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A criterion for strange metallicity in the Lorenz ratio
Evyatar Tulipman1✉ and Erez Berg1

The Wiedemann-Franz (WF) law, stating that the Lorenz ratio L= κ/(Tσ) between the thermal and electrical conductivities in a metal
approaches a universal constant L0 ¼ π2k2B=ð3e2Þ at low temperatures, is often interpreted as a signature of fermionic Landau quasi-
particles. In contrast, we show that various models of weakly disordered non-Fermi liquids also obey the WF law at T→ 0. Instead,
we propose using the leading low-temperature correction to the WF law, L(T)− L0 (proportional to the inelastic scattering rate), to
distinguish different types of strange metals. As an example, we demonstrate that in a solvable model of a marginal Fermi-liquid,
L(T)− L0∝− T. Using the quantum Boltzmann equation (QBE) approach, we find analogous behavior in a class of marginal- and
non-Fermi liquids with a weakly momentum-dependent inelastic scattering. In contrast, in a Fermi-liquid, L(T)− L0 is proportional
to− T2. This holds even when the resistivity grows linearly with T, due to T− linear quasi-elastic scattering (as in the case of
electron-phonon scattering at temperatures above the Debye frequency). Finally, by exploiting the QBE approach, we demonstrate
that the transverse Lorenz ratio, Lxy= κxy/(Tσxy), exhibits the same behavior.
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INTRODUCTION
The properties of the anomalous normal state of high-Tc super-
conductors and other quantum materials, commonly dubbed
‘strange metals,’ are one of the most elusive mysteries in
condensed matter physics1,2. In particular, despite myriad works,
it is still unclear to what extent the underlying physics of such
systems departs from Landau’s Fermi-liquid (FL) paradigm and
necessitates a non-FL (NFL) description.
One of the hallmark characteristics of strange metals is the

T–linear resistivity at extremely low temperatures. This behavior
has been empirically linked with the notion of Planckian
dissipation2–6, showing a degree of universality throughout
different experimental setups and hinting towards a strongly
correlated NFL nature for these systems. Albeit at odds with
standard FL theory, T–linear resistivity can appear in FLs in the
presence of certain scattering mechanisms, at least in some
intermediate- to low-T window7–10. It is thus crucial to develop
ways to identify the mechanism of T–linear resistivity in strange
metals.
Here, we present a simple criterion for weakly disordered metals

that sharply distinguishes different sources of T–linear resistivity.
Our criterion is based on the behavior of the low-T leading
correction to the Lorenz ratio, LðTÞ ¼ κ

Tσ, with κ and σ being the
thermal and electrical conductivities, respectively.
The Weidemann-Franz (WF) law11 states that

L Tð Þ � L
L0

! 1 (1)

as T→ 0. Here, L0 ¼ π2k2B=ð3e2Þ is the so-called Lorenz number (we
set e= kB= 1 henceforth). Roughly speaking, the deviation of LðTÞ
from 1 serves as a measure for the relative contribution of inelastic
scattering to charge and thermal transport (LðTÞ � 1 implies that
elastic or quasi-elastic scattering is dominant)12. Dominantly
inelastic scattering leads to deviations from the WF law in many
circumstances13–16.
The validity of the WF law is often used as a test for the

existence of FL-like quasi-particle excitations at the lowest
temperatures17–21. However, the fact that WF is obeyed does

not necessarily imply that transport is carried by FL quasi-
particles22–24. Indeed, as we shall show, one can construct solvable
models of NFLs where the WF law is obeyed at T→ 0. The known
mechanisms for T–linear resistivity (not necessarily extending
down to T→ 0) in FLs involve elastic or quasi-elastic scattering.
These include electron-phonon scattering9 or static charged
impurities in 2D7,8. In contrast, T–linear resistivity associated with
NFLs is typically associated with inelastic scattering25–29. In both
cases, however, assuming that (T-independent) impurity scattering
dominates at sufficiently low T, we expect the WF law to be
obeyed at T→ 0. Hence, in order to learn about the FL or NFL
origin of the T–linear resistivity, one must consider the leading
low-temperature deviation from the WF law (see Fig. 1).
Our criterion is applicable to systems that obey the WF law at

T→ 0, as in the cuprates at sufficiently low temperature17,20,21. In
this context, it is worth noting that certain weakly disordered 2D
systems with Coulomb interactions are expected to violate the WF
law at T→ 030–32. However, in metals, the deviation from the WF
law is significant at an exponentially small temperature in kFℓ,
where kF is the Fermi momentum and ℓ is the elastic mean free
path. Our discussion applies above this energy scale.

