifiable characteristics.
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INTRODUCTION
The first theoretical studies of correlation effects in solids date
back as early as 1934 with studies on the so-called polar model1. In
this model, the crystal was represented as a periodic array of
single-orbital sites such that each site can be empty, double
occupied, or single occupied with a spin up or down electron, and
various types of hopping and interaction processes were taken
into account2,3. Further simplification resulted in the appearance
of the Hubbard model4–8 in the 1960s, in which only basic
processes of single-electron hopping and on-site Coulomb
repulsion are taken into account. Although the Hamiltonian of
this model is simple, the physics that emerges from the
competition between interaction and kinetic hopping, or between
localization and delocalization, is extremely rich and complicated.
As a function of temperature, lattice structure, and number of
electrons, the phase diagram of the model is believed to contain
metallic and insulating phases, magnetic ordering, and more
exotic phases such as unconventional superconductivity and
charge-density waves9. In general, the model is too difficult to be
solved exactly in the thermodynamic limit (except in one10 and
infinite dimensions11,12), but many efficient computational strate-
gies have been devised, and some regions of the phase space are
well-understood nowadays9,13,14.
Given its theoretical importance and computational difficulty,

experimental realizations of the Hubbard model have long been
sought since then nature itself would solve the model for us. Some
unconventional superconductors, including cuprates15,16 and
nickelates17,18, as well as NaxCoO2

19 have been described using
the single-orbital Hubbard model. However, in these cases, most
simplified single-orbital models are controversial, and there are
indications that multiorbital models are needed9. Single-orbital
models seem to be, nevertheless, adequate to describe transition
metal dichalcogenides undergoing charge-density-wave transi-
tions, with one low-energy orbital per supercell20. Artificial lattices,
in the form of ad-atoms on surfaces21,22 or atoms trapped in
optical lattices23 are other prominent examples. However, an
actual solid that features the ideal realization of Hubbard model

physics in the unit cell is of course even more desired. There are
several difficulties associated with finding such material. First of
all, most materials have several bands relatively close to the Fermi
level, which casts doubt on a single-orbital low-energy description.
Secondly, background screening in the solid should be so efficient
that the Coulomb interactions between electrons on different sites
are effectively zero, which is unrealistic for many two-dimensional
materials24. Thirdly, the Coulomb interaction between electrons
on the same site should be strong enough to find the desired
strong correlation effects.
The class of Nb3X825 with X being either Cl, Br, or I forms a

promising basis for finding such a realization of the Hubbard
model. While Nb3Br8 has been described as an “obstructed atomic
insulator"26, Nb3Cl8 monolayer has been proposed as a suitable
candidate for a true Hubbard material27,28. At the DFT level, it has
a single well-isolated band crossing the Fermi level. At the same
time, experimental angle-resolved photo emission observa-
tions27,29 and transport measurements30 show a gap in bulk
structures, which could be an indication of strong correlation
effects. However, until now, no first-principles calculations of the
strength of the local and non-local Coulomb matrix elements have
been performed. Here, we use the constrained Random Phase
Approximation (cRPA)31 to calculate the relevant partially-
screened Coulomb matrix elements and show that the local
Hubbard interaction is indeed sufficient to open a Mott gap in the
monolayer. Furthermore, by comparing models with three and
one orbitals per unit cell, we demonstrate that the single-orbital
model is indeed applicable. We provide all parameters, including
interactions and hopping matrix elements, as necessary for many-
body calculations of the material’s electronic properties and
investigate the derived models on the level of the Hubbard-I
approximation. Furthermore, we show that the bulk structure can
also be described by a slightly more involved two-orbital Hubbard
model and investigate it in various experimentally observed high-
and low-temperature structures.
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RESULTS
The high-temperature lattice structure of Nb3Cl8 is shown in Fig. 1.
In each van der Waals monolayer, the Nb atoms form a distorted
kagome lattice, with small (red) and big (blue) triangles. The
distortion is 16.6%, i.e., the sides of the small triangle are 16.6%
shorter and those of the big triangle 16.6% longer than for an
undistorted kagome lattice, in which both would be a/2= 3.36 Å.
The monolayer unit cell contains three Nb atoms, such that the
unit cell can be chosen to contain exactly one complete small
(red) triangle, which we refer to hereafter as a trimer. At low-
temperature, further distortions take places32–34, reducing the
symmetry, which we discuss together with the bulk structures in
more detail below.
Figure 2a shows the monolayer electronic band structure at the

DFT level, i.e., without considering strong electronic correlations.

There are three Nb d (t2g) bands close to the Fermi level, of which
one is crossing the Fermi level, while the other two are slightly
above. At Γ these states can be described by their 2a1 and 2e
symmetries, respectively27,32,33. Additional t2g and eg bands are
above and below (green). Finally, a block of Cl p bands can be
found below −2.7 eV (blue). A Wannier construction for the 2a1
and 2e t2g bands, see Methods, provides three equivalent orbitals
ψ1,2,3 each localized at one of the three Nb atoms in the trimer, as
shown in Fig. 2c–e. In each case, the orbital lobes have a particular
orientation with respect to the triangle of atoms, as indicated in
Fig. 2b.
An isolated trimer with only internal hopping t0 > 0 between the

three atomic Wannier orbitals has three single-particle states with
energies −2t0 (2a1) and twice-degenerate t0 (2e) as obtained from
diagonalization of the isolated trimer Hamiltonian. Then, adding a

Fig. 1 High-temperature lattice structure of Nb3Cl8. (a) shows a side view, and (b) shows a top view. Red (blue) triangles indicate first
(second) nearest Nb neighbours, while brighter and dimmer spheres represent atoms (of Nb and Cl) in opposite layers.

