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Hall anomalies of the doped Mott insulator
Ilia Khait1, Sauri Bhattacharyya2, Abhisek Samanta2 and Assa Auerbach 2✉

The Hall coefficient of the strongly interacting square lattice Hubbard model is calculated for temperatures between the
antiferromagnetic interaction and the Mott gap scales. The leading order thermodynamic formula is evaluated for all doping
concentrations. Second-order corrections of the thermodynamic formula are calculated and found to be negligible. The Hall
coefficient diverges toward the Mott insulator. Below 45% doping the Hall sign is reversed relative to band structure-based
Boltzmann’s equation. These results elucidate the effects of the Mott insulator on the charge carriers and their non-Fermi liquid
transport.
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INTRODUCTION
Mott insulators1 are found in narrow band metals at odd numbers
of electrons per unit cell, in the presence of strong electron-
electron interactions. When slightly doped, one can often observe
a “strange metal” behavior which is inconsistent with well-defined
Fermi liquid quasiparticles2–4.
This paper focuses on the Hall coefficient RH, which is

customarily used to define the charge carriers’ density in metals
and semiconductors. In cuprates, a positive Hall sign is commonly
attributed to hole-like curved Fermi surface due to next-nearest
neighbor hopping. However, the apparent divergence of RH5–7 (or
linear vanishing of Hall number8) of La2−xSrxCuO4 toward zero
doping x→ 0, cannot be readily understood by a large Fermi
surface curvature, or by its reconstruction, in the absence of
translational symmetry breaking. This divergence is presumably
related to effects of strong electron-electron interactions which
drive the Mott insulator at zero doping. However, the lack of well-
controlled transport calculations in this regime has stood in the
way of a full understanding of this anomaly.
Thermodynamic formulas (“Thermodynamic formulas” contain

static thermodynamic averages and susceptibilities, which can be
obtained by derivatives of the equilibrium free energy with
respect to static (timeindependent) source fields) for transport
coefficients are very useful, as they bypass difficulties of real-time
dynamics, and are amenable to well-controlled statistical
mechanics methods. Unfortunately, most thermodynamic formu-
las have restricted applicability. For example, Chern numbers9 and
Streda formulas10 for Hall conductivities are limited to low-
temperature gapped quantum Hall phases. Shraiman, Shastry, and
Singh11 (SSS) have applied a thermodynamic formula to obtain
the high-frequency Hall coefficient, but their analysis did not
extend to low frequencies. Dynamical conductivity moments are
thermodynamic expectation values, but inverting them to obtain
the DC conductivity requires biased extrapolation12.
Here we apply a thermodynamic formula for RH in the DC limit,

which was directly derived13,14 from the constituent Kubo
formulas. It is generally valid for strongly interacting metals. This
formula consists of a zeroth order term Rð0ÞH which is a ratio of two
relatively simple current susceptibilities, and an unwieldy correc-
tion term RcorrH which involves a sum of thermodynamic averages
of higher order Hamiltonian-current commutators. We have
previously argued that under certain circumstances, RcorrH can be

neglected15. In this paper, we evaluate its leading orders and
confirm that they are indeed small throughout the regime of
interest of this paper.
Rð0ÞH is calculated for the square lattice Hubbard model (HM)16,17

using its low energy renormalized tJ-model (tJM). Our calculations
are therefore limited to intermediate temperatures (IT): above the
antiferromagnetic temperature scale J, but below the Hubbard
gap scale U. Here, we do not aim to describe the Hall conductivity
at experimentally accessible temperatures of cuprates T < J, where
the HM undergoes various orderings (e.g. superconductivity, spin
and charge density waves18–20). Nevertheless, the calculated
higher temperature Hall coefficient provides insight into the sign
and density of the metallic charge carriers, which should also be
relevant to transport at lower temperatures.
The difference between Figs. 1 and 2 highlights the departures

of RH from Fermi liquid-based Boltzmann transport theory: (1) An
interaction-induced sign reversal below ≤45% doping where the
Fermi surface is nominally electron-like. (2) RH divergence toward
half filling in the absence of translational symmetry breaking. (3) A
temperature-dependent Hall sign reversal at the Hubbard gap
energy scale.
This paper is organized as follows. After introducing the

thermodynamic Hall coefficient formula, and the HM and tJM
Hamiltonians, we provide a road map to Fig. 1 in Section “Road
map to Fig. 1”. The Hall coefficient is calculated using different
parts of the Hamiltonian for different temperature regimes. The
result of the correction term calculation is given in section “The
correction term RcorrH ”. Technical details are supplied in the
Supplementary Methods. In the summary, we explain similarities
and differences of our results to several previous calculations, and
propose comparing our results to transport measurements in cold
atoms and strongly correlated flat band superconductors.

