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Electromagnetic signatures of a chiral quantum spin liquid
Saikat Banerjee 1, Wei Zhu2,3 and Shi-Zeng Lin 4,5✉

Quantum spin liquids (QSL) have emerged as a captivating subject within interacting spin systems that exhibit no magnetic
ordering even at the lowest temperature accessible experimentally. However, definitive experimental evidence remains elusive. In
light of the recent surge in theoretical and experimental interest in the half-filled Hubbard model on a triangular lattice, which
offers the potential for stabilizing a chiral QSL, we investigate the electromagnetic signatures of this phase to facilitate experimental
detection. Utilizing a combination of parton mean-field theory and unbiased density-matrix renormalization group calculations, we
systematically examine the electrical charge and orbital electrical current associated with a spinon excitation in the chiral QSL.
Additionally, we calculate the longitudinal and transverse optical conductivities below the Mott gap. Furthermore, employing
quantum field theory analysis, we unravel the connection between spinon excitations and emergent as well as physical gauge
fields. Our results demonstrate that the chiral QSL phase exhibits a distinct electromagnetic response, even within a Mott insulator
regime. This finding holds great potential for enabling the experimental detection of this long-sought-after phase.
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INTRODUCTION
Quantum spin liquid (QSL) states are described by interacting
quantum spin systems that abstain from magnetic ordering even
at absolute zero temperature. This absence of magnetic ordering
provides a ground state characterized by quantum disorder,
featuring distinctive long-range quantum entanglement, fractio-
nalized excitations, and the emergence of associated gauge fields.
As a result, understanding and characterizing QSL has been a
challenge since its inception1. The experimental identification of
QSL states is rendered even more intricate due to the absence of a
conventional order parameter2. However, recent advances on
both the theoretical and experimental fronts have spurred a
continuous surge of interest in analyzing and detecting this
elusive state of matter3. Examples span from the identification of
various iridates/ruthenates compounds as promising candidates
to realize proximate Kitaev physics4–8, to the observation of
topological spin liquids in Rydberg atom quantum simulators9 and
quantum processors10. The manifestation of QSL necessitates the
suppression of magnetic orders, making frustrated magnets a
fruitful ground for looking for QSL. In this context, the triangular
lattice Hubbard model (TLHM) has consistently occupied a
prominent role of interest.
In the limit of large U in the TLHM at half-filling, the effective

low-energy Hamiltonian transforms into an antiferromagnetic
Heisenberg model, consequently stabilizing the conventional 120°
(Néel) order11–15. However, the prevailing notion is that as the
correlations weaken while remaining above the Mott transition,
the ground state of the TLHM transitions to a quantum spin liquid
(QSL) state through a quantum phase transition16. In particular, a
series of density-matrix renormalization group studies
(DMRG)17–20, as well as matrix product state (MPS)21 analyses on
TLHMs, have recently pointed towards the emergence of evidence
for chiral quantum spin liquid (cQSL) phases of the
Kalmeyer–Laughlin type22,23. We refer to Fig. 1 for an illustrative
schematic of the phase diagram.

The TLHM finds experimental realization in specific materials.
Previous experimental investigations have provided distinctive
indications of a QSL phase within particular organic Mott
insulators24–27. Nonetheless, a debate persists regarding the
gapped26 or gapless28 characteristics of the underlying excitations.
In the context of another material adopting a triangular lattice
structure, namely NaYbO2, the gapless nature finds robust support
from various specific heat measurements29,30. However, experi-
ments with nuclear magnetic resonance31 or muon spin rotation32

support the gapless nature in triangular lattice material YbMg-
GaO4, although the true nature of the magnetic ground state in
YbMgGaO4 remains a controversial topic possibly related to the
unavoidable presence of disorder in this material. Furthermore,
supporting evidence emerges from neutron scattering studies,
revealing the existence of a spinon Fermi surface33. Therefore, the
quest for definitive unmistakable signatures capable of unraveling
the genuine essence of the QSL phase remains crucial.
Inspired by the identification of the cQSL phase in TLHM and its