Fig. 2 Monolayer Nb3Cl8 electronic structure and Wannier orbitals of the atomic and molecular orbital models. a Shows DFT and Wannier-
interpolated electronic structures without spin polarization. Bands in red, green, and blue colors stand for Nb-t12g , Nb-ðt22g þ egÞ, and Cl p states,
respectively. t12g orbitals are schematically illustrated in (b) for each Nb atom (in rotated coordinates), while t22g represents all other t2g orbitals.
Opened and filled markers stand for the atomic (AO) and molecular (MO) orbital models, respectively. c–e Show Wannier atomic orbitals for
each Nb atom, (f) their sum, and (g) the Wannier molecular orbital.
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hopping t∥ ≪ t0 between trimers leads to one low-energy band
and a pair of higher-energy bands, each with a bandwidth of order
t∥ and a gap of 3t0. The strong distortion of the kagome lattice
thus allows us to describe the 2a1 and 2e bands observed in
Fig. 2a by a triangular lattice tight-binding model in a basis of
molecular (trimer) orbitals.
For an isolated trimer, the lowest molecular orbital wave function

is a symmetric combination ψ0 ¼ 1ffiffi
3

p ðψ1 þ ψ2 þ ψ3Þ of the atomic

wave functions, as shown in Fig. 2f. Correspondingly, a Wannier
construction for the lowest 2a1 band using only one orbital per
trimer yields such a molecular orbital, as shown in Fig. 2g. This
confirms that the trimer molecular orbital picture is a simple
explanation of the low-energy single-particle electronic structure.
In Tables 1 and 2, we summarize the hopping parameters

corresponding to the single molecular orbital (MO) and three-
band atomic orbital (AO) Wannier constructions, respectively. The
magnitudes of the hopping parameters are consistent with the
picture of weakly hybridized trimers on a triangular lattice (see
Methods for more details).

Coulomb interaction using constrained Random Phase
Approximation
Having established two Wannier orbital basis sets, we study the
correlation effects in Nb3Cl8 using the extended Hubbard model

H ¼ �
X
ij;σ

tijc
y
iσcjσ þ

X
i

Uini"ni# þ 1
2

X
i≠j;σ;σ0

Uijniσnjσ0 (1)

where cyiσ and ciσ are fermionic creation and annihilation
operators, respectively, creating or annihilating an electron in
orbital i with spin σ; niσ ¼ cyiσciσ is the spin-density operator for
spin σ on orbital i. The Coulomb interaction matrix elements Uijkl

(Ui= Uiiii and Uij= Uiijj) are evaluated within the Wannier orbital
basis sets and using the constrained Random Phase Approxima-
tion (cRPA) scheme31(see Methods). To this end, the electronic
structure is divided into a target space and a rest space. This
approximation should be applicable when the rest space has a
large gap35, and the two spaces can be disentangled cleanly. Here,
the symmetry of the distorted kagome lattice greatly helps the
disentanglement. Furthermore, the rest space has a gap of 2.5 and
2 eV for the AO and MO target spaces, respectively. This is
sufficiently large compared to the bandwidths of the individual
bands to have confidence in the cRPA accuracy. In this sense,
Nb3Cl8 is an extraordinarily promising candidate for realizing a
most simple Hubbard model.
In the present case, there are two relevant choices for the target

space: all of the three lowest 2a1 and 2e states spanned by three
atomic Nb d orbitals, or just the lowest metallic 2a1 band, best
described by the lowest MO. We have performed cRPA calculations
for both cases, and the resulting Coulombmatrix elements UðsÞ

ðijklÞ are
given in Tables 1 and 2 with s referring to the distance ("shells") and
i, j, k, l to the atomic orbitals in the AO model. For the onsite R= 0
Coulomb interactions we find U(0)≈ 1.9 eV in the MO model and
Uð0Þ
0000 � 2:8 eV (Uð1Þ

0011 � 1:8 eV) in the atomic model. U(0) and Uð0Þ
0000

are obviously not identical. There are two origins for these
differences, one purely geometrical and one physical. The MO is
constructed as a linear combination of atomic orbitals, meaning the
Coulomb tensor should also be transformed to a new basis
involving all intra-trimer Coulomb matrix elements yielding Uð0Þ �
1=3Uð0Þ

0000 þ 2=3Uð1Þ
0011 (see Methods). Given the numbers in Table 2,

more than half of the molecular Coulomb interaction comes from
the interatomic interaction U0011 within the trimer. The transforma-
tion to the MO reduces the Coulomb matrix element since the
molecular Wannier orbital, as depicted in Fig. 2g, is more spread out
than the individual atomic Wannier orbitals in Fig. 2c–e. In addition
to this geometrical effect, the Coulomb interactions in the MO
model are further reduced because of the additional screening
provided by the two 2e bands that are integrated out.
Figure 4 shows additional information about the Coulomb

interaction in the MO. Formally, the cRPA produces a frequency-
dependent interaction31,36U(ω). In Nb3Cl8, the partially-screened
Coulomb interaction is, however, well approximated as frequency-

Table 1. Molecular orbital (MO) Hubbard model parameters for
monolayer Nb3Cl8.

∣r(s)∣/a s t(s) U(s) J(s)

0.000 0 1907.30

1.000 1 22.6 781.4 −0.91

1.732 2 4.6 462.0 −0.04

2.000 3 −4.0 387.4 −0.03

Trimer lattice site and shell (s) indices are depicted in Fig. 3, left panel. r is
the distance between the trimer lattice sites (in units of the in-plane lattice
parameter a), t their single-particle hopping, U(s) the local (s= 0) and
nonlocal (s ≠ 0) Coulomb interactions, and JðsÞ ¼ �2ðtðsÞÞ2=U� effective
magnetic exchange interactions. All parameters are given in meV.

Table 2. Atomic orbital (AO) Hubbard model parameters for
monolayer Nb3Cl8.

jrðsÞij j=a s i-j tðsÞij UðsÞ
iijj UðsÞ

ijji

0.000 0 i= j 2800.2

0.417 1 i ≠ j −325.1 1829.0 37.7

0.583 2 i ≠ j 84.5 1018.3 0.2

0.870 3 i ≠ j −8.4 901.3 −0.1

1.000 4 i= j −39.8 832.8

1.000 5 i= j 18.0 852.8

1.261 6 i ≠ j 2.8 772.5 −0.1

1.387 7 i ≠ j 0.4 561.0 0.0

1.417 8 i ≠ j −4.5 730.1 0.2

1.583 9 i ≠ j −4.1 482.0 0.0

1.732 10 i= j 1.2 497.8

1.732 11 i= j −0.1 501.7

1.782 12 i ≠ j 0.4 493.7 0.0

1.828 13 i ≠ j −1.7 444.4 0.0

2.000 14 i= j −1.3 414.9

2.000 15 i= j −0.5 414.9

Atomic lattice site indices are depicted in Fig. 3, right panel. r is the
distance between the atomic lattice sites, t their single-particle hopping,
Uiijj the local and non-local density-density and Uijji the Hund’s exchange
Coulomb interactions. All parameters are given in meV.

Fig. 3 Lattice site and shell indices. Molecular orbital (MO) and
atomic orbital (AO) lattices are shown in the left and right panels,
respectively.
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independent in the range ω ∈ [0, 10] eV, and only reaches the
asymptotic, bare value around ω= 30 eV. This shows that
retardation effects are unimportant at the relevant electronic
energy scales36. Next to these weak retardation effects, we find
significant non-local values U(R) for R > 0, as shown in Fig. 4b,
depicting the 1/R tail of the static Coulomb interaction. This long-
range tail of the Coulomb interaction is a result of the reduced
screening in 2D and the effective dielectric cRPA screening. In
contrast, a metallic screening would yield a conventional Yukawa

potential. In this figure, we also show how the non-local
interaction of the molecular orbital is affected by a dielectric
encapsulation of the monolayer (see Methods for details on the
calculations). From this, we see that in the extrapolated fully free-
standing ε= 1 case U(0) ≈ 2 eV and U(1) ≈ 0.9 eV, which can be
reduced by an environmental screening of ε= 10 to approxi-
mately 1.4 and 0.4 eV, respectively. U(R) is thus rather susceptible
to the environment.
The low-energy physics of the system, in particular, the

thermodynamics and charge neutral excitations such as spin
fluctuations, can be described using a purely local Hubbard
model24, with an effective local interaction U*= U(0)− U(1). This
effective interaction U* is barely affected by the substrate
screening as a result of similar screening effects for U(0) and U(1).
This is illustrated in Fig. 4c, which shows that U*(ε) reduces from
about 1.15 to only 1 eV upon increasing the environmental
dielectric screening from ε= 1 to 10.

Electronic correlations
Solving the single-orbital triangular lattice Hubbard model is a
formidable task37, which requires advanced computational
techniques and is beyond the scope of this paper. Our model
derivations result in consistent parameter sets summarized in
Table 1, which should be used for such calculations. Nevertheless,
inspecting these model parameters given by our Wannier
construction and cRPA calculations, we observe that the Coulomb
interaction is substantially larger than the bandwidth of the
partially filled low-energy band, U/∣9t(1)∣ ≈ 10 for the molecular
model. Thus, strong coupling techniques can be used to get a first
impression of the correlation effects. The so-called Hubbard-I
approximation, a multi-band generalization38 of the approach
introduced by Hubbard6, was suggested as an adequate
approximation by default in the narrow-band limit38,39 such that
we will exploit it here (see Methods for details on the calculations).
In Fig. 5a and c, we show the spectral functions of the AO and

MO models, i.e., with 3 and 1 orbitals per trimer, calculated using
the Hubbard-I approximation, taking into account the intratrimer
interactions only. For the MO model, we take into account U(0)

only, while for the AO model, we include the full trimer-local
Coulomb tensor UðsÞ

ijkl where i, j, k, l are restricted to nearest-
neighbour Nb positions on a single trimer (s ≤ 1). We also show
in Fig. 5d results for the MO model using U*= U(0)− U(1). In all
cases, the interaction leads to a significant frequency dependence
in the local Hubbard-I self-energy, which splits the partially filled
2a1 band into an upper and lower Hubbard band, with a gap
given by the effective interaction strength acting on the lowest
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Fig. 4 Monolayer Nb3Cl8 Coulomb interactions of the MO model
calculated using the constrained Random Phase Approximation.
a Frequency-dependence of the local interaction, b nonlocal static
interactions for a monolayer in a dielectric environment. c Effective
local Hubbard interaction U*= U(0)− U(1) as a function of the
dielectric environmental screening.

Fig. 5 Interacting spectral functions of Nb3Cl8 monolayer within the Hubbard-I approximation. a Atomic three-orbital model (AO), (b) its
projection to the lowest molecular-orbital, (c) molecular single-orbital model (MO), (d) MO model based on U*, and (e) cross-section of those
spectral functions at one selected momentum. The chosen chemical potential constraints the occupation to one electron per trimer and
aligns the upper Hubbard band.
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half-filled molecular orbital. In addition, we have projected the
spectral functions of the AO model onto the trimer eigenstate ψ0

to show that this is indeed the low-energy state, see Fig. 5b. This
comparison proves that the system is a Mott insulator in the
Hubbard-I approximation, regardless of the model that is used. We
also note that considering models with more than three orbitals
that include bands close to the lower Hubbard band does not
show any signs of a charge-transfer gap as discussed in
Supplementary Note 1.
Comparing the Mott gaps in the three models, we find

noticeable differences. The U* model obviously has a smaller
gap since the effective local interaction is reduced by the
intertrimer interactions. This effect is not included in the
approximate Hubbard-I treatment of the other models. We,
however, note that the U* approach aims to describe the
equilibrium correlation functions of the system40–42. Its applic-
ability to high-energy spectral properties is questionable, as we
discuss at hand from a small finite-size cluster in Supplementary
Note 2. This discussion also suggests that the local U alone could
describe the Mott gap of the full model with non-local Coulomb
interactions reasonably well. Comparing the gaps in the AO and
the MO models, we find a small reduction of the gap in the MO
model. Both approaches differ in their diagrammatic content with
regard to the two higher-energy trimer states, and an exact match
is, therefore, not expected. The AO model in the Hubbard-I
approximation contains purely intratrimer effects in an exact way.
In contrast, the MO model contains both intra- and intertrimer
screening effects, but only on the (c)RPA level, while the
correlation effects are subsequently taken into account using
Hubbard-I, i.e., intratrimer only. The quantitative similarity is a sign
that the appearance of the gap is largely caused by intratrimer
correlation physics. On the other hand, since the AO model starts
with the three bands, it has additional spectral weight at higher
energies. Figure 5 shows that this spectral weight predominantly
remains in the tight-binding bands, with a limited amount of
spectral weight transferred to localized excitations at higher
energy.
Finally, in all cases, we observe a significant bandwidth

renormalization in the lower and upper Hubbard bands compared
to the non-interacting 2a1 bandwidth. This is a result of the
frequency dependence of the dynamical self-energy and is in
agreement with recently obtained angle-resolved photoemission
spectra27, which we discuss further in detail in Supplementary
Note 1.

Magnetic properties
Given the strong Coulomb repulsion and the filling of one electron
per trimer, there is a tendency to form single S ¼ 1

2 magnetic
moments on every trimer. In this strong coupling limit, a simple
estimate for the magnetic exchange interactions is given by the

Hubbard-Stratonovich transformation JðsÞ ¼ �2ðtðsÞÞ2=U�, and the
resulting values are given in Table 2 up to the third nearest
neighbours. Note that for magnetic properties, we expect U* to be
the best approximation to effectively take nonlocal Coulomb
interactions into account. Figure 6 shows possible magnetic
structures based on these interactions, including a ferromagnetic,
striped anti-ferromagnetic, and 120∘ anti-ferromagnetic ordering
together with their energy densities of the exchange interaction

given by E ¼ � 1
2Ni

P
s

PNiN
ðsÞ
j

ij JðsÞij Si � Sj . Here, i= 1,⋯ , Ni stands for

the magnetic moments in the magnetic unit cell, and j≠i ¼
1; � � � ;NðsÞ

j represent all neighbours within the same distance jrðsÞij j
characterized by shell index s. From these structures, the 120∘ anti-
ferromagnetic structure has the lowest energy, suggesting it
adequately represents the magnetic ground state.

DISCUSSION
With the help of two down-folded minimal models, we
established a Hubbard model description of Nb3Cl8 based on
correlated trimers positioned on a triangular lattice and under the
influence of intertrimer hopping as well as long-range Coulomb
interactions. Based on these ab initio models, we showed that
monolayer Nb3Cl8 in the high-temperature (HT) phase is a Mott
insulator deep in the Mott regime as a result of the integer one-
electron occupation of each trimer and the strong trimer-local
Coulomb interactions relative to the small inter-trimer hopping.
Below, we further show that this Mott behaviour also survives in
the distorted low-temperature (LT) phases as well as within bulk
stacks. Previous studies suggested using U ≈ 1 eV as an ad hoc
choice together with a Wannierized single-band to describe the
bulk electronic structure27,28. Our first-principles cRPA study shows
that this value is reasonable if charge-neutral excitations are
considered and the system is mapped onto an effective Hubbard
model using the renormalized U*= U(0)− U(1)24, to effectively take
the non-local Coulomb interaction into account. We find slightly
larger values of U* ≈ 1.15 eV for an isolated monolayer, with a
reduction towards 1 eV for monolayers in a dielectric environ-
ment43,44 (see Methods for details). On the other hand, U(0) is more
adequate to describe charged excitations, such as involved in
angle-resolved photoemission experiments, which ranges in cRPA
from about 1.4 to 2 eV in monoloayer Nb3Cl8 depending on the
dielectric environment.
Based on the effective single-band Hubbard model describing

Nb3Cl8 ML, we furthermore showed that a 120∘-antiferromagnetic
structure forms between the magnetic moments localized on each
trimer at the ground state. It is important to emphasise here that
U⋆ is relevant for the magnetic properties. And, since the intra-
and intertrimer Coulomb interactions are both screened in
approximately the same way, the effect of screening by the

Fig. 6 Magnetic structures derived from the MO Hubbard model for monolayer Nb3Cl8. Corresponding energy densities of the exchange
interaction are indicated in the Figure.
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environment on the magnetic properties is negligible. On the
other hand, for spectral properties and especially the Mott gap,
the cRPA U(0) is a more reliable quantity, which significantly
changes with substrate screening.
We further estimate the spin-orbit coupling to be a small

perturbation with respect to the Coulomb interaction. In the
distorted kagome crystal structure yielding the correlated trimer
lattice, Nb is formally in an [Nb3]8+ state. As the atomic spin-orbit
coupling of Nb2+ and Nb3+ is below 100 meV45 and thus
significantly smaller than the local Coulomb of U0000 ≈ 2.8 eV, spin-
orbit coupling can be treated as a perturbation to the Mott
insulating state here and will not change qualitatively the drawn
conclusions. In Supplementary Note 3, we further show that on
the ab initio mean field LSDA+U level, the flat band (which forms
the lower and upper Hubbard band in Hubbard-1) is not affected
at all by the spin-orbit coupling, which we interpret as a result of
the three-fold rotation-invariance of the MO. The interplay of spin-
orbit coupling with the crystal field can lead however to subtleties
in the magnetic anisotropy39.
In the bulk structure, the details of the stacking between the

layers affect the electronic properties via interlayer hybridization.
In the orthorhombic lattice structure of the HT phase, the
correlated trimers in the different layers are laterally shifted as
visualized in Fig. 7(a). The resulting DFT band structure is shown in

Fig. 8(a). It is similar to the ML HT band structure with a doubled
amount of bands, which are mildly affected by interlayer
hybridization. We now find two half-filled bands around the
Fermi level with finite dispersion in kz direction. The correspond-
ing atomic and MO models now host 6 Nb d states and 2 MOs,
respectively. All model parameters for the MO model are given in
Table 3, and the visualizations of the corresponding Wannier
functions are shown in Supplementary Fig. 4. The nearest-
neighbour intra-layer hopping matrix element t∥ ≈ 25 meV of
the corresponding MO model is similar to the one in the ML. The
nearest-neighbour inter-layer hopping t?1;2 � �15 to 17 meV is on
a similar order, such that the inter-layer hybridization does not
qualitatively change the small-band width character of the
metallic bands around the Fermi level. The direction dependence
of t?1;2 is a result of the Cl positions, one of which can be either
above or below the trimer.
Next to the kinetic parts of the model Hamiltonian, the

Coulomb interaction matrix elements are also affected by the
bulk structure due to enhanced screening. In the MO model, the
local Coulomb interaction on each trimer is reduced from U ≈ 1.9
eV in the ML to U ≈ 1.5 eV in the bulk structure. Similar trends hold
for the long-range interactions within the individual layers.
Additionally, there are now inter-layer Coulomb matrix elements,
of which only the density-density ones are of non-vanishing

Fig. 7 Crystal structures of bulk Nb3Cl8. a At high temperature (HT, space group P3m1) and (b) and (c) at low temperatures (LT, space groups
C2/m and R3, respectively). The on-top views depict layer 1, layer 2, layer 1/layer 2, and layer 2/layer 1', respectively. Spheres in fade and bright
colors (green and yellow) represent atoms (of Nb and Cl) in neighboring layers. Brown arrows indicate the interlayer couplings t?n (n= 1, 2)
between the nearest trimers. Numbers around trimers are distances between the nearest Nb atoms in each layer (in Å).
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magnitude. In the MO model, these are ca. 360 meV. Given the
half-filled flat bands and still significant trimer-local Coulomb
interaction matrix elements, it is thus reasonable to expect that
the Mott behaviour in the HT bulk phase survives. The
corresponding results, taking only trimer-local interaction terms
into account, are presented in Fig. 8 for both models. In the
atomistic model, we find a Mott gap of about 1.6 eV, and in the
MO model of about 1.5 eV.

For low temperatures, below 100 K, bulk Nb3Cl8 is known to
undergo a structural phase transition supposedly accompanied by
a paramagnetic to non-magnetic transition32–34,46, similar to the
behavior in the family of Mo3O8 quantum magnets47. Two mildly
different low-temperature structures with C2/m32 and R333,34 point
group symmetry have been experimentally observed. The
corresponding DFT band structures are shown in Fig. 8. The main
difference between the C2/m and R3 structures is a deformation
within the trimers, yielding slightly elongated trimers in the C2/m

Fig. 8 Electronic structures of bulk Nb3Cl8. a DFT electronic structure and (b) interacting spectral functions obtained using the Hubbard-I
approximation. The top, middle, and bottom panels represent results in P3m1 (HT phase), C2/m (LT phase), and R3 (LT phase) space groups,
respectively. The electronic structures in (a) are weighted between Nb-t12g (in red), Nb-t22g (in green), and Nb-eg (in blue) states, respectively. The
spectral functions in (b) stand for the atomic six-orbital model (first panels), molecular two-orbital model (second panels), and the cross-
section of those spectral functions at one selected momentum (last panels). The insets show the first Brillouin zones and symmetry directions
for each structure. Symmetry points M and K for LT structures are chosen to represent the same in-plane directions as in the HT case.
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structure, and modifications to the trimer sizes between the
different layers in the R3 structure, as depicted in Fig. 7. As a result,
the degeneracies between the two higher-lying trimer states are
lifted in both LT structures.
The main difference between these LT and HT bulk structures is,

however, the relative shift between the layers. In the LT structures,
trimers from different layers are partially significantly closer to
each other than in the HT structure, c.f. Fig. 7. This enhances the
inter-layer hybridization, which leads to a splitting of the two
metallic bands around the Fermi level, which yields a full but small
gap between these states. Also, the opposite signs of intra-trimer
and inter-trimer in-plane hoppings (in the AO model) are peculiar
for the electron localization at the trimer. While the competition
between kinetic energy and intersite Coulomb interactions leads
to a weak interaction limit for the HT structure with strong
electron localization, LT phases, due to relatively larger inter-layer
hopping but still much smaller than the on-site U, reveal some
tendency to the strong interaction limit with inter-layer anti-
ferromagnetic order. On the DFT level, it is important to note that
none of the symmetry breakings in the C2/m and R3 structures
yield significant charge re-distributions between the Nb atoms of
the trimers.
The molecular orbital description is furthermore still valid and

allows to quantify of the nearest-neighbor intra- and inter-layer
hoppings yielding t∥ ≈ 15meV, t?1 � 127 meV, t?2 � 3 meV,
respectively for the R3 structure. Notably, t?2 is much smaller than
t?1 , which is in turn much larger than t∥. The LT structures are thus
best described as weakly hybridized stacks of bilayer Nb3Cl8,
whereby the two layers forming the bilayers are strongly
hybridized. The Coulomb interaction matrix elements are only
barely affected by the relative shift between the two layers of the
LT bulk unit cell yielding U ≈ 1.5 eV in the R3 structures,
respectively. A similar description holds for the C2/m structure,
however, with reduced symmetry. All model parameters are given
in Table 3. This might suggest that the low-temperature bulk
structure is best described as strongly antiferromagnetically
coupled bilayers, which significantly suppresses the magnetic
susceptibility in comparison to the weakly coupled high-

Table 3. Generalized Hubbard model parameters for bulk Nb3Cl8 in
HT and LT phases for the two molecular orbital models.

HT–P3m1

s∥ jrkðsÞij j=a i-j RkðsÞij =a tkðsÞij UkðsÞ
ij

0 0.000 1-1 (000) 4037.2 1477.6

1 1.000 1-1 ð110Þ 25.4 474.2

2 1.732 1-1 ð210Þ 4.6 278.9

3 2.000 1-1 ð220Þ −4.2 245.7

s⊥ jr?ðsÞ
ij j=a i-j R?ðsÞ

ij =a t?ðsÞ
ij U?ðsÞ

ij

1 1.046 1-2 (000)

−15.5 358.0 2 1.110

1-
-2

ð011Þ −16.8 319.2

3 1.447 1-2 ð110Þ −0.5 277.8

4 1.494 1-2 ð111Þ −4.4 261.6

5 1.759 1-2 ð120Þ 1.1 244.6

6 1.798 1-2 ð021Þ −0.9 231.0

7 1.821 1-1 ð001Þ −1.1 193.2

8 2.077 1-1 ð111Þ −0.3 179.9

LT–C2/m

s∥ jrkðsÞij j=a i-j RkðsÞij =a tkðsÞij UkðsÞ
ij

0 0.000 1-1 (000) 4285.0 1476.1

1 1.000 1-1 ð110Þ 7.7 481.7

2 1.000 1-1 ð100Þ 22.7 481.2

3 1.731 1-1 ð210Þ 5.4 286.3

4 1.732 1-1 ð110Þ 5.2 288.2

5 2.000 1-1 ð200Þ −4.4 253.8

s⊥ jr?ðsÞ
ij j=a i-j R?ðsÞ

ij =a t?ðsÞ
ij U?ðsÞ

ij

1 0.860 1-2 (000)

−133.9 409.4 2 1.113

1-
-2

ð101Þ −2.2 316.0

3 1.133 1-2 ð001Þ −3.9 316.8

4 1.302 1-2 ð100Þ 3.1 285.2

5 1.319 1-2 ð110Þ 5.4 283.2

6 1.336 1-2 ð010Þ 7.2 284.0

7 1.482 1-2 ð111Þ −6.1 264.1

8 1.511 1-2 ð111Þ −5.6 263.4

9 1.787 1-2 ð021Þ −1.5 233.9

10 1.799 1-2 ð121Þ −0.9 233.4

11 1.824 1-2 ð011Þ −1.1 234.4

LT–R3

s∥ jrkðsÞij j=a i-j RkðsÞij =a tkðsÞij UkðsÞ
ij

0 0.000 1-1 (000) 4164.4 1498.0

1 0.000 2-2 (000) 4159.9 1494.0

2 1.000 1-1 ð110Þ 15.1 484.2

3 1.000 2-2 ð110Þ 26.1 486.1

4 1.732 1-1 ð210Þ 4.8 288.6

5 1.732 2-2 (120) 5.5 288.5

6 2.000 1-1 ð220Þ −4.8 254.9

Table 3 continued

LT–R3

s∥ jrkðsÞij j=a i-j RkðsÞij =a tkðsÞij UkðsÞ
ij

7 2.000 2-2 (020) −4.0 254.7

s⊥ jr?ðsÞ
ij j=a i-j R?ðsÞ

ij =a t?ðsÞ
ij U?ðsÞ

ij

1 0.870 1-2 (000)

−127.4 409.8 2 1.108

1-
-2

ð001Þ −3.0 323.5

3 1.325 1-2 ð010Þ 5.6 287.1

4 1.492 1-2 ð111Þ −6.5 268.6

5 1.796 1-2 ð121Þ −1.2 237.5

6 1.906 1-1 (001) −1.1 182.2

7 1.938 1-2 (120) 0.9 221.7

8 1.938 1-2 ð110Þ −1.3 221.9

9 2.181 1-2 (220) 0.6 205.5

Tables list in-plane tkðsÞij and out-of-plane t?ðsÞ
ij hopping parameters together

with local and nonlocal Coulomb matrix elements. i and j are molecular
orbital positions separated by distance jrsij j=a ¼ jðrj þ RijÞ � ri j=a (in units
of the in-plane lattice parameter a), where Rij is a unit cell translation
vector, and s is shell index (represents bonds with the same symmetries).
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temperature bulk phase. This would qualitatively explain experi-
mentally measured magnetic susceptibilities32,33 without assum-
ing vanishing magnetic moments.
We have also applied the Hubbard-I approximation to the bulk

structures. As shown in ref. 48, the Hubbard-I approach
corresponds to the formal first-order-in hopping correction to
Green’s function, assuming that the interaction is local, which
leads to vanishing vertex corrections. This assumption is still
clearly valid in the case of the LT structures as the interactions
between the trimers, as well as the hopping between them, is
much smaller than the intertrimer Coulomb interaction. The only
other factor, which could yield vertex corrections is correlated
hopping1,2,49. Explicit calculations show here, however, that these
contributions to the hopping are small: The largest Uiiij element
with i and j being located on different trimers, which could be
responsible for correlated hopping terms, is on the order of just 3
meV and can thus be safely neglected. In Fig. 8, we, therefore,
present the corresponding interacting spectral functions for both
atomic and MO models. Similar to the situations studied above,
we find Mott gaps on the order of 1.6 eV driven by the dynamical
properties of the Hubbard-I self-energy. Due to the small splitting
of the two bands around the Fermi level, we see a similarly small
splitting in the lower and upper Hubbard bands as well.
For the experimental verification of the Mottness, we compare

in Fig. 9 the upper Hubbard-bands of all models (in the MO basis)
to Hartree-Fock calculations, which are similar to LSDA+U
approximations6. As also discussed in detail for elemental rare-
earth and their compounds39,50, Hartree-Fock calculations cannot
account for the significant bandwidth renormalizations, which are
captured by Hubbard-I calculations and which have possibly been
observed experimentally in Nb3Cl827,29. The LT bulk structures
further show a particular behaviour of the split lower Hubbard
band: just at A, these two bands touch while they are separated by
about 100meV throughout the whole BZ. This is different in the
Hartree-Fock calculations and could thus serve as an experimental
hint towards the Mottness.
The sister compound Nb3Br8 has been suggested to be an

obstructed atomic insulator26 already at the DFT level, based on
symmetry analysis with a small gap between flat bands51. Our
results for Nb3Cl8 suggest that correlation effects could also be
important in Nb3Br8 and that these would give a substantial
contribution to any experimentally observed gap. To quantify this,
cRPA calculations for Nb3Br8 are needed, especially to understand
the interplay between Coulomb interactions and interalayer
hybridization28 in the LT phases. In case Nb3Br8 is similarly
correlated as Nb3Cl8, it could be the reason for the observed
superconducting diode effect in heterostructures based on
Nb3Br852.
In conclusion, based on detailed ab initio down folding

calculations, we derived various minimal (generalized) Hubbard

models for Nb3Cl8 in several structures. For all of them, the derived
model parameters, together with the Hubbard-I approximation,
suggest that Nb3Cl8 is a Mott insulator, independent of the details
of the low- or high-temperature bulk or monolayer structures. For
the monolayer structures, we were able to derive the most simple
single-band Hubbard model. For bulk structures in all known
lattice structures, we derived two-orbital Hubbard models with
long-range Coulomb interactions.
Non-local Coulomb interactions are substantial in this layered

compound. For the description of charge-neutral excitations in the
monolayer, it is possible to use an effective Hubbard model with a
modified local Hubbard interaction to account for this24. We need
to stress that the role of non-local Coulomb interactions in the
bulk structure should be investigated in more detail since the
effective Hubbard model approach assumes that the non-local
Coulomb interaction is the same in all directions, which is not the
case in this layered compound.
Electronic correlations in the triangular lattice, as found in

Nb3Cl8, are of particular theoretical interest because the geometric
frustration in the lattice removes the antiferromagnetic fluctua-
tions, which are so dominant in square lattice models53. Instead,
there are indications for a quantum spin liquid phase at
intermediate interaction strengths54–56. The analysis of electronic
correlations in this work (using Hubbard-I) is restricted to strong
interactions and to the undoped case, with one electron per
trimer. Doping away from this integer filling will destroy the Mott
insulating phase even at large U/t (see, e.g, Nb3Cl7Te57) and thus
requires a more advanced many-body treatment of the arising
correlation phenomena, such as possible chiral superconductiv-
ity58,59. Recent progress in advanced computational methods
makes it possible to obtain converged multi-method results37 for
the triangular lattice Hubbard model. Combining these methods
with the model parameters derived here makes it possible to
study the iconic Hubbard model and its physics hand-in-hand
between theory and experiment.

METHODS
Electronic structure calculations
We study the electronic and magnetic properties of Nb3Cl8 ML
and bulk using one high-temperature structure (with space group
P3m1) and two low-temperature structures (characterised by R3
and C2/m space groups)32,33. The details about the primitive
representation of the low-temperature structures and correspond-
ing Wyckoff positions used in this work can be found in
Supplementary Note 5.
We utilize two different Wannier basis sets representing the

lowest trimer molecular orbital alone and an atomistic one
describing the three relevant Nb d orbitals on the trimer-corner

Fig. 9 Interacting electronic structures of the lower Hubbard band of Nb3Cl8. The color maps and red dashed lines represent the
interacting spectral functions and electronic structures obtained using the Hubbard-I and Hartree-Fock approximation, respectively for (a) ML
and (b–d) different bulk structures. The results are shown for the MO model (the electronic structures for the AO model are similar). The AFM
interlayer order was used in the Hartree-Fock calculations for bulk structures.
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positions, which we refer to as the molecular orbital (MO) and
atomic orbital (AO) models, respectively. To this end, we start with
conventional DFT calculations utilizing the Perdew-Burke-
Ernzerhof GGA exchange-correlation functional60 within a PAW
basis61,62 as implemented in the Vienna Ab initio Simulation
Package (VASP)63,64 using the structures given above. We use
(20 × 20 × 1) and (8 × 8 × 4) k-meshes for monolayer and bulk
calculations, respectively, as well as an energy cutoff of 350 eV and
Methfessel-Paxton smearing of σ= 0.05 eV.
For the MO model, we project the flat Kohn-Sham bands around

the Fermi level to an (initial) Wannier orbital with s symmetry
located at the center of the trimer. For the atomistic model, we
similarly project all Kohn-Sham states between −1.0 eV and +1.5
eV to three individual Nb-centered d orbitals. Afterward, we
maximally localize the orbitals using the WANNIER90 package65 and
applying an inner (frozen) window including either only the flat
bands around EF or all states between −1.0 eV and +1.5 eV. Using
the resulting localized orbitals ψi(r), we obtain the single-particle
Wannier Hamiltonian from the hopping matrix elements

tij ¼ �hψijHDFTjψji: (2)

The resulting Wannier models perfectly interpolate all Kohn-Sham
states in their respective windows, as indicated in Fig. 2 and Fig. 8.
The Coulomb interaction matrix elements Uijkl are evaluated

within the Wannier orbital basis sets from above and using the
constrained random phase approximation (cRPA) scheme31

according to

UijklðωÞ ¼ ψiψk jbUðωÞjψlψj

D E
¼ R R

d3r d3r0 ψ�
i ðrÞψjðrÞUðr; r0Þψ�

kðr0Þψlðr0Þ
(3)

which utilizes the partially screened Coulomb interaction

bUðωÞ ¼ 1� v̂bΠcRPAðωÞ
h i�1

v̂: (4)

Here v̂ is the bare Coulomb interaction and bΠcRPA is the partial
polarization as defined

bΠcRPA ¼ bΠfull � bΠtarget; (5)

with Πtarget describing all polarization contributions from within
the target sub-space as defined by the Wannier functions. This
way, we avoid any double counting of screening channels in
subsequent solutions of the derived generalized Hubbard models.
ΠcRPA correspondingly describes screening from all other states
except the target ones, including from a significant amount of
empty states from the full Kohn-Sham basis. In detail, we use in
total 160 bands and define ΠcRPA using Kaltak’s projector method
as recently implemented in VASP66.
From this, we derive the full retarded and non-local rank-4

Coulomb tensor Uijkl(ω) for both models. Casula et al. showed that
using U(ω= 0) instead of the fully retarded U(ω) is justified when
renormalized hopping parameters are utilized67. The correspond-
ing renormalization factor was shown to scale with the
characteristic cRPA plasmon frequency ωp. To this end, we show
in Fig. 4U(ω) of the MO orbital model in the HT ML structure. This
indicates that ωp ≈ 25 eV is large such that we can safely neglect
retardation effects here and use only Uijkl(ω= 0).
All monolayer calculations are performed within a supercell of

25 Å height. All tabulated and mentioned Coulomb matrix
elements refer to these calculations.
To extrapolate to the effectively free-standing monolayer and to

take dielectric screening from the environment into account, we
use our Wannier Function Continuum Electrostatics (WFCE)
approach43 as applied in ref. 68. To this end, we start with the
non-local bare Coulomb interaction of the monolayer as obtained
from our cRPA calculations in momentum space. Within a matrix
representation vαβ(q) using a product basis α, β= {n,m} we can

diagonalize the Coulomb tensor

vðqÞ ¼ P
ν
vνðqÞ vνðqÞj i vνðqÞh j (6)

with vν(q) and vνðqÞj i being the corresponding eigenvalues and
eigenvectors of the Coulomb tensors and q= ∣q∣. Assuming that
the eigenbasis does not drastically change upon the effects of the
cRPA screening, we can thus represent the full cRPA Coulomb
tensor as

UðqÞ ¼ P
ν

vνðqÞ
ενðqÞ vνðqÞj i vνðqÞh j; (7)

where εν(q) are the corresponding pseudo-eigenvalues of the
dielectric tensor describing the different screening channels. The
leading eigenvalue v1(q) renders Coulomb penalties for mono-
pole-like perturbations (all orbitally resolved electronic densities
are in phase). The mono-pole-like screening as rendered by ε1(q)
can be modeled by solving the Poisson equation for a dielectric
slab of height h embedded in some different dielectric environ-
ment yielding

ε1ðqÞ ¼
ε
ð0Þ
1 1� ~ε

ð1Þ
0 ~ε

ð2Þ
0 e�2qh

h i

1þ ~ε
ð1Þ
0 þ ~ε

ð2Þ
0

h i
e�qh þ ~ε

ð1Þ
0 ~ε

ð2Þ
0 e�2qh

(8)

with

~ε
ð1Þ
0 ¼ ε

ð0Þ
1 �εbelowsub

ε
ð0Þ
1 þεbelowsub

; ~ε
ð2Þ
0 ¼ ε

ð0Þ
1 �εabovesub

ε
ð0Þ
1 þεabovesub

: (9)

For εabovesub ¼ εbelowsub ¼ 1, this describes the leading dielectric
function of a free-standing monolayer, which we can fit to the
cRPA data. With these fitting parameters, we can now modify the
full cRPA Coulomb tensor to describe environmental screening
rendered by finite εabovesub and εbelowsub . Due to the monopole-like
character of this environmental screening, we only affect density-
density Coulomb matrix elements in the very same way.

Trimer model
A single trimer can be described in tight-binding theory using the

Hamiltonian Ĥ ¼ t0
0 1 1
1 0 1
1 1 0

0
@

1
A, which has eigenvalues E0= 2t0,

E±=− t0 (note that t0 is negative, so E0 < E±) and corresponding
eigenvectors

ψ0 ¼ 1ffiffi
3

p
1

1

1

0
B@

1
CA;ψþ ¼ 1ffiffi

3
p

1

λ

λ2

0
B@

1
CA;ψ� ¼ 1ffiffi

3
p

1

λ�1

λ�2

0
B@

1
CA; (10)

with λ ¼ expð2πi=3Þ. For the Nb3Cl8 trimer, t0=−0.325 eV, so the
trimer gap 3∣t0∣ ≈ 1 eV.
In the lattice of trimers, we have to take into account the

hopping between trimers (i.e., along the blue bonds in Fig. 1). In
the molecular orbital model, the hopping between trimers is
found to be t1 ≈ 22 meV. In the atomic orbital model, the hopping
from the corner of one trimer to the nearest atom on the
neighbouring trimer has an amplitude of 84 meV. Based only on
this, one might have expected t1 ≈ 84/3= 28 meV, but sub-leading
matrix elements (with alternating signs) are responsible for
corrections. For a triangular lattice with nearest-neighbour
hopping, the bandwidth is 9t1 ≈ 200 meV.
For the Coulomb interaction, there are two effects that play a

role when going from the atomic orbitals to the molecular orbitals.
First, there is a purely geometric effect since the molecular orbitals
are linear combinations of the atomic orbitals, which leads to a
transformation of the Coulomb tensor. Secondly, additional
screening processes take place when integrating out the two
higher-lying molecular orbitals ψ±, which changes the concept of
partially screened. Here, we consider the first effect since it can be
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understood simply. In this calculation of the Coulomb interaction,
it is essential to realize that changes in the single-particle energies
(chemical potential) occur simultaneously with the transformation
of the Coulomb matrix. Therefore, the best way to relate matrix
elements of two different Hamiltonians is to evaluate energy
differences between sets of states with constant total particle
number. In this case, we look at the energy of the trimer for
n↑, n↓= 0, 1. We use the fact that the electron density is
homogeneously distributed over the three atoms for the low-
lying molecular orbital, so n↑= 1 corresponds to a density of 1/3
electron with spin ↑ per atom.

Eðn" ¼ 0; n# ¼ 0Þ ¼ 0U þ 0V ¼ 0U0

Eðn" ¼ 1; n# ¼ 0Þ ¼ 0U þ 3 1
3
1
3 V ¼ 0U0

¼ Eðn" ¼ 0; n# ¼ 1Þ
Eðn" ¼ 1; n# ¼ 1Þ ¼ 3 1

3
1
3U þ 3 2

3
2
3 V ¼ U0

Here, U is the local Coulomb interaction in the atomic model, V is the
nearest-neighbour Coulomb interaction in the atomic model, and U0
is the Hubbard interaction in the molecular model. Now, we want
E(n↑= 1, n↓= 1)+ E(n↑= 0, n↓= 0)− E(n↑= 1, n↓= 0)− E(n↑= 0, n↓=
1) to be the same in both models, which requires U0 ¼ 1

3U þ 2
3 V . This

geometric estimate gives U0 � 2:1 eV, while the full cRPA gives U0 �
1:9 eV, which means that the additional screening is responsible for
roughly 0.2 eV only. Note that more than half of the molecular
Hubbard interaction comes from the interatomic Coulomb interaction
V. This shows that a strictly Nb local Hubbard interaction is not a good
approximation for the three-orbital atomic model, the interatomic
interactions are just as important, similar to many two-dimensional
hexagonal compounds24.
For the inter-trimer interactions, we find slightly smaller values

for the molecular model compared to the atomic model, which
can also be understood from the fact that the molecular model
contains additional screening processes. For longer ranges, these
screening processes are less efficient, and the difference between
the interactions in the two models is smaller.

Hubbard-I
A simple and lightweight way to take into account correlation
effects on top of density functional theory calculations is provided
by the Hubbard-I approximation38. For our compound, we first
calculate the self-energy of a single, isolated trimer using all
intratrimer Coulomb matrix elements. Then, we insert this local
self-energy into the lattice Green’s functions G= G0/(1− ΣG0),
where G0 is the Green’s function corresponding to the DFT band
structure. The resulting spectral functions �=fTrGðk;ωÞg (or
�=fϕ?

0Gðk;ωÞϕ0g its projection onto state ϕ0) are shown
throughout the manuscript. We use TRIQS69 and the Hubbard-I
solver implemented by Schüler et al.70 to perform the calculations.
All calculations were performed using the inverse temperature
β= 300eV−1 and the broadening of Green’s function on real
frequencies δ= 0.05eV.
There is always a certain amount of freedom in choosing the

chemical potential when connecting band structures and many-
electron calculations. For an insulator such as Nb3Cl8, this simply
leads to an overall energy shift for all states/bands, which does not
affect the physics as long as the chemical potential lies within the
gap. To facilitate the comparison, we have lined out the spectra in
different panels of several figures based on the center of the
lowest band.
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