RESULTS
The thermodynamic Hall Coefficient formula
The Hall coefficient at vanishing magnetic field B (in the z-
direction) is defined by

RH � dσxy
dB

σ�2
xx

����
B¼0

; (1)
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where σαβ is the conductivity tensor and C4 symmetry is assumed.
Calculating the DC Kubo formulas for σxx, σxy can be particularly
difficult for strongly interacting models. The thermodynamic
formula,

RH ¼ Rð0ÞH þ RcorrH ; (2)

was rigorously derived from the Kubo formulas13,14. Rð0ÞH is a ratio
of the current-magnetization-current (CMC) susceptibility and the
conductivity sum rule (CSR) squared:

Rð0ÞH ¼ χcmc
χ2csr

;

χcmc ¼ �2Reh Py; ½M; jx �½ �i; χcsr ¼ Imh Px ; jx½ �i;
(3)

where 〈 ⋅ 〉 is the thermal expectation value. The operators Pα, jα

are the polarization and current in the α direction, and M ¼ � ∂H
∂B is

the z-magnetization.
The correction term RcorrH is given by the sum14,

RcorrH ¼ 1
χcsr

X1
i;j¼0

RiRjð1� δi;0δj;0ÞM00
2i;2j: (4)

The prefactors Ri, and hypermagnetization matrix elements M2i,2j

are fully defined in the Supplementary Methods. We emphasize
that both Rð0ÞH and all terms in RcorrH are constructed solely from
thermodynamic (static) expectation values. These are amenable to
inverse temperature (β) expansion and quantum Monte-Carlo
(QMC) simulation without analytic continuation (Imaginary time
QMC conductivities require analytic continuation, which is limited
to frequencies higher than temperature (see Appendix B in ref. 21).
The DC conductivities are often deduced by proxies to the
analytical continuation22,23). Obviously, the correction term is
generally very difficult to compute up to high orders in the Krylov
basis. In certain cases (such as the case of weakly disordered
bands15), it was shown to be small. In Section IV C, we compute
RcorrH of the tJM up to second order.
We note that in contrast to other thermodynamic formulas for

the Hall conductivity9,10, which are only valid for gapped phases,

Eq. (2) applies to gapless metals with σxx > 0. Rcorrð2ÞH � delete:
For the non-interacting square lattice (SL) (with unit lattice

constant, and ℏ= 1) with weak disorder, RcorrH can be neglected15.
Rð0ÞH reproduces Boltzmann’s Hall coefficient for an isotropic
lifetime24,

RSLH ¼
R

d2k
ð2π2Þ � df

dϵ

� �
∂ϵ
∂ky

� �2
∂2ϵ

ð∂kxÞ2

2ec
R

d2k
ð2π2Þ � df

dϵ

� �
∂ϵ
∂kx

� �2� �2 ; (5)

which is depicted in Fig. 2, and in the Supplementary Figure 1.
Here, where ϵk ¼ �2t cosðkxÞ þ cosðkyÞ

� �
and f(ϵ) is Fermi

function, with a chemical potential determined by the doping x.
We note that the SL result is negative (electron-like) at all doping
x > 0, with very weak temperature dependence up to infinite
temperature. The addition of positive next nearest neighbor
hopping results in a regime of positive Hall sign at finite doping
values, but no divergence toward zero doping.

Models
Interactions which produce a Mott insulator can be modeled by
the HM where the hopping energy t is well below the large
interaction scale U,

HHM ¼ �t
X

hiji;s¼";#
ðcyiscjs þ cyjscisÞ þ U

X
i

ni"ni#; (6)

where cyis creates an electron on site i with spin s. 〈ij〉 are nearest
neighbor bonds, and nis ¼ cyiscis. Here we are interested in the
strong coupling regime of t \le U, which generates a Mott insulator
with a charge gap of order U at zero doping.
At large U/t≫ 1 the Hilbert space is constrained by a Gutzwiller

projection (GP) PGP ¼
Q

ið1� ni"ni#Þ. The GP hopping terms are
defined by the bond operators,

K ±
ij �P

s
~cyis~cjs ±~c

y
js~cis;

Σ ±
ij �P

ss0
~cyis σ
!

ss0~cjs0 ±~c
y
js σ
!

ss0~cis0 ;
(7)

Fig. 1 Hall map for the Hubbard model on the square lattice. The
tJ model at T ≥ J is used to compute the Hall coefficient as explained
in the Introduction. The anomalous (reddish-brown) region of sign
reversal and divergence toward zero doping, is a consequence of
the strong Hubbard interaction which projects out doubly occupied
states and introduces non-trivial changes in current commutators
and the Hall coefficient. Beyond the present analysis, for T ≤ J, we
mark the region of antiferromagnetic (AFM) order, and a hypothe-
tical region of d-wave superconductivity (d-SC)18–20.

Fig. 2 Hall coefficient of non-interacting square lattice. RSLH given
by Eq. (5). Very weak temperature dependence is seen, as shown in
Supplementary Fig. 1. Note that RSLH <0 for 0 < x < 1, and does not
diverge anywhere except at x→ 1.
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where K+ (K−) describes the kinetic energy (current). The GP
electron creation, hole density and spin operators are defined by

~cyis � cyisð1� ni;�sÞ; nhi � 1�P
s
~cyis~cis;

1
2

P
ss0

~cyisσ
α~cis0 � sαi ð1� nhi Þ:

(8)

ðnhi Þ
2 ¼ nhi is the vacancy number, and si are spin half operators.

The uniform electric polarization is Pα ¼ �e
P

ix
α
i n

h
i , where e is the

(negative) electron charge, and xi is the lattice position of site i.
The effective Hamiltonian in this GP subspace, to leading orders

in t/U, is the tJM25,26. Using the antiferromagnetic interaction
J= 4t2/U and the operators of Eq. (7) one can write,

HtJM ¼ PGP Ht þ HJ þ HJ0
� �

PGP þOðt3=U2Þ;
Ht ¼ �t

P
hiji

Kþ
ij ;

HJ ¼ J
P
hiji

si � sjð1� nhi Þð1� nhj Þ;

HJ0 ¼ � J
4

P
hijihjki

Kþ
ik � 2Σþ

ik � sj
� �ð1� nhj Þ:

(9)

In the IT temperature range, all tJM susceptibilities can be
obtained by lower orders of (β)n, than needed when expanding
with the unrenormalized HM. For the present work, we note that
transport coefficients are dominated by Ht;HJ0 , whereby HJ

determines the emergence of antiferromagnetic correlations at
lower temperatures.

Road map to Figure 1
To arrive at Fig. 1, we compute Rð0ÞH analytically as a function of
doping for temperatures t < T≪ U using Ht and expanding up to
order (βt)2. We neglect HJ ;HJ0 in this regime, since they contribute
relative corrections of order (t/U), (T/U)≪ 1. This approximation is
validated by a QMC calculation of Rð0ÞH using the temperature
dependent HM Boltzmann weights at large U/t≫ 1. QMC thus
allows us to extend the high temperature expansion of the tJM
down to T≃ J.
At very high temperatures, T→ U, doubly occupied sites in the

HM proliferate, and the validity of the GP breaks down. Since
interactions of the HM become irrelevant, the Hall sign is
dominated by the hopping term and therefore becomes negative
at all doping levels. Therefore, one expects a crossover from the
positive Hall sign at lower temperatures to a negative sign at
higher temperatures. Indeed, such a crossover is heralded by the
contributions of the second neighbor hopping terms HJ0 , which
are negligible in the IT regime, but which increase with T. These
terms interpolate between red region and the high-temperature
blue region in Fig. 1, as also shown in Fig. 5.

The t-Model
At temperatures t≪ T≪ U, we can evaluate Rð0ÞH and RcorrH by
expanding in powers of βt using the current operators of Ht, and
neglecting the weaker contributions of order OðJÞ in this regime.
The current and magnetization are given by,

jαij ¼ �iet K�
ij;α;

M ¼ 1
2c

P
hiji

xij
y
ij � yi j

x
ij :

(10)

K�
ij;α denotes a directed bond operator in the α direction, and c is

the speed of light.
For the CSR, the doping dependence of the two leading powers

of β were previously calculated by Jaklic27 and Perepelitsky28. The

calculation, shown in the Supplementary Methods, yields

χtcsr ¼ 2βe2t2xð1� xÞ
þ β3e2t4

6 xð1� xÞð�9þ 2x þ x2Þ þ Oðβ5t6Þ:
(11)

As depicted in Fig. 3, the CSR of the tJM vanishes toward x→ 0,
and is suppressed even quite far from the Mott phase. In
contrast, the CSR of the non-interacting SL is maximized at half
filling where the Fermi surface has the largest volume. The CSR of
the tJM is the conductivity integral which is cut off at the
Hubbard gap. In the region where the tJM applies, the Hubbard
gap is replaced by the Gutzwiller projection, which is why χCSR
vanishes while RH diverges as x→ 0+.
The CMC of Ht is evaluated up to order β4 as shown in the

Supplementary Methods,

χtcmc ¼ β2t4e3

2c xð1� xÞð�5þ 10x þ 3x2Þ
þ β4t6e3

16c xð1� xÞð45� 136x þ 50x2 þ 48x3 � 71x4Þ
þOðβ6t8Þ:

(12)

Thus, the zeroth order Hall coefficient in the IT regime is
provided analytically as a function of doping and temperature:

RtH ¼ 1
ec

�5þ 10x þ 3x2

8xð1� xÞ þ ðβtÞ2 �45� 53x þ 145x2 þ 225x3

192x

� �
:

(13)

The curves of Eq. (13) are depicted by solid lines in Fig. 4.
Note: the CSR of the HM is finite as x→ 0, but is exponentially

suppressed, i.e. χtCSR � expð�U=TÞ> 0. In the regime T≪ U, the
divergence of Eq. (13) continues down to exponentially low
doping, below which it rapidly vanishes by particle-hole symmetry
of the CMC. This effect is not visible in the qualitative color map of
Fig. 1.

DISCUSSION
Sign reversal of the Hall coefficient at low doping has been
previously obtained by dynamical mean field theory (DMFT)29,30,
QMC22, and determinant QMC31. These methods have found
evidence of hole pockets in the momentum dependent occupa-
tion, which is qualitatively consistent with our results at low
doping. References32–34 calculate within DMFT, the Hall conduc-
tivity of the Hubbard model at strong magnetic fields. They found
that the Hall sign is reversed relative to band theory, near half
filling. These effects were attributed to the Chern numbers of the
non-interacting Hofstadter’s butterfly bands of the square lattice.
It is interesting that these sign changes which were predicted at

Fig. 3 Doping dependent of Conductivity Sum Rule. The suppres-
sion of the tJM CSR relative to the non-interacting square lattice
CSR, affects a large region of doping. Vanishing of the tJM CSR at
x→ 0 leads to the anomalous divergence of RH toward the Mott
phase, and the diverging resistivity slope.
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strong fields, (as measured in strongly correlated flat bands Moiré
systems35), are qualitatively similar to the Hall sign we obtain in
the weak field limit.
Here however, we find that the sign reversal occurs already at

x ≤ 0.45, which may come as a surprise vis-a-vis the widely used
band theoretical approaches at much lower doping. The reason is
simply related to the spin and charge entangled commutation
relations of GP current operators of the tJM,

½K�
12; K

�
23� ¼ K�

13
1þ nh2

2

� �
þ Σ�

13 � s2ð1� nh2Þ; (14)

which affects the hole density dependence of the CMC, and
determines the doping concentration of the sign reversal. The
commutators between the GP electron and spin operators can be
obtained from the multiplication Supplementary Table I.
Since the hole density operators have coefficients of order

unity, it is natural that the sign change occurs at a fraction with a
denominator not much larger than unity. The important lesson we
can learn from this is that the effects of GP reach far into the high
doping and temperature regimes.
Previous QMC calculations of Rð0ÞH for the HM22,36 have used our

Eq. (2), and neglected RcorrH . They have also reported a positive Hall
sign near half filling (but no apparent divergence) for the square
lattice model. However in the regime of U/t≃ 16, Rcorr ∝ ∣∣[H, jx]∣∣ ~
U/t, is expected to dominate over Rð0ÞH , and hence cannot be
ignored.
The difference between Rð0ÞH ðHMÞ36 and Rð0ÞH ðtJMÞ of Eq. (13), can

be explained by the fact that Rcorr(tJM)≪ Rcorr(HM) in the IT
regime.
We can compare Rð0ÞH of Eq. (13) to the infinite frequency Hall

coefficient of the t-model calculated at leading order in β by SSS11

R�H ¼ d
dB

lim
β!0;ω!1

ρyxðωÞ ¼
1
ec

� 1
4x

þ 1
1� x

� 3
4

� �
(15)

R�H changes sign at x= 1/3 and diverges as 1/(4x) toward the Mott
limit. While Eq. (13) changes sign at x= 0.4415 and diverges as 5/
(8x) at small x. Still, the qualitative similarity we find between the
infinite and zero frequency is surprising, but we cannot infer any
general relation from this coincidence. We note that R�H may be
relevant to the optical Kerr effect37.
In summary, we obtain well-controlled analytic results for the

DC Hall coefficient as a function of hole doping in the
intermediate temperature regime above any ordering instabilities.

We conclude that the Mott insulator phase modifies the effective
charge carriers in the IT metallic phase which covers a large region
of temperature and doping. The nature of these carriers has
theoretical implications for superconductivity in cuprates18–20,38

and in flat-band layered graphene39–41. We also propose
comparing our results to Hall coefficient measurements in cold
atoms42. The superconducting order parameter should consist of
GP holes, with spin entangled commutation relations (14), rather
than quasiparticles confined to the non-interacting Fermi surface.
These carrier properties affect the relation between superfluid
stiffness and doping43, and the Hall signs in the flux flow
regime44,45.

METHODS
Extension to lower temperatures
The QMC extends the calculation of Rð0ÞH down to lower
temperatures J ≤T≪ U. Using the HM weights, the QMC fully
includes the AFM interactions of HJ.
A determinant QMC calculation for lattice fermions with discrete

auxiliary fields was implemented using the ALF package46. We used
HM weights for U/t= 8, 16, 50. The typical system sizes were chosen
between 8 × 8 and 12 × 12, with little size dependence of our
results, which indicates a short correlation length in the studied
temperature regime. The imaginary time step was chosen to render
the Trotter errors to be insignificant. The number of Monte Carlo
sweeps was generally ~ 105. The statistical fluctuations were well-
behaved, and "Jackknife resampling” (a method used for error
estimation) revealed sufficiently small error bars. The average sign
in the QMC sampling is defined as

hSi ¼ hsgnðdetÞi: (16)

In the Supplementary Fig. 10, we report the value of 〈S〉 as a
function of interaction strength U/t, doping and temperature. We
show that quite generally, 〈S〉 approaches unity at higher
temperatures where the Fermionic negative weights introduce
negligible effects on QMC configuration averaging.
The CMC and CSR susceptibilities of Eq. (3) were computed by

sampling products of Green’s functions using Wick’s theorem over
QMC equilibrium configurations of the auxiliary fields. In Fig. 4 the
QMC results are depicted by circles of larger diameter than the
numerical error bars. The displayed data is restricted to the regime
of 〈S〉 ≥ 0.8, which for U= 8t and all doping range is satisfied at
T ≥ t/2 ≈ J. We note that the data exhibits a weaker temperature
dependence than expected by extrapolating the analytic high
temperature results.

Extension to very high temperatures
At temperatures T≫ U, one cannot use the tJM, and the
suppression of double occupancies in the HM diminishes. At
infinite temperature, the HM density matrix is independent of U
and Rð0ÞH recovers the U= 0 result of Eq. (5) at T→∞. Expansion in
βU of the susceptibilities yields,

χHMcsr � βe2t2nð2� nÞ; χHMcmc � β2 e3
c t

4nð2� nÞð1� nÞ
Rð0ÞH ¼ 2ð1�nÞ

nð2�nÞec þOðβUÞ2 ’ RSLH
(17)

where n= 1− x is the electron density.
Interestingly, this recovery of the U≃ 0 behavior at high

temperatures is heralded by the effects of the next neighbor
hopping term HJ0 in the tJM as shown below. As a kinetic energy
term, HJ0 contributes to the currents and magnetization operators

Fig. 4 Hall coefficient in the intermediate temperature regime.
Lines depict the high temperature expansion results of Rð0ÞH for the t-
model in Eq. (13). Solid and open circles are QMC results using
Boltzmann weights of the HM with two widely different values of U/
t. The QMC results are limited to the regions of negligible fermion
sign error (see Section IV A). We note that the high temperature
expansion agrees with the QMC data down to T≃ 2t, and the QMC
data shows quite weak temperature dependence down to T≃ 0.5t.
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of the CMC susceptibility:

j0αijk ¼ �ieJð1� nhj Þ K�
ik;α � 2Σ�

ik;α � sj
� �

;

M0 ¼ 1
2c

P
hijki

ðxi j0yijk � yi j
0x
ijkÞ:

(18)

Since J≪ t, these terms are unimportant for the CSR. However, for
the CMC they yield an important contribution at very high
temperatures:

χJ
0
cmc ¼

βJe3

2
xð1� xÞð1þ 2x � 3x2Þ: (19)

HJ0 connects across the plaquette diagonals, therefore χJ
0
cmc � βJ

while χtcmc � ðβtÞ2 in Eq. (12). Thus, at T � U; χJ
0
cmc starts to

dominate.
Thus we obtain an additional contribution to RtH of Eq. (13)

which becomes large at T ~ U:

RJ
0
H ¼ 4T

ecU
1þ 2x � 3x2

8xð1� xÞ
� �

: (20)

As shown in Fig. 5, since RJ
0
H is negative at low doping, it reduces

the positive Hall coefficient divergence, and drives the Hall sign
change to lower doping values, as also seen in the upper blueish
regions of Fig. 1.

The correction term RcorrH

We calculate the correction term up to second order

Rcorrð2ÞH ¼ 1
χcsr

Δ1

Δ2

� �2

M00
2;2 �

Δ1

Δ2

� �
M00

2;0 þM00
0;2

� � !
: (21)

In the Supplementary Methods, we derive the first two recurrents
of Ht at high temperatures,

Δ2
1 ¼ t2ð3� 2x � x2Þ;Δ2

2 ¼ t2
24ð1þ xÞ
3þ x

: (22)

The order of a Krylov hyperstate denotes the maximal number of
nested commutators of H and jα. The high order Krylov operators
contain a sum of a rapidly increasing number of operators, which
must be stored numerically. The calculation of M00

2;2 to leading
order in (βt) involved traces over up to 105 operator clusters.
In Fig. 6, we plot the final result for Rcorrð2ÞH for all doping

concentrations. We see that in comparison Rð0ÞH , the its quantitative
effect is negligible, and maximized toward x→ 0 by

lim
x!0

Rcorrð2ÞH =Rð0ÞH

��� ���! 6%: (23)

Order 4 and higher corrections are expected to be even smaller
due to the following argument: Generically, the coefficients Ri do
not decay rapidly with i47. However we expect M00

2i;2j to decrease

rapidly with i, j, since they involve traces over operator clusters
which are generated from different current directions by L2i jx ¼
½H; ½H; ¼ ; jx �� and L2j jy ¼ ½H; ½H; ¼ ; jy ��.
The number of these clusters increases with i, j faster than

exponentially. The operator clusters occupy partially overlapping
areas on the lattice. The traces in the matrix elements (including
the contributions from M and (βH)2) vanish unless all the ~ci;~c

y
i ; s

α
i

operators cancel on all sites. Since the Krylov operators are
normalized, this condition yields a rapidly decreasing contribution
to RcorrH as already seen in the low order terms. The relative
contributions of the remainder of Rcorr are therefore expected to
be even smaller.
Based on the high temperature result (OðβtÞ0) in Eq. (23), and

the weak temperature dependence found for Rð0ÞH shown in Fig. 4,
we may assume that the correction term remains negligible
throughout the IT regime. We note that we have not calculated
RcorrH for the HM at T ≥ U.
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