RESULTS
A criterion for strangeness
Consider weakly disordered metals (in 2 or 3 spatial dimensions),
such that the dc resistivity has the following form as T→ 0:
ρ Tð Þ ¼ ρ0 þ ATα, where ρ0 is the residual resistivity, and A, α> 0.
We assume that impurity scattering dominates at sufficiently low T,
and the WF law is satisfied at T→ 0. In this case, the low-T electronic
thermal resistivity takes the form ρth(T)≡ T/κel= ρth,0+ BTβ with
B, β> 0. The normalized Lorenz ratio (1) then takes the following
form:

L Tð Þ � 1 / �Tβ: (2)

We claim that the exponent β is universal and provides
information on the nature of the system. In ordinary FLs, β= 2
(logarithmic corrections may arise due to electron-electron
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interactions in 2D33,34). Systems where a portion of Fermi surface
(FS) is ‘hot’, while the rest is FL-like, have 1 < β < 2. Most
interestingly, if β ≤ 1, the system is not described by any existing
theory of a FL. In particular, the case α= β= 1 arises in certain
models that realize marginal Fermi-liquids (MFLs)35. We, therefore,
argue that α= β= 1 could serve as a criterion for ‘strangeness’, in
the sense that it signals a full departure from FL theory. See Fig. 1
for a schematic illustration of the different cases.

Fermi liquids
We consider a weakly disordered FL with electron-electron (el-
el) or electron-phonon (el-ph) interactions. We assume that the
WF law is obeyed at T→ 0 due to the dominance of elastic
scattering 12–14,36–39. Here, and in the following section, the
disorder corresponds to static impurities, which provide a
source of elastic scattering with rate Γ.
At T > 0, el-el and el-ph interactions provide inelastic scattering

mechanisms that lead to deviations from the WF law. The
contribution of el-el interactions, a hallmark of FL theory, lead to
resistivities of the form ρ= ρ0+ AT2 (assuming Umklapp scatter-
ing is present) and ρth= T/κ= ρth,0+ BT2 (see e.g., refs. 36,40–42),
which translates to

L Tð Þ � 1 / �T2 (3)

where the negative slope is related to the additional contribution
of forward scattering that relaxes the thermal current, but not the
electrical current12–14. The el-ph contribution to the electrical
(thermal) resistivity is O Tdþ2

� �
(O Td

� �
), respectively (where d > 1),

as long as T is much smaller than TBG, the Bloch-Gruneisen
temperature12. That is, the el-ph contribution is subleading in 3D,
while in 2D it may modify the non-universal slope, such that the
form (3) holds at sufficiently low T in a FL.
In fact, Eq. (3) applies even in cases where the resistivity of a FL

is T–linear. For example, Coulomb screening of charged impurities,
treated within the random phase approximation, leads to a
T–linear resistivity in a 2D FL, due to thermal suppression of the FL
polarizability8,43. (In 3D, this contribution to the resistivity is
O T2
� �

7,8,32). However, in this case, the T− linear scattering is still
essentially elastic, and the deviations from the WF law still obey
Eq. (3).
Unlike the case of charged impurities, T–linear resistivity from

el-ph interactions emerges only at temperatures T≳ TBG12. Hence,
this mechanism is always irrelevant at the limit T→ 0. On a more
practical note, if TBG sets a particularly small energy scale, the
T–linear resistivity due to el-ph scattering might appear to extend
down to the lowest experimentally accessible temperatures (as
long as T≳ TBG). However, in this “equipartition” regime, phonons
are essentially classical and the el-ph scattering is quasi-elastic.
Hence, the WF law is essentially obeyed in this regime12.

Fermi surfaces with hot spots
We now consider systems where a portion of the Fermi surface
becomes ‘hot’, i.e., it experiences enhanced scattering with an
anomalous T–scaling. In some situations, such ‘hot spots’ can lead
to an anomalous T dependence of the transport coefficients. This
situation arises either when the system is on the verge of a finite
wavevector instability44–49, or when the system is turned to a Van
Hove singularity where the topology of the Fermi surface
changes10,15.
Consider the low–T behavior of L Tð Þ in a 2D system where a Van

Hove singularity (VHS) crosses the FS in the vicinity of a Lifshitz
transition10,15. In this case, we refer to the Fermi surface regions
near the VHS as ‘hot’. The transport scattering rates are dominated
by processes where a ‘cold’ electron (away from the VHS) is
scattered by a ‘hot’ one, or two cold electrons are scattered and
one of them ends up near the VHS. In clean systems, this leads to
ρ � T2 logð1=TÞ10,45 and ρth ~ T3/215. This behavior persists in the
presence of impurities, namely, ρ ¼ ρ0 þ AT2 logð1=TÞ and ρth=
ρth,0+ BT3/215,45, such that the deviation from WF law satisfy

L Tð Þ � 1 / �T3=2: (4)

We proceed by considering a weakly disordered FL near an
antiferromagnetic (AFM) quantum-critical point in 3D, as studied in
refs. 46,47. In this case, the FS contains ‘hot lines’ connected by the
non-zero AFM wavevector, where the scattering off spin fluctuation is
most effective. The hot lines then acquire anomalous, NFL-like,
scattering rates which may manifest in transport coefficients. In the
absence of impurities, these hot lines are short-circuited by the
remaining ‘cold’ parts of the FS such that transport coefficients follow
the conventional FL behavior at sufficiently low T44. However,
introducing impurities enables the hot lines to participate in
transport, since, loosely speaking, the scattering rate is averaged
over the entire FS. Ref. 46 showed that this leads to an anomalous
T–scaling of the resistivity, where ρ= ρ0+ AT3/2 at the lowest
temperatures. By extending the analysis of46 to the thermal
conductivity, we find that the thermal resistivity follows the same
anomalous behavior: ρth= ρth,0+ BT3/2, see Supplementary Material.
Combining the two resistivities, the deviation from WF law follows
Eq. (4).
Interestingly, a straightforward generalization of the analysis above

to 2D yields ρ= ρ0+ AT47. The same reasoning is expected to hold
for the thermal resistivity, which would imply that L� 1 / �T in 2D.
However, this analysis is based on the Hertz-Millis treatment of the
AFM QCP, which breaks down at sufficiently low temperatures in the
2D case50,51.

Marginal Fermi liquids
In this section, we construct a solvable model of a 2D weakly
disordered MFL that shows T–linear resistivity down to the lowest
temperatures and obeys the WF law at T→ 0, with a leading
correction of the form

L Tð Þ � 1 / �T : (5)

In addition, we comment on the expected behavior of other
tractable models of MFLs in 2 and 3 dimensions, suggesting that
Eq. (5) could be a robust signature of a class of weakly disordered
MFLs. We further corroborate this expectation using the Quantum
Boltzmann Equation (QBE) approach in the following section.
Consider a weakly disordered variant of the model studied in

ref. 28, based on a 2-band lattice generalization of the Sachdev-Ye-
Kitaev (SYK) model52–54. The model is defined on a D–dimensional
lattice, and contains two species of fermions, {c} and {f}, each
containing N orbitals per unit cell, governed by the Hamiltonian

Fig. 1 Schematic plot of the low-T behavior of the normalized
Lorenz ratio for systems that obey the Wiedemann-Franz law at
T= 0. Here, T is assumed to be smaller than Γ, the elastic scattering
rate. The T dependence of the leading deviation from L= L0 serves
as a criterion for strange metallicity: Fermi liquids (FL) exhibit L/
L0− 1∝− T2; Fermi liquids with hot spots (FL+HS) are characterized
by L/L0− 1∝− Tβ, 1 < β < 2; and certain marginal Fermi-liquids (MFL)
have L/L0− 1∝− T.
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H= Hc+ Hf+ Hcf, where

Hc ¼ � P
r;r0;l

tr;r0 þ μδr;r0
� �

cyrlcr0 l þ 1
N1=2

P
r;ij

Wijrc
y
ricrj ;

Hcf ¼ 1
N3=2

P
r;r0

P
ijkl

V ijklϒr;r0c
y
ri f

y
r0 jcrkf r0 l ;

Hf ¼ 2
N3=2

P
ijkl

Uijkl f
y
ri f

y
rj f rkf rl:

(6)

The hopping matrix tr;r0 is diagonal in orbital space and depends
only on the distance r � r0j j. The last term in Hc describes on-site
disorder for the c-fermions, where Wijr are site-dependent
Gaussian random independent potential, satisfying
Wijr ¼ 0;WijrWijr0 ¼ W2δr;r0 . The couplings in Hcf and Hf are site-
independent Gaussian random independent variables, satisfying

Vijkl ¼ 0; V2
ijkl ¼ U2

cf and similarly for Uijkl (with variance U2
f ). The

function ϒ determines the spatial dependence of the cf-
interaction. Note that for W= 0, the model is translationally
invariant for every realization of the interactions. We first consider
the case of on-site interaction as in28: ϒr;r0 ¼ δr;r0 . Spatially
extended ϒ will be considered later on.
The model is solvable in the N→∞ limit, where its properties

are dictated by replica-diagonal saddle-point of the real- and
imaginary-time effective action28. The low-energy saddle-point
equations describe SYK-like, incoherent f-fermions. These f-
fermions constitute a local quantum-critical bath for the c-
fermions, giving rise to a weakly disordered MFL form for the
Green’s function of the c-fermions. Importantly, the on-site
disorder W for the c-fermions does not alter the low-energy
behavior of the f-fermions, rather it only enters as an additional T-
independent, elastic scattering term to the c-fermions. For
example, at T= 0, the Matsubara frequency Green’s function is
of the form

Gc k; iωð Þ ¼ 1
iω� εk � Σc iωð Þ ; (7)

Σc iωð Þ ¼ �i
Γ

2
sgn ωð Þ þ Σcf iωð Þ; (8)

Σcf iωð Þ ¼ � ν0U2
cf

2π2Uf
iω log

Uf

ωj j
� �

; (9)

where Γ= 2πν0W2 is the disorder energy scale.
We proceed to consider transport. We compute the electrical

and thermal conductivities using the Kubo formula. By virtue of
the locality of the f-fermions, both conductivities are given in
terms of the bare bubble expressions, similarly to refs. 28,29. We
obtain the thermal conductivity,

κ ¼ v2Fν0
16T2

Z
dϵ
2π

ϵ2

Σ00R ϵð Þ�� �� sech2 ϵ

2T

� �
(10)

and the electrical conductivity,

σ ¼ v2Fν0
16T

Z
dϵ
2π

1

Σ00R ϵð Þ�� �� sech2 ϵ

2T

� �
: (11)

The imaginary part of the retarded self-energy is given by

�Σ00R ϵð Þ ¼ Γ
2 þ g2Im ϵψ �iϵ

2πT

� �þ iπT
	 


with g2 ¼ U2
cf ν0

2π2Uf
and where ψ(z)

is the digamma function29. Using Eq. (10) and Eq. (11), we find that
the WF law is obeyed at T→ 0, despite the fact that the MFL
description of the c-fermions persists to the lowest temperatures,
and that the leading deviation from the WF law obeys Eq. (5). The
Lorenz ratio L(T)/L0 as a function of T is shown in Fig. 2. As can be
seen in the figure, L/L0 decreases linearly with T at small T, and
saturates to the value corresponding to the clean case, L/
L0 ≈ 0.7129,55, at T≳ Γ.
In order to examine the robustness of these results to details of

the model, we consider the addition of spatially extended cf-

interactions: ϒr;r0 ¼ δr;r0 þ η
P

δ¼± x̂;± ŷδr;r0þδ with η being a small
control parameter. This modification does not change the MFL
form of the self-energy of the c-fermions. In addition, the form of
the thermal current operator is unchanged, see Supplementary
Material. Hence, to leading order in η, the conductivities are given
by αη= α0+ δα for α= σ, κ, where we have denoted αη=0≡ α0,
and the correction δα is O ηð Þ and corresponds to the current
bubble with an insertion of a single cf-interaction rung, see
Supplementary Material. These corrections alter the Lorenz ratio,
such that for T≫ Γ,

L ¼ κ0
Tσ0

1þ δκ

κ0
� δσ

σ0

� �
≠

κ0
Tσ0

; (12)

which demonstrates that the saturation value is not universal.
Importantly, the spatially extended cf-interaction does not alter
the T→ 0 behavior of the Lorenz ratio, which obeys Eq. (5). We will
demonstrate this and further highlight the conditions for which
Eq. (5) is valid within the framework of the QBE in the next section.
It is worth commenting that the simplicity of the analysis of (6)

comes with a price in the form of a residual T→ 0 extensive
entropy due to the SYK-nature of the f-fermions28,29,53,54. The
residual entropy is relieved upon allowing quadratic terms in the f-
fermions, but these also lead to FL behavior at low temperatures28.
Nevertheless, we expect Eq. (5) to be a robust property of weakly
disordered MFLs in 2 and 3 dimensions that show T–linear
electrical resistivity, as we discuss in the next section.
Let us briefly note that the results presented here and in the next

section can be generalized to f-fermions governed by an SYKq
(q > 4) Hamiltonian, while the cf-interaction is unchanged. For q > 4,
the c-fermions realize an incoherent, NFL description with
ρ= ρ0+ AT4/q and ρth= ρth,0+ BT4/q, such that L� 1 / �T4=q28.

Quantum Boltzmann equation approach
Even in the absence of well-defined quasi-particles, we may still
derive a QBE for a generalized Fermi distribution function in the
model of the previous section. Here we briefly outline the idea
behind the QBE approach for MFLs and the conditions for which it
is applicable. In addition, we highlight its implications on the
validity of the WF law and the criterion for strangeness in a certain
class of MFLs, using a generalization of the model (6) as a simple
representative. We elaborate on several issues and supply
technical details in the Supplementary material.
To derive a QBE in the absence of well-defined quasi-particles,

we utilize the MFL form of the self-energy and the fact that the
spectral function of the c-fermions is sharply peaked at the FS as a
function of εk (this is in contrast to the QBE approach for FLs which
relies on the sharp quasi-particle peak as a function of ω). Within
this approximation, known as the Prange-Kadanoff (PK) reduction

Fig. 2 The Lorenz ratio as a function of temperature for the MFL
model (6) with local cf-interaction. Γ is the elastic scattering rate.
The inset shows the limit T≪ Γ which obeys Eq. (5).
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scheme56,57, the momenta of the c-fermions are restricted to the
FS. Roughly speaking, the PK reduction is valid when the width of
the electronic spectral function Aðω � T ; kÞ as a function of k is
smaller than the typical momentum transfer in both elastic and
inelastic scattering events, see Supplementary Material and ref. 58.
Considering the MFL model (6), the QBE approach illustrates

that

(i) The WF law may hold at T→ 0 due to the dominance of
elastic scattering, regardless of the existence of well-defined
quasi-particles;

(ii) The leading deviation from the WF law obeys Eq. (5) in
weakly disordered MFLs that admit the PK reduction
scheme;

where (ii) can be understood as a consequence of Matthiessen’s
rule. We further find that the deviation in Eq. (5) holds for a class of
generalized models with spatially extended cf-interactions, see
e.g., the previous section, which confirms that (i) and (ii) have a
much broader regime of validity in weakly disordered MFLs (and
NFLs). Specifically, assuming that the momentum-dependence of
the inelastic scattering rate is sufficiently weak (as defined above),
such that PK reduction can be applied, the QBE approach suggests
that WF law should hold at T→ 0. Moreover, since in these
circumstances, the transport relaxation rate is proportional to the
single particle scattering rate, the leading low-T deviation from the
WF law is expected to satisfy Eq. (5).

Transverse Lorenz ratio
We employ the QBE approach to generalize our discussion to the
transverse Lorenz ratio:

Lxy � κxy
Tσxy

; (13)

where σxy and κxy denote the transverse electrical and thermal
conductivities, respectively. Specifically, by solving the linearized
QBE of the weakly disordered MFLs (6), we find that the leading
deviation from the (transverse) WF law for a class of MFLs follows
the same scaling as the longitudinal:

Lxy � 1 / �T ; (14)

as in Eq. (5); see Supplementary Material. Moreover, while the
derivation of the transverse conductivities is slightly more involved
due to the presence of a weak magnetic field, the key ingredient
remains the validity of the PK reduction scheme. This has the
remarkable implication that, as long as the PK reduction scheme is
valid, our conclusions for the longitudinal Lorenz ratio (i.e., (i) and (ii)
from the previous section) equally apply to the transverse Lorenz
ratio of weakly disordered MFLs (or NFLs). In addition, while the
transverse conductivities are proportional to the applied magnetic
field, this proportionality factor cancels in Lxy such that the leading
deviation is independent of the magnetic field.
Note further that the extension of our criterion to the transverse

Lorenz ratio holds also for weakly disordered FLs, where the
leading deviation satisfies Lxy− L0∝− T212. The same conclusion is
expected to hold for Fermi surface with hot spots since, within the
conventional Boltzmann transport theory (for sufficiently weak
magnetic field that can be treated perturbatively), the dominant
inelastic scattering rate that governs longitudinal transport also
governs transverse transport.

DISCUSSION
Naively, one may have expected the WF law to hold at T→ 0 only
in weakly disordered Fermi liquids with well-defined quasi-
particles. This is because, within the conventional Landau-
Boltzmann description of transport, the universal value L0
originates from integrating over Fermi functions, implying that

the existence of well-defined quasi-particles is necessary. In
contrast, as shown in this work, a broad class of weakly disordered
non-Fermi-liquid metals with no well-defined quasi-particles (in
the sense that the electron scattering rate is either comparable to
or larger than, the energy) also satisfy the WF law at T→ 0.
Intuitively, the fact that this class of systems obey the Wiedemann-
Franz law may be understood from the fact that, while there is no
well-defined Fermi surface with a sharp jump in the fermion
momentum occupation function, the generalized energy distribu-
tion function f ωð Þ ¼ �i

R
dε
2π G

< ε;ωð Þ, is a Fermi function (see
Supplementary Material). A sufficient condition for the WF law to
hold is that the QBE approach is applicable; this requires, in
particular, that (i) The width of electronic spectral functions at zero
energy is smaller than the Fermi momentum, and that (ii) The
dependence of the electronic scattering rate on momentum is
non-singular. Note that, in particular, condition (i) implies that the
resistivity is small compared to the Mott-Ioffe-Regel limit.
Thus, the fact the WF is obeyed at T= 0 is not sufficient to

deduce that these systems are conventional Fermi liquids in
disguise. Instead, we propose to examine the deviation of the
Lorenz ratio L(T) from L0 as T→ 0. Since this quantity depends on
the degree of inelastic scattering, it can distinguish different sources
of strange metallicity, such as Fermi liquids with a source of
T− linear nearly elastic scattering (such scattering from an Einstein
bosonic mode whose frequency is lower than T), from “true” non-
Fermi liquids where the scattering is inelastic (see Fig. 1).
In practice, our criterion is applicable under experimental

conditions where the electronic degrees of freedom dominate heat
transport at low T. For the longitudinal case, while these conditions
can be met in some scenarios (for example refs. 42,59), it could also be
the case that other degrees of freedom, e.g., phonons, will dominate
the thermal conductivity which would make our criterion inacces-
sible. To separate the electronic contribution, the transverse Lorenz
ratio Lxy is often used (since κxy is often, although not always60,
dominated by the electronic contribution). Here we showed that our
criterion applies to the longitudinal and transverse cases at once, and
therefore expect it to be widely applicable.
An intriguing issue concerns the application of our criterion to

theories of quantum-critical metals, especially in cases where the
electrical resistivity is T− linear27,61,62. In this regard, we point out
ref. 59, which reported low–T transport measurements in a weakly
disordered 3D system at a ferrmomagnetic critical point. It was
found that at low T, ρ= ρ0+ AT5/3 while ρth= ρth,0+ BT, such that
L� 1 / �T , consistent with MFL behavior by our criterion51,63.
This observation is further corroborated by evidence for a
T log 1=Tð Þ behavior in the specific heat64, as expected for a MFL35.

METHODS
All analytical calculations are explicitly presented in the Supple-
mentary note.

DATA AVAILABILITY
The data that support the findings of this study are available from the authors on
request.

Received: 27 May 2023; Accepted: 23 October 2023;

REFERENCES
1. Varma, C. M. Colloquium: linear in temperature resistivity and associated mys-

teries including high temperature superconductivity. Rev. Mod. Phys. 92, 031001
(2020).

2. Hartnoll, S. A. & Mackenzie, A. P. Colloquium: Planckian dissipation in metals. Rev.
Mod. Phys. 94, 041002 (2022).

E. Tulipman and E. Berg

4

npj Quantum Materials (2023)    66 Published in partnership with Nanjing University



3. Bruin, Ja. N., Sakai, H., Perry, R. S. & Mackenzie, A. P. Similarity of scattering rates in
metals showing T-linear resistivity. Science 339, 804–807 (2013).

4. Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dis-
sipation. Phys. Rev. Lett. 124, 076801 (2020).

5. Legros, A. et al. Universal T -linear resistivity and Planckian dissipation in over-
doped cuprates. Nat. Phys. 15, 142–147 (2019).

6. Grissonnanche, G. et al. Linear-in temperature resistivity from an isotropic
planckian scattering rate. Nature 595, 667–672 (2021).

7. Das Sarma, S. & Hwang, E. H. Charged impurity-scattering-limited low-
temperature resistivity of low-density silicon inversion layers. Phys. Rev. Lett. 83,
164–167 (1999).

8. Das Sarma, S. & Hwang, E. H. Screening and transport in 2D semiconductor
systems at low temperatures. Sci. Rep. 5, 16655 (2015) .

9. Wu, F., Hwang, E. & Das Sarma, S. Phonon-induced giant linear-in-T resistivity in
magic angle twisted bilayer graphene: ordinary strangeness and exotic super-
conductivity. Phys. Rev. B 99, 165112 (2019).

10. Mousatov, C. H., Berg, E. & Hartnoll, S. A. Theory of the strange metal Sr3Ru2O7.
Proc. Natl Acad. Sci. USA 117, 2852–2857 (2020).

11. Franz, R. & Wiedemann, G. Ueber die Wärme-Leitungsfähigkeit der Metalle.
Annalen der Physik 165, 497–531 (1853).

12. Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids
(Oxford University Press, 1960).

13. Mahajan, R., Barkeshli, M. & Hartnoll, S. A. Non-fermi liquids and the Wiedemann-
Franz law. Phys. Rev. B 88, 125107 (2013).

14. Lavasani, A., Bulmash, D. & Das Sarma, S. Wiedemann-Franz law and Fermi liquids.
Phys. Rev. B 99, 085104 (2019).

15. Stangier, V. C., Berg, E. & Schmalian, J. Breakdown of the Wiedemann-Franz law at
the Lifshitz point of strained Sr2RuO4. Phys. Rev. B 105, 115113 (2022).

16. Principi, A. & Vignale, G. Violation of the Wiedemann-Franz law in hydrodynamic
electron liquids. Phys. Rev. Lett. 115, 056603 (2015).

17. Proust, C., Boaknin, E., Hill, R. W., Taillefer, L. & Mackenzie, A. P. Heat transport in a
strongly overdoped cuprate: Fermi liquid and a pure $d$-Wave BCS super-
conductor. Phys. Rev. Lett. 89, 147003 (2002).

18. Tanatar, M. A., Paglione, J., Petrovic, C. & Taillefer, L. Anisotropic violation of the
wiedemann-franz law at a quantum critical point. Science 316, 1320–1322
(2007).

19. Reid, J.-P. et al. Wiedemann-Franz law and nonvanishing temperature scale
across the field-tuned quantum critical point of YbRh2Si2. Phys. Rev. B 89, 045130
(2014).

20. Grissonnanche, G. et al. Wiedemann-Franz law in the underdoped cuprate
superconductor YBa2Cu3Oy. Phys. Rev. B 93, 064513 (2016) .

21. Michon, B. et al. Wiedemann-Franz Law and abrupt change in conductivity across
the pseudogap critical point of a cuprate superconductor. Phys. Rev. X 8, 041010
(2018).

22. Schwiete, G. & Finkel’stein, A. M. Thermal transport and Wiedemann-Franz law in
the disordered Fermi liquid. Phys. Rev. B 90, 060201 (2014).

23. Wang, W. O. et al. The Wiedemann-Franz law in doped Mott insulators without
quasiparticles. Preprint at http://arxiv.org/abs/2208.09144 (2022).

24. Ulaga, M., Mravlje, J., Prelovšek, P. & Kokalj, J. Thermal conductivity and heat
diffusion in the two-dimensional hubbard model. Phys. Rev. B 106, 245123 (2022).

25. Chowdhury, D., Georges, A., Parcollet, O. & Sachdev, S. Sachdev-ye-kitaev models
and beyond: Window into non-fermi liquids. Rev. Mod. Phys. 94, 035004 (2022).

26. Lee, P. A. Low-temperature $T$-linear resistivity due to umklapp scattering from a
critical mode. Phys. Rev. B 104, 035140 (2021).

27. Patel, A. A., Guo, H., Esterlis, I. & Sachdev, S. Universal theory of strange metals
from spatially random interactions. Science 381, 790–793 (2023).

28. Chowdhury, D., Werman, Y., Berg, E. & Senthil, T. Translationally invariant non-
fermi-liquid metals with critical fermi surfaces: solvable models. Phys. Rev. X 8,
031024 (2018).

29. Patel, A. A., McGreevy, J., Arovas, D. P. & Sachdev, S. Magnetotransport in a model
of a disordered strange metal. Phys. Rev. X 8, 021049 (2018).

30. Niven, D. R. & Smith, R. A. Electron-electron interaction corrections to the thermal
conductivity in disordered conductors. Phys. Rev. B 71, 035106 (2005).

31. Schwiete, G. & Finkel’stein, A. M. Theory of thermal conductivity in the disordered
electron liquid. JETP 122, 567–575 (2016).

32. Xie, H.-Y. & Foster, M. S. Transport coefficients of graphene: Interplay of impurity
scattering, Coulomb interaction, and optical phonons. Phys. Rev. B 93, 195103
(2016).

33. Lyakhov, A. O. & Mishchenko, E. G. Thermal conductivity of a two-dimensional
electron gas with coulomb interaction. Phys. Rev. B 67, 041304 (2003).

34. Das Sarma, S. & Liao, Y. Know the enemy: 2D Fermi liquids. Ann. Phys. 435,
168495 (2021).

35. Varma, C. M., Littlewood, P. B., Schmitt-Rink, S., Abrahams, E. & Ruckenstein, A. E.
Phenomenology of the normal state of Cu-O high-temperature superconductors.
Phys. Rev. Lett. 63, 1996–1999 (1989).

36. Sykes, J. & Brooker, G. A. The transport coefficients of a fermi liquid. Ann. Phys. 56,
1–39 (1970).

37. Michaeli, K. & Finkel’stein, A. M. Quantum kinetic approach for studying thermal
transport in the presence of electron-electron interactions and disorder. Phys.
Rev. B 80, 115111 (2009).

38. Lucas, A. & Das Sarma, S. Electronic hydrodynamics and the breakdown of the
Wiedemann-Franz and Mott laws in interacting metals. Phys. Rev. B 97, 245128
(2018).

39. Castellani, C., DiCastro, C., Kotliar, G., Lee, P. A. & Strinati, G. Thermal conductivity
in disordered interacting-electron systems. Phys. Rev. Lett. 59, 477–480 (1987).

40. Abrikosov, A. A. & Khalatnikov, I. M. The theory of a fermi liquid (the properties of
liquid 3He at low temperatures). Rep. Prog. Phys. 22, 329–367 (1959).

41. Højgård Jensen, H., Smith, H. & Wilkins, J. W. Exact transport coefficients for a
Fermi liquid. Phys. Lett. A 27, 532–533 (1968).

42. Paglione, J. et al. Heat transport as a probe of electron scattering by spin fluc-
tuations: The case of antiferromagnetic cerhin5. Phys. Rev. Lett. 94, 216602 (2005).

43. Stern, F. Calculated temperature dependence of mobility in silicon inversion
layers. Phys. Rev. Lett. 44, 1469–1472 (1980).

44. Hlubina, R. & Rice, T. M. Resistivity as a function of temperature for models with
hot spots on the Fermi surface. Phys. Rev. B 51, 9253–9260 (1995).

45. Hlubina, R. Effect of impurities on the transport properties in the Van Hove
scenario. Phys. Rev. B 53, 11344–11347 (1996).

46. Rosch, A. Interplay of disorder and spin fluctuations in the resistivity near a
quantum critical point. Phys. Rev. Lett. 82, 4280–4283 (1999).

47. Syzranov, S. V. & Schmalian, J. Conductivity close to antiferromagnetic criticality.
Phys. Rev. Lett. 109, 156403 (2012).

48. Hartnoll, S. A., Hofman, D. M., Metlitski, M. A. & Sachdev, S. Quantum critical
response at the onset of spin-density-wave order in two-dimensional metals.
Phys. Rev. B 84, 125115 (2011).

49. Herman, F., Buhmann, J., Fischer, M. H. & Sigrist, M. Deviation from Fermi-liquid
transport behavior in the vicinity of a Van Hove singularity. Phys. Rev. B 99,
184107 (2019).

50. Abanov, A. & Chubukov, A. Anomalous scaling at the quantum critical point in
itinerant antiferromagnets. Phys. Rev. Lett. 93, 255702 (2004).

51. Löhneysen, H. V., Rosch, A., Vojta, M. & Wölfle, P. Fermi-liquid instabilities at
magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007).

52. Sachdev, S. & Ye, J. Gapless spin-fluid ground state in a random quantum Hei-
senberg Magnet. Phys. Rev. Lett. 70, 3339–3342 (1993).

53. Kitaev, A. A Simple Model of Quantum Holography. http://online.kitp.ucsb.edu/online/
entangled15/kitaev/, http://online.kitp.ucsb.edu/online/entangled15/kitaev2/ (2015).

54. Maldacena, J. & Stanford, D. Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev.
D 94 106002 (2016) .

55. Maebashi, H. & Varma, C. M. Quantum-critical conductivity of marginal Fermi-
liquids. Preprint at http://arxiv.org/abs/2207.11982 (2022).

56. Prange, R. E. & Kadanoff, L. P. Transport theory for electron-phonon interactions
in metals. Phys. Rev. 134, A566–A580 (1964).

57. Nave, C. P. & Lee, P. A. Transport properties of a spinon Fermi surface coupled to
a U(1) gauge field. Phys. Rev. B 76, 235124 (2007).

58. Guo, H., Esterlis, I., Patel, A. A. & Sachdev, S. Large $N$ theory of critical Fermi
surfaces II: conductivity. Phys. Rev. B 106, 115151 (2022).

59. Smith, R. P. et al. Marginal breakdown of the Fermi-liquid state on the border of
metallic ferromagnetism. Nature 455, 1220–1223 (2008).

60. Grissonnanche, G. et al. Chiral phonons in the pseudogap phase of cuprates. Nat.
Phys. 16, 1108–1111 (2020).

61. Wu, T. C., Liao, Y. & Foster, M. S. Quantum interference of hydrodynamic modes in
a dirty marginal fermi liquid. Phys. Rev. B 106, 155108 (2022).

62. Shi, Z. D., Else, D. V., Goldman, H. & Senthil, T. Loop current fluctuations and
quantum critical transport. SciPost Phys. 14, 113 (2023).

63. Belitz, D., Kirkpatrick, T. R., Narayanan, R. & Vojta, T. Transport anomalies and
marginal-fermi-liquid effects at a quantum critical point. Phys. Rev. Lett. 85,
4602–4605 (2000).

64. Sutherland, M. et al. Transport and thermodynamic evidence for a marginal
Fermi-liquid state in ZrZn${}_{2}$. Phys. Rev. B 85, 035118 (2012).

ACKNOWLEDGEMENTS
We thank Sean Hartnoll, Tobias Holder, Steven Kivelson, Dmitrii Maslov, Karen
Michaeli, Yuval Oreg, Jörg Schmalian, Dam T. Son, Brad Ramshaw, Sankar Das Sarma,
Ady Stern, Louis Taillefer, and Senthil Todadri for useful discussions and comments
on this manuscript. This work was supported by the European Research Council (ERC)
under grant HQMAT (Grant Agreement No. 817799), the Israel-US Binational Science
Foundation (BSF), and the Minerva Foundation.

E. Tulipman and E. Berg

5

Published in partnership with Nanjing University npj Quantum Materials (2023)    66 

http://arxiv.org/abs/2208.09144
http://online.kitp.ucsb.edu/online/entangled15/kitaev/
http://online.kitp.ucsb.edu/online/entangled15/kitaev/
http://online.kitp.ucsb.edu/online/entangled15/kitaev2/
http://arxiv.org/abs/2207.11982


AUTHOR CONTRIBUTIONS
E.T. and E.B. have contributed equally to the development of the ideas in this work,
and to the writing of the paper. E.T. did the calculations.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41535-023-00598-z.

Correspondence and requests for materials should be addressed to Evyatar
Tulipman.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

E. Tulipman and E. Berg

6

npj Quantum Materials (2023)    66 Published in partnership with Nanjing University

https://doi.org/10.1038/s41535-023-00598-z
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A criterion for strange metallicity in the Lorenz�ratio
	Introduction
	Results
	A criterion for strangeness
	Fermi liquids
	Fermi surfaces with hot�spots
	Marginal Fermi liquids
	Quantum Boltzmann equation approach
	Transverse Lorenz�ratio

	Discussion
	Methods
	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