potential relevance in several compounds, here, we systematically
analyze its electromagnetic responses. Despite being a Mott
insulator, there is a remnant electromagnetic response due to the
virtual hopping of electrons34,35. Assuming the presence of a
spontaneously broken time-reversal symmetry (TRS) in a cQSL
phase, we analyze the corresponding effective spin model18

within the framework of the parton mean-field spinon description.
This analysis yields insights into the associated orbital magnetiza-
tion and electrical polarization. Moreover, we perform unbiased
density matrix renormalization group (DMRG) calculations on the
half-filled TLHM at an intermediate coupling U (U1 < U < U2). The
results of our numerical examination confirm the mean-field
results concerning the electromagnetic responses. To establish a
comprehensive and universally applicable perspective, we invoke
a quantum field theory description to explicitly elucidate the
interplay between the emergent and physical gauge fields and the
low-energy spinon excitations within the cQSL.
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To relate our theoretical framework to experiments, we
compute the transverse optical conductivity (within the spinon
description), which is associated with the magneto-optical Faraday
rotation (MOFE)

ΘF ¼ l
nc

σ0xyðΩÞ; (1)

where l is the thickness in the direction of light propagation with
frequency Ω, n is the index of refraction, and σ0

xyðΩÞ is the real part
of the optical conductivity in 3D. Our electromagnetic response
functions, including the orbital magnetization profile and the
structure of ΘF, provide a clear experimental signature of the
cQSL. For completeness, we also analyze the behavior of the
dynamic spin-structure factor and lay out the possible connection
with the relevant experiments. It is worth noting that the real
component of the Hall optical conductivity, assessed through the
MOFE angle in experimental observations, is proportional to the
imaginary component of susceptibility (see the Supplementary
Material for more details). This observation stands in stark contrast
to various other response functions, where the dissipative part
(imaginary component of the Hall conductivity) is measured.
The rest of this paper is organized as follows: in section

“Results,” we provide the spinon description of the cQSL in TLHM.
In sections “Analysis” and “Case of a localized spinon,” we provide
details of the derivation for electrical polarization and orbital
magnetization. The DMRG calculations supporting our mean-field
calculations are given in section “DMRG calculations.” Section
“Quantum field theory description” provides a picture based on
quantum field theory. In sections “Dynamic spin-structure factor”
and “Optical conductivity and Faraday rotation,” we compute the
dynamic spin structure factor and transverse optical conductivity
with the electrical polarization, respectively. Finally, we discuss the
implications of our results and conclude in section “Discussion.”

RESULTS
Model Hamiltonian
We start with the TLHM at half-filling with the corresponding
Hamiltonian written as

H0 ¼ �t
X
hiji;σ

cyiσcjσ þ U
X
i

ni"ni#; (2)

where cyiσ creates an electron at site i with spin σ, and U is the
strength of the onsite Coulomb repulsion. In the strong coupling
limit (U≫ t), the charge degrees of freedom are gapped out, and
the relevant microscopic model can be analyzed in terms of an
effective spin model. Within a second-order perturbation expan-
sion in t/U, the corresponding spin Hamiltonian reads
Heff ¼ Jð2Þ

P
hijiSi � Sj , where J(2)= 4t2/U is the antiferromagnetic

Heisenberg coupling. However, in the intermediate coupling
regime, i.e., U≳ t, the above second-order perturbation does not
completely capture the low-energy dynamics, and we need to
include higher-order spin corrections. Such a procedure leads to
further neighbor spin exchange terms, including ring exchange-
like interactions36. Therefore, although a Néel order is preferred at
larger U, incorporating subleading order correction modifies the
overall magnetic order at an intermediate U. Previous theoretical

works34,37–39 have reported the existence of two critical coupling
strengths U1 ~ 9t, and U2 ~ 11t. The current consensus is that
TLHM hosts a putative QSL phase in the intermediate regime
between U1 and U2, eventually becoming a Néel ordered state at a
larger U > U2.
Motivated by these previous studies and recent developments

in the DMRG results17,20, we adopt a phenomenological chiral spin
liquid model to describe its concomitant features. The effective
Hamiltonian, which hosts cQSL as a ground state, is written as

Hcsl ¼ ~J
X
hiji

Si � Sj þ ~Jχ
X
hhijkii

Si � ðSj ´ SkÞ; (3)

where the associated exchange couplings are written in terms of
the parameters of the original low-energy spin model. Here, 〈ij〉
denotes the nearest sites, and 〈〈ijk〉〉 denotes three sites in a unit
triangle. It was argued in refs. 18,34 that the four-spin ring
exchange term (see Supplementary Material (SM) for details) is
responsible for the appearance of the chiral term in Eq. (3).
Here, we focus on the model as in Eq. (3) and analyze it within a

mean-field description. We utilize the standard parton decom-
position of the spins as Si ¼ 1

2 f
y
iασαβf iβ, where f yiα creates a neutral

spinon excitation with spin α at site i, and σ denotes the vector of
Pauli matrices (the repeated indices are assumed to be summed
over). This fractionalization leads to an enlargement of the Hilbert
space. Therefore, one needs to implement a local constraint
(f yiαf iα ¼ 1) to project to the physical Hilbert space. Plugging this
back into Eq. (3) and assuming a nonzero mean-field decomposi-
tion as mij ¼ hf yiαf jαi, we obtain a noninteracting spinon Hamilto-
nian as (see the Supplementary Material for more details)

H ¼ �
~J
2

X
hiji

mjif
y
iαf jα þ

3i~Jχ
16

X0

hiji
mikmkjf

y
jαf iα � h:c:

� �
; (4)

where the primed summation corresponds to all the permutations
between the three neighboring sites i, j, k. Here, we adopted a
mean-field decomposition only in the particle-hole channel,
although a more general decomposition with both the particle-
particle and particle-hole channel may provide a qualitatively
better description of the emergent spinon spectrum40,41.
Assuming translational invariance, we simplify the mean-field

order parameter mij ¼ m0eiϕij , where m0 is the amplitude and ϕij’s
are bond-dependent phases. Subsequently, we capture the
physics of the Hamiltonian in Eq. (4) with a simplified model as

H ¼ �~t
X
hiji

eiψij f yiαf jα þ h:c:: (5)

Focusing on a three-site cluster, the hopping amplitude ~t, and the
phases ψij’s are related to the parameters in Eq. (4) as

~t cosψij ¼
~Jm0

2
cosϕji þ

3~Jχm2
0

16
sin ϕik þ ϕkj

� �
; (6)

~t sinψij ¼
~Jm0

2
sinϕji þ

3~Jχm2
0

16
cos ϕik þ ϕkj

� �
; (7)

However, the phases ψij’s and the hopping~t remain undetermined. To
make further progress, we utilize a variational flux state, such that the
spinons hopping on the decorated two-sublattice structure realizes a
π-flux per plaquette [see Fig. 2a] with the hopping amplitudes
between different neighboring sites such that the total flux within the
rhombus-shaped unit cell is π21. In such a construction, we can do
further simplification and solve Eqs. (6), and Eq. (7) to show that (see
the Supplementary Material for more details)

~t ¼
~Jm0

2
þ 3~Jχm2

0

16
; ψij ¼ �ϕij

(8)

with the constraint, the total flux within a triangle is π/2. Note that
m0 still remains undetermined. A particular choice of ψij is shown

Fig. 1 A schematic phase diagram for the triangular lattice
Hubbard model at half-filling. The phase diagram contains a
metallic phase at small U, followed by a putative cQSL phase with
non-vanishing chