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Emergence of nodal Bogoliubov quasiparticles across the
transition from the pseudogap metal to the d-wave
superconductor
Maine Christos 1✉ and Subir Sachdev 1✉

We model the pseudogap state of the hole- and electron-doped cuprates as a metal with hole and/or electron pocket Fermi
surfaces. In the absence of long-range antiferromagnetism, such Fermi surfaces violate the Luttinger requirement of enclosing the
same area as free electrons at the same density. Using the Ancilla theory of such a pseudogap state, we describe the onset of
conventional d-wave superconductivity by the condensation of a charge e Higgs boson transforming as a fundamental under the
emergent SU(2) gauge symmetry of a background π-flux spin liquid. In all cases, we find that the d-wave superconductor has
gapless Bogoliubov quasiparticles at 4 nodal points on the Brillouin zone diagonals with significant velocity anisotropy, just as in
the BCS state. This includes the case of the electron-doped pseudogap metal with only electron pockets centered at wavevectors
(π, 0), (0, π), and an electronic gap along the zone diagonals. Remarkably, in this case, too, gapless nodal Bogoliubov quasiparticles
emerge within the gap at 4 points along the zone diagonals upon the onset of superconductivity.
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INTRODUCTION
The remarkable phase diagram of the cuprates1–4 has inspired an
outpouring of theoretical and experimental work to explain their
highly exotic phenomenology. Among the most extensively
studied phases are the pseudogap metal, a phase characterized
by a carrier density that deviates from the expectations required
by Luttinger’s theorem for a conventional Fermi liquid5–7 and
d-wave superconductivity which sets in at lower temperatures as
an instability of the pseudogap phase8,9.
However, despite years of theoretical and experimental

progress, a clear understanding of how superconductivity
emerges from the experimentally observed pseudogap parent
state and its associated small Fermi surface or Fermi arcs remains
lacking. This work seeks to provide some basic answers as to what
the experimental signatures of the transition from the pseudogap
to superconductivity are. Although the pseudogap phase and its
associated violation of Luttinger’s theorem have been studied
most extensively in the hole-doped cuprates, recent photo-
emission experiments in the electron-doped cuprates have
provided evidence for a reconstructed Fermi surface at dopings
where long-range antiferromagnetic order is believed to be
absent10–12. The pairing in the electron-doped case is also
believed to be d-wave13. We will, therefore, separately consider
both the electron-doped and hole-doped cases in this work.
A number of works14–24 have developed a model of the

pseudogap metal in which the violation of the Luttinger theorem
is associated with zeros of the electron Green’s functions. Here, we
view these zeros as a signal of the existence of an additional
sector of neutral spinon excitations, which are required by non-
perturbative extensions of the Luttinger theorem25,26. As we will
see below (and has also been argued earlier27), a full treatment of
the spinon sector is essential in understanding how the nodal
Bogoliubov quasiparticles in the d-wave superconductor emerge
from the pseudogap metal.

We will employ a theory28 of the pseudogap metal with
fermionic spinons coupled to an SU(2) gauge field moving in a
background of π-flux29–32. The fermionic spinons are coupled to
physical electrons, which carry the doping via a charge e boson
B30,32,33, which transforms under the same gauge SU(2) symmetry
as the spinons. In the hole-doped case, due to the presence of the
spin liquid, the normal state electron Fermi surface will have
pockets associated with hole density p rather than the free
electron hole-density value 1− p30,32–37. When B condenses, the
gauge symmetry is fully broken, and various symmetry-breaking
orders, including d-wave superconductivity and charge order, can
be inherited by the electrons. Within this approach, super-
conductivity and charge order are treated on equal footing and
can be viewed as low-temperature, competing instabilities of a
fractionalized Fermi liquid (FL*) pseudogap phase. (Previous
work30,32,33 has considered the condensation of such a boson
from an incoherent normal state which does not have pocket
Fermi surfaces of electrons or holes and with a U(1) staggered flux
spin liquid rather than the π-flux spin liquid. The staggered flux
spin liquid has a charge e boson whose condensation leads to d-
wave superconductivity but not the additional possibility of
charge order; moreover, it has a trivial monopole instability38, so it
is unlikely to have a significant regime of stability).
In this work, we will consider the transition from the pseudogap

phase with electron and/or hole pockets and a π-flux spin liquid to
a conventional d-wave superconductor. We will compute electro-
nic observables in the superconducting phase via the framework
of the Ancilla model39–45. While earlier work27 has considered
superconductivity as a similar confinement transition from a
phenomenological model of the pseudogap Fermi surfaces, the
Ancilla model has the benefit of providing a microscopic model
for the complete fermion dispersion in the Brillouin zone, which
emerges in an approximation of the Hubbard model41.
The rest of this paper will be organized as follows. In the Section

“Ancilla model,” we will introduce the Ancilla model, and in the

1Department of Physics, Harvard University, Cambridge, MA 02138, USA. ✉email: mainechristos@g.harvard.edu; sachdev@g.harvard.edu

www.nature.com/npjquantmats

Published in partnership with Nanjing University

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-023-00608-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-023-00608-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-023-00608-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-023-00608-0&domain=pdf
http://orcid.org/0000-0003-0116-5977
http://orcid.org/0000-0003-0116-5977
http://orcid.org/0000-0003-0116-5977
http://orcid.org/0000-0003-0116-5977
http://orcid.org/0000-0003-0116-5977
http://orcid.org/0000-0002-2432-7070
http://orcid.org/0000-0002-2432-7070
http://orcid.org/0000-0002-2432-7070
http://orcid.org/0000-0002-2432-7070
http://orcid.org/0000-0002-2432-7070
https://doi.org/10.1038/s41535-023-00608-0
mailto:mainechristos@g.harvard.edu
mailto:sachdev@g.harvard.edu
www.nature.com/npjquantmats


Section “Mean-field theory,” its mean-field representation, which
we will use to compute various electronic properties of the
pseudogap normal state and d-wave superconductor.
In Section “Superconductor spectra with hole-doping”, we will

describe the phenomenology of our theory on the hole-doped
side, where the pseudogap normal state is captured by hole-like
pockets enclosing a volume associated with hole density p. We
will show in the framework of the Ancilla model that the hole
pocket Fermi surfaces of the pseudogap undergo a transition first
to a d-wave superconductor with 12 nodes, and then to 4 nodes
as the strength of the superconducting pairing is increased. We
will also compute how the Fermi velocity and vΔ of these nodes
evolve with the superconducting pairing strength.
In Section “Superconductor spectra with electron-doping,” we

will turn our focus to the electron-doped side of the cuprate phase
diagram. In this case, the normal state Fermi surface will be an FL*

state with either (i) only electron-like pockets in the anti-nodal
region of the Brillouin zone centered at wavevectors (0, π) and
(π, 0) or (ii) both anti-nodal electron-like pockets and hole-like
pockets in the nodal region11,46–52. Perhaps surprisingly, we find
that even in the first case where the normal state Fermi surface
only exists at the anti-nodal region and any states in the nodal
region are fully gapped, a condensed superconducting pairing will
immediately lead to the re-emergence of nodes near ðπ2 ; π2Þ, while
the anti-nodal region is gapped out by the pairing. We will also
explore how the velocities of these nodes evolve as a function of
the B condensate in the electron-doped case.

RESULTS
Ancilla model
In this section, we will discuss the model we use to compute the
spectral properties of the d-wave superconductor. The model is
the Ancilla model of ref. 39, which has been shown to have all the
ingredients needed to reproduce photo-emission data in both the
pseudogap and Fermi liquid regime41,42. A schematic of the model
is shown in Fig. 1.
The general idea is to map the low energy physics of the single-

band Hubbard-like model of the c layer to a model with free
electrons on the c layer coupled to a bilayer square lattice
antiferromagnet of the S1 and S2 layers. But we emphasize that
the S1 and S2 layers are just ancilla qubits, i.e., they are useful
quantum degrees of freedom employed at intermediate stages to
obtain a wavefunction with non-trivial entanglement on the c layer

alone. There is a passing similarity to “hidden layers” in current
models of machine learning wavefunctions53, but it is important that
in our case, the hidden layers are quantum, not classical, as that is the
key to obeying the Luttinger–Oshikawa constraints on Fermi surface
volumes. An explicit example of an ancilla wavefunction for the FL*

pseudogap metal was presented in ref. 39: a product of Slater
determinants on the top two and bottom layers was projected onto
the physical top c layer by taking the overlap with rung singlets on
the S1 and S2 layers. In the analytical theories39,40,45 of the Ancilla
model, the projection is performed by emergent gauge fields. In the
following, we shall not consider the influence of the emergent gauge
fields as they are hugged in all the phases considered here.
Consequently, we maintain that the low-energy dispersions of the
fermionic excitations described below will apply also to the single-
band Hubbard model.
An earlier work36 formally obtained the same FL* pseudogap

metal directly in the single-band model while using the bosonic
spinon CP1 formulation of the spin liquid. But this single-band
formulation does not yield a theory for a transition from FL* to the
large doping Fermi liquid, as is possible in the Ancilla model39,40.
Moreover, the bosonic spinon spin liquid is dual to the fermionic
spinon π-flux spin liquid54, and the mapping of the bosonic spinon
FL* formulation to the fermionic spinon theory used here becomes
evident in the Ancilla model. The fermionic spinons are essential to
obtaining the FL* electronic spectrum across the Brillouin zone and
not just near the zone diagonals. The fermionic spinons are also key
to obtaining 4 nodal points in the d-wave superconductor (in
contrast to the 8 nodal points in the SC* state obtained by pairing
Fermi pockets in the bosonic spinon approach55).
As has been discussed in ref. 42, we can derive the Ancilla model

by an extension of the method used to introduce paramagnons in
the theory of correlated metals. We start with single-band
Hubbard model

HU ¼ �
X
i;j

X
α

tci;jc
y
i;αcj;α þ U

X
i

ni"ni# (1)

and exactly decouple the Hubbard term by the paramagnon field
Φi

HΦ ¼ �P
i;j

P
α
tci;jc

y
i;αcj;α

þP
i

3
8UΦ

2
i �Φi � cyi;α σαβ

2 ci;β
h i

:
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In the traditional paramagnon method, Φ is treated as a nearly
Gaussian field whose correlators are damped by coupling to the
Fermi surface of c. Here, we identify the Φ paramagnon with the
rung-triplet excitation of the S1 and S2 layers in Fig. 1; such a
triplet excitation is clearly present when J⊥ is large. Indeed, the
model in Fig. 1 (described explicitly below) can be mapped back
to the single-band Hubbard model in (1) via a Schrieffer–Wolff
transformation valid for small JK/J⊥42. For other values of JK/J⊥, we
need the fluctuations of emergent gauge fields to project out the
ancilla layers, but as argued above, we expect such gauge
fluctuations to not modify the low energy excitations in the
phases considered below.
The Hamiltonian of the Ancilla model in Fig. 1 is:

H ¼ �
X
i;j

X
α

tci;jc
y
i;αcj;α þ Hc;f 1 þ Hf 1;f 2 þ Hf 1;f 1 þ Hf 2;f 2 (3)

In the above, the two spin flavors of c electrons are the physical
degrees of freedom that carry the doping and are fixed to have
filling:

1
N

X
i

X
α

cyi;αci;α ¼ 1� p (4)

Where in the above p denotes the hole doping. Hc;f 1 denotes a
Kondo coupling between the c electrons on each side and a layer

a)

Fig. 1 Schematic of Ancilla model. We show a schematic of the
Ancilla model a described in Section “Ancilla model”. We have
colored the c electrons blue, the first layer of spins S1 green, and the
second layer of spins S2 red. The green and red bonds in the first
and second layers of spins represent Heisenberg exchange
interactions. The dashed line between the first and second layers
of spins represents antiferromagnetic coupling J⊥, and the dotted
lines between the physical c electrons and the first layer of spins
represent Kondo coupling JK. The lines connecting the c electron
sites denote the c electrons' hopping. The red, green, and blue
coloring corresponding to the third, second, and first layers,
respectively, will be kept consistent throughout the paper. The
original model is a Hubbard on the c layer, and the Hubbard U has
been canonically transformed away by adding two Ancilla layers of a
bilayer antiferromagnet42.

M. Christos and S. Sachdev

2

npj Quantum Materials (2024)     4 Published in partnership with Nanjing University

1
2
3
4
5
6
7
8
9
0
()
:,;



of spins S1:

Hc;f 1 ¼ JK
P
i
cyi;ασ

αβci;β � S1;i

¼ JK
P
i
cyi;ασ

αβci;β � f y1;i;γσγδf 1;i;δ
(5)

Where we have chosen to represent the spins of the first layer S1,i
with fermionic spinons f1, subject to the local constraint:X
α

f y1;i;αf 1;i;α ¼ 1 (6)

The term Hf 1;f 2 describes the antiferromagnetic coupling between
the layer of S1 spins and a second layer of spins labeled S2:

Hf 1;f 2 ¼ J?
P
i
S1;i � S2;i

¼ J?
P
i
f y1;i;ασ

αβf 1;i;β � f y2;i;γσγδf 2;i;δ
(7)

We have introduced a second set of fermionic spinons f2 to
represent the S2, which are subject to their own local constraint:X
α

f y2;i;αf 2;i;α ¼ 1 (8)

The terms Hf 1 ;f 1 and Hf 2;f 2 describe Heisenberg exchange
interactions between the spins in the first and second layers,
respectively. In order to reproduce the Fermi arcs seen in
experiments in the pseudogap phase2, the model must contain
deconfined fractional degrees of freedom in order to violate
Luttinger’s theorem26,56. We will therefore take Hf 2;f 2 to be
described by the π-flux spin liquid29

Hf 2;f 2 ¼ �itf 2
P
hi;ji

f y2;i;αei;jf 2;j;α : (9)

We have written the saddle point π-flux spin liquid in the second
layer of spins in the gauge previously used in28,54 where
ei,j=− ej,i, ei,i+x= 1, ei,i+y= (−1)x.

Mean-field theory
After a mean field decoupling, the model can be written in the
following form:

H ¼ P
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i
(10)

In the above, the chemical potentials μc; μf 1 and μf 2 must be
adjusted such that Eqs. (4), (6), and (8) are satisfied. In practice, we
set the chemical potentials on an 80 × 80 momentum space grid
and set an error threshold of 0.01 for each filling. We also allow for
next, next-next, and next-next-next nearest neighbor terms for the
c and f1 electron dispersions. For the hole-doped system, the
hopping parameters in41 were found to best match photo-
emission data taken in the pseudogap regime57. Therefore, for the
hole-doped case, we will take tc0;1 ¼ 0:22 eV, tc1;1 ¼ �0:034 eV,
tc2;0 ¼ 0:036 eV, and tc2;1 ¼ �0:007 eV for the c electron dispersion

and tf 10;1 ¼ �0:1 eV, tf 11;1 ¼ 0:03 eV, and tf 12;0 ¼ 0:01 eV. The above
hoppings were fit to photo-emission data, assuming Φ= 0.09 and
p= 0.206. We have not included the pairing terms that will appear
in a mean-field decoupling of the first layer Heisenberg
interactions, as there should be no pairing in the first layer in
the pseudogap phase. In the second Ancilla layer, we have taken
tf 2 ¼ 0:14 eV. The f1 and f2 spinons are coupled via the two-

component, complex boson Bi ¼ B1;i
B2;i

� �
which is a spin singlet

under global SU(2) spin rotations. Bi is viewed as the Higgs field in
the context of this theory.
Various possible phases of Eq. (10) have been studied in

previous work on the Ancilla model39,41,42. The pseudogap phase
corresponds to the case where JK is much larger than J⊥. In this
case, B is gapped but Φ is condensed and the gauge symmetry of
the spin liquid is unbroken. The ground state, in this case, is
described by a fractional Fermi liquid (FL*) state, and it is possible
to choose parameters such that the electrons will hybridize with
the f1 spinons and form hole-like pockets with associated hole
density p, where the spectral weight of the c electrons is highest
on the front-side pocket closest to the center of the Brillouin zone
as in the first row of Fig. 2. A Fermi liquid can be realized in the
case where J⊥ in Eq. (3) is much larger than JK, which leads to Φ
becoming gapped. In this case, the f1 and f2 spinons will form
singlets at each site, and the c electrons will exhibit a conventional
Fermi liquid Fermi surface with hole density 1− p.
In this work, we will consider starting from a normal state where

only Φ is condensed such that the Fermi surface has hole density
1− p and ask how the electronic spectrum evolves as a d-wave
superconductor set in when B condenses on top of this normal
state. As discussed in previous work28 for the case of the π-flux
spin liquid and in30,32,33 for the case of the U(1) staggered flux spin
liquid, the different ways in which the two components of B
condense can break different symmetries corresponding to
distinct orders, which may be inherited by the physical electrons
if Φ is also condensed. Expanding on the two band minima of the
π-flux dispersion, we have the following expression for the
chargon B in terms of Ba+ and Ba−, the continuum degrees of
freedom associated with the + and − minima of the π-flux mean
field dispersion:

BaðrÞ ¼ �Ba;þeiπðxþyÞ=2 þ ð1þ ffiffiffi
2

p ÞBa;�eiπðx�yÞ=2

for x even
(11)

BaðrÞ ¼ ð1þ ffiffiffi
2

p ÞBa;þeiπðxþyÞ=2 � Ba;�eiπðx�yÞ=2

for x odd
(12)

In the above a is a label that runs over Nambu gauge indices. We
will focus on the case where B condenses in such a way that a d-
wave pairing is inherited by the physical electrons. In this case, the
following continuum order parameter will be condensed:

Δ ¼ ϵabBaþBb� (13)

We can then choose

Baþ ¼ 1ffiffi
2

p ð�b; bÞ Ba� ¼ 1ffiffi
2

p ðb; bÞ (14)

as a mean-field ansatz for a pairing, which will be inherited by the
c electrons, and ask how the electronic observables will evolve
when b is nonzero.

Superconductor spectra with hole-doping
In this section, we will discuss some qualitative features of the
superconductor, which sets in when B condenses in a normal state
where Φ ≠ 0. We show an example in Fig. 2 of the electronic
spectral density over the transition of an FL* normal state to a
d-wave superconductor as B is condensed.
There are several features of the electron spectra which are of

particular relevance to experiments. One important question we
will address is the number of nodes our theory predicts will
appear where B is condensed, given the experimental evidence for
4 nodes3,4 in the Brillouin zone in the hole-doped superconduct-
ing state. We will also study the evolution of the velocities vF and
vΔ as b becomes nonzero, as well as discuss the phenomenology
of the pairing on the electron-doped side of the phase diagram.
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The first question we will address is how many nodes there are
in the superconducting state. We find that, similar to past
studies27, the answer to this question depends on the values of
b and Φ. There are two possibilities for our chosen parameters,
which are depicted in Fig. 3.
If the particle–hole symmetry breaking in the first layer of

spinons is taken to be small, then there is a small but finite
window of 0 < b < bc where the spectra show 3 nodes in each
quadrant of the Brillouin zone, or 12 nodes total. However, the
appearance of a window of b with 12 nodes results from the
particle–hole asymmetry of the f1 spinon bands, which was found
to be small when the next and next-next nearest neighbor
hoppings in the second layer were fit to experiment41. Thus, this
feature persists for a very small window of b before two of the
three nodes in each quadrant of the Brillouin zone annihilate and
we are left with a spectrum with 4 nodes, the scenario which is
born out in experiments3,4.

Additional plots of the dispersion throughout the Brillouin zone
are shown in Supplementary Figs. 1–3. In the above discussion on
the number of nodes, we have assumed tf 2 ¼ :14 eV. While the
overall magnitude of tf 2 should not change the number of nodes,
the sign of tf 2 will determine which 2 of the 3 nodes along the
diagonal annihilate first and, therefore, qualitatively change the
mean-field dispersion. Since the case where tf 2 < 0 seems not to
display the universal behavior discussed above, we consider it
separately in Supplementary Fig. 4.
We also study the evolution of the Fermi velocities as b is

increased for various values of Φ. Our results are shown in Fig. 4.
There will be two independent velocities, vF which is defined as

the velocity parallel to the kx= ky contour in the Brillouin zone,
and vΔ, the velocity perpendicular to this contour. Since a region
of 12 nodes appears for a relatively small window of b, we
consider the velocity only in the case of the node that falls along
the original c electron Fermi surface and has the highest overlap

Fig. 2 Spectral density in superconductor for hole-doped normal state with hole pockets. We show the electron spectral density (a, c, e)
and band structure along a diagonal cut in the Brillouin zone (b, d, f) for different values of b and Φ (see Eq. (14) for the definition of b). In the
band structure plots, the bands are colored with RGB values where blue= c electrons, green= f1 fermions, and red= f2 fermions. We have
plotted all bands on the Nambu basis, thus the spectrum is always particle-hole symmetric. When B= 0 but Φ > 0 (top row), the electron
spectral function shows hole-like Fermi pockets in the nodal region of the Brillouin zone formed from hybridization between the c and f1
electrons. When b is nonzero and a d-wave superconducting order is inherited by the c fermions (middle and bottom rows), all of the states at
the Fermi level are gapped out except for a node on the front side of the original hole pocket of the parent state. The c electron velocity
perpendicular to the kx= ky cut is shown to increase if Φ is made larger (bottom row). Spectral densities are normalized by their maximum
value A0. All spectral densities are computed with a lifetime parameter of 0.005i. In practice, when plotting dispersion and spectral functions,
we use the gauge of31, which is manifestly translationally invariant for the π-flux spin liquid dispersion, though we note in the case when B is
not condensed, the spinon bands are not gauge invariant and do not appear in any physical observable.
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with the c electrons. We compute vF and vΔ by discretizing
diagonal cuts through a quadrant in the Brillouin zone into 80,000
momentum points and performing a least squares fit on the 500
momentum points nearest the node.
The nodal velocity perpendicular to kx= ky, vΔ, begins at zero

when b= 0. When B is condensed, and b is small relative to Φ,
the superconducting pairing is inherited by the c electrons and
as a result, vΔ becomes finite and increases with b as the
effective pairing gaps out any states which are not on the
Brillouin zone diagonal. vΔ will continue to increase until b is
roughly of the same order as Φ where vΔ attains a maximum.
When b is sufficiently large relative to Φ, vΔ will begin to
decrease as the layer of c electrons becomes effectively
decoupled from the first and second layers of spinons, which
are pushed away from the Fermi level. For large enough b, the c
electrons spectral density will resemble the original Fermi
surface of the decoupled c electrons and vΔ will tend towards
zero as b increases.
The nodal velocity along kx= ky, vF, begins at a finite value

defined by the normal state Fermi velocity and monotonically
increases with b until it saturates in the limit where b≫Φ to the
value of the Fermi velocity of the decoupled c electron bands at
the Fermi surface. The ratio of vΔ to vF is small for all values of b as
the Fermi velocity vF originates mostly from the Fermi velocity of
the c electrons while the velocity vΔ is 0 in the normal state and is
a higher order effect in Φ and b.

Superconductor spectra with electron-doping
In this section, we will discuss the spectra of an FL* to SC transition
on the electron-doped side of the phase diagram. The principal
difference from the hole-doped case is that we now expect
instead of having hole-like pockets near ðπ2 ; π2Þ, we will have either
electron pockets in the anti-nodal region of the Brillouin zone near
(0, π) and (π, 0) as in the first row of Fig. 5 or both electron like
pockets at the anti-node and hole-like pockets in the nodal region
as in the first row of Fig. 646–52.
For our computations with a normal state with only electron

pockets, we will take the same c electron hoppings as on the
hole-doped side but change the f1 spinon hoppings since these
were previously obtained by fitting photoemission data taken on
hole-doped cuprates41, and have no established values on the
electron-doped side. In the first layer of spinons tf 11;0 ¼ �0:1 eV as
before, but choose the next nearest neighbor hopping
tf 11;1 ¼ �0:07 eV and set all other hoppings in the second layer
to zero. We keep the spin liquid dispersion hopping tf 2 ¼ 0:14 eV.
We find whether the normal state has only electron pockets at
the anti-node or both electron pockets at the anti-node and hole
pockets near ðπ2 ; π2Þ depends on the value of Φ, with larger Φ
gapping out the hole pockets. For our computations of a normal
state with both electron and hole pockets like that of Fig. 6, we
take tf 11;1 ¼ �0:06 eV and tf 10;2 ¼ 0:02 eV and all other parameters
the same as above.

a) b)

Fig. 4 Node velocities in superconductor for hole-doped normal state. We show the velocities vF (a) and vΔ (b) as a function of b for
different values of Φ. For small b, vF takes on the Fermi velocity of the normal state Fermi surface at kx= ky, while vΔ begins at 0 when B= 0
and increases with finite b as the effective pairing grows. For large b, vF approaches the Fermi velocity of the un-hybridized c electron bands,
while vΔ tends to 0.

a) b) c)

Fig. 3 Number of nodes in a hole-doped superconductor. We show the evolution of the Fermi surface along a diagonal cut through the
nodal region of the Brillouin zone, focusing on the region where the hole pocket is present in the normal state. a The Fermi surface formed
from the hybridized c electrons and f1 spinons with an isolated Dirac cone from the π-flux spin liquid of the f2 layer. For very small values of b,
when the f2 spinons hybridize with the c electrons and f1 spinons, the Fermi surface has 12 nodes, as shown in (b). For larger values of b, there
are 4 nodes on the Fermi surface, as shown in (c).
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We will discuss the number of nodes separately for the two
types of Fermi surfaces mentioned above, beginning first with
the normal state where the only Fermi surfaces are electron
pockets at the anti-node. Naively, it might be expected for this
case that the d-wave superconductor, which will be inherited by
the c electrons when B condenses, will be fully gapped; however,
this is not what we observe. For any finite b, the electron pockets
of the normal state, which appeared in the anti-nodal region, will
become fully gapped, as shown in the rightmost column of Fig. 5,
but nodes will re-appear along the diagonal in the nodal region

of the Brillouin zone as shown in the central column of Fig. 5.
These nodes which at b= 0 were associated with the Dirac
points of the π-flux spin liquid will hybridize with the c and f1
bands but cannot be gapped unless an additional symmetry
such as spin rotation symmetry is strongly broken. If the above
scenario is excluded, there will always be 4 nodes on the
diagonal when B is condensed for a normal state with only
electron pockets, assuming a positive spin liquid hopping in the
gauge we have chosen. We note that for small b, the normal
state Fermi surfaces at the anti-node have a gap, which may be

Fig. 6 Spectral density in superconductor for electron-doped normal state with both electron and hole pockets.We show the evolution of
the electron spectral density (a, d) and dispersion when superconductivity sets in for the case of a normal state as positive electron doping,
which has both a hole-like pocket in the nodal region and an electron-like pocket in the anti-nodal region at electron doping p= 0.15.
Dispersions are shown for a cut along the diagonal of the Brillouin zone (b, e) and for a cut that connects the anti-node and Brillouin zone
center (c, f). We note that while the second-row electronic spectral density shows a finite electronic spectral weight in other regions of the
Brillouin zone compared to the node, all other points except the node have a finite, albeit sometimes small gap.

Fig. 5 Spectral density in superconductor for electron-doped normal state with only electron pockets. Evolution of spectral density of c
electrons (a, d), dispersion along a diagonal cut through the Brillouin zone (b, e), and dispersion along a vertical cut through the (0, π) (c, f) for
B= 0 (top row) and B > 0 (bottom row). All plots are computed at electron doping p= 0.15. We note the nodes for finite b along the diagonal,
which were not previously present in the c electron density in the normal state.
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very small, and the node that appears for small b initially has a
low c electron spectral weight.
For the case of a normal state that has both electron pockets at

the anti-node and hole pockets at the node, we observe the same
transition from 4 to 12 nodes as b is increased, as we observed in
the hole-doped case.
In all of our analysis on the electron-doped side of the phase

diagram, we have assumed tf 2 ¼ 0:14. However, changing the
sign of tf 2 will result in qualitatively different behavior in the
number of nodes, similar to the hole-doped case as shown in
Supplementary Figs. 5 and 6. However, as was shown in Appendix
3 of28, only the former sign of tf 2 corresponds to a chargon
potential, which favors the continuum superconductor ansatz we
have taken here.
We also show how vF and vΔ of the superconductor nodes on

the Brillouin zone diagonal evolve for positive electron doping as
a function of b and for different values of Φ in Fig. 7 for the choice
of normal state with only electron pockets. For this choice of the
normal state, we study a narrower range of Φ than in the hole-
doped case since we wish to choose Φ such that the normal state
is gapped at the node. The velocities in the case for which there
are additional hole pockets are similar to the behavior shown in
Fig. 4. Since there is no Fermi surface observable in the electron
spectral density in the nodal region at b= 0, both vF and vΔ
immediately jump to a finite value for finite b. For small b, vF and
vΔ are roughly equal as they are essentially just inherited from the
π-flux spin liquid’s Dirac points, which are isotropic. As b increases,
we see vF will first slowly increase as band repulsion, which
flattens the velocity competes with b, but in the limit b≫Φ, vF
ultimately returns to the Fermi velocity of the decoupled c
electrons as in the hole-doped case. Similar to the behavior of vΔ
at large b in the hole-doped case, here vΔ decreases as b increases,
ultimately tending towards zero when b≫Φ.

Excitation energy and quasi-particle residue
We also show the excitation energy and quasi-particle residue of
the energetically lowest-lying excitation in the superconducting
state, as shown in Fig. 8. We plot both quantities along a contour
defined by finding the kx momentum corresponding to where the
energy of the lowest-lying excitation is smallest for a given ky
momentum value. Effectively, this contour is well approximated by
choosing momenta along the original, decoupled c-electron Fermi
surface. We choose the first ky value plotted to be at the location
of the single node, which appears in the superconducting state in
either the hole-doped or electron-doped case. We may then
contrast the behavior of these quantities in the hole-doped and

electron-doped cases. While in the electron-doped case, the
excitation energy along the above-specified contour increases
monotonically as momentum is varied from the location of the
node at ðπ2 ; π2Þ to the Brillouin zone edge, the electron-doped case
shows non-monotonic behavior as one moves along the original
c-electron Fermi surface, away from the node. In the electron-
doped case, we observe a peak in the excitation energy roughly
midway between the node and edge of the Brillouin zone,
consistent with the behavior observed in12. In the electron-doped
case, the quasi-particle weight Zk is mostly flat with a very slight
dip between the node and anti-node, whereas in the hole-doped
case, the quasi-particle weight shows monotonic behavior as
momentum is varied away from the node at ðπ2 ; π2Þ.

DISCUSSION
In this work, we have studied how various electronic observables
evolve when the pseudogap metal transitions to a d-wave
superconductor in the framework of the Ancilla model39.
For a hole-doped normal state and positive spin liquid hopping in

our chosen gauge, as discussed in Section “Superconductor spectra
with hole-doping”, we initially find a d-wave superconductor with 12
nodes, and then a transition to 4 nodes as the pairing strength is
increased. When the normal state is chosen to reproduce
experimental photo-emission data, the regime of 12 nodes is small,
and the generic case for large b is a superconducting state with 4
nodes. We also found the velocities vF and vΔ associated with the
surviving nodes differ in scale, with vΔ much smaller than vF for all
values of Φ and b we have studied and tending towards 0 in the
limit where b≫Φ. It is, therefore, clear that the velocities are not
directly related to the spinon velocities in the π-flux phase, which are
isotropic, and this is an important difference from earlier work30,32,33.
We have also separately studied the FL* to superconductor

transition for the electron-doped case in Section “Superconductor
spectra with electron-doping”. In this case, we find that a normal
state with both electron-like and hole-like pockets leads to the
same transition from 12 to 4 nodes as observed in the hole-doped
case as a function of b. However, surprisingly, we find that in the
case with only electron-like pockets near the Brillouin zone edge,
the FL* state immediately transitions to a state with 4 nodes along
kx= ky, as shown in Fig. 5. This feature is unique to the electron-
doped side of the phase diagram, is striking in that nodes which
are not observable in the electron spectral density in the FL* case
immediately reappear for any finite b. Unlike in the hole-doped
case, vF and vΔ begin with nearly equal values since the surviving
node for small b is associated with the spin liquid Dirac point

a) b)

Fig. 7 Node velocities in superconductor for electron-doped normal state. We show vF (a) and vΔ (b) for positive electron doping as a
function of b for several different values of Φ. In the limit of large b, both velocities show the same asymptotic behavior as in the hole-
doped case.
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rather than the c electron Fermi surface. This aspect of the
electron-doped pairing follows as a direct consequence of the
mean-field dispersion of the π-flux spin liquid (though this
behavior would be the same had we considered another Dirac
spin liquid with the same number of nodes such as the U(1)
staggered flux spin liquid state). Thus, for electron-doped super-
conductors with only electron pockets in the normal state, it is
reasonable to state that nodal Bogoliubov quasiparticles are
remnants of Dirac spinons made visible by the onset of
superconductivity.
All our analysis was carried out for a pseudogap metal without a

long-range antiferromagnetic order. However, the appearance of

antiferromagnetic order at low temperatures within the super-
conducting phase (as is the case in the electron-doped cuprates)
should not invalidate any of our computations, and so we believe
our results should continue to apply.
Recent numerical studies58,59 of an electron-doped t–J model

found robust d-wave superconductivity, and the authors specu-
lated that their d-wave superconductor was fully gapped. From
our analysis here, we maintain that a conventional d-wave
superconductor, with pairing strength not as large as the Fermi
energy, always has 4 nodal points along the zone diagonals. A
fully gapped d-wave superconductor requires some additional
features and can be reached via the following routes:

a) b)

d)c)

e) f)

Fig. 8 Quasi-particle excitation and residue. We show the energy of the nearest quasi-particle excitation to the Fermi level (a) and quasi-particle
residue at this excitation energy (b) for the hole-doped case using the normal state shown in Fig. 2. We also show the excitation energy (c) and quasi-
particle residue (d) for the electron-doped case where there is only an electron pocket at the anti-node using the normal state shown in Fig. 5. Finally,
we also show the excitation energy (e) and quasi-particle residue (f) for the normal state of Fig. 6 where there are both electron and hole pockets.

M. Christos and S. Sachdev

8

npj Quantum Materials (2024)     4 Published in partnership with Nanjing University



(i) We start from an FL* metal with electron pockets and then
pair the electron pockets. At this point, the f2 Ancilla spin
liquid is still ‘alive’ in the superconducting state, and so such
a fully gapped d-wave superconductor is an SC* state.
Furthermore, the π-flux spin liquid is ultimately unstable60,
and this implies that a π-flux-SC* state is not stable.

(ii) Starting from a conventional d-wave superconductor with 4
nodal points, the onset of strong, co-existing antiferromag-
netic order can gap out the nodes when they annihilate in
pairs across the magnetic Brillouin zone boundary.

(iii) Finally, if the pairing interaction becomes as large as the
Fermi energy in a conventional d-wave superconductor, the
four nodal points can meet at the origin (or at (π, π)) and
annihilate with each other.

It appears unlikely to us that any of these 3 routes apply to the
study in refs. 58,59, and so we believe their superconductor does
have 4 nodal points at low temperatures and possibly only
electron pockets in the normal state.
In summary, our work has provided testable predictions of what

signatures conventional d-wave superconductivity will have if it
originates from a pseudogap phase containing fractional degrees of
freedom described by the π-flux spin liquid. It would be interesting
to extend the approach taken in this work to capture other relevant
phases in the under-doped cuprates, such as charge order61. We
also note that for the case of superconductivity, the quantities we
computed will not necessarily be different among different Dirac
spin liquids62. It is, therefore, interesting to conceive experimental
tests that may be capable of distinguishing between different FL*

normal states. We leave these possibilities to future work.

METHODS
Computing spectral densities
All plots are computed from a tight-binding implementation of
the model in Eq. (3) in momentum space using the parameters for
hoppings and dopings mentioned throughout the text. Chemical
potentials in each layer of the Hamiltonian described in Eq. (3) are
determined by doping for each set of parameters within an error
threshold of 0.01 via the bisection method. An 80 × 80 grid in
momentum space is used to fix the chemical potentials. Spectral
densities are computed as:

Aðω; kÞ ¼ � 1
π
Im Gccðω; kÞ½ � (15)

All spectral functions are computed on a quarter of the Brillouin
zone with a 200 × 200 grid. A lifetime parameter of 0.005 eV is
used when computing spectral densities.

Computing quasiparticle weight
The quasiparticle weight Zk is computed by first computing the
inverse of the greens function G−1(ω, k)=ω− H(k), which is then
diagonalized by a unitary transformation Uk such that Uy

kHðkÞUk ¼
G�1
D ðω; kÞ where G�1

D ðω; kÞ is diagonal. For an excitation at
positive energy Δk, we then compute the quasiparticle residue as:

Zk ¼ Uc";αU
y
α;c" (16)

where α labels the eigenvector of Uk corresponding to energy−
Δk, such that the quasiparticle weight is always computed at
negative energies.

DATA AVAILABILITY
All of the code which generated the data used during this study is made available at
the following publicly accessible repository: https://zenodo.org/records/10076755.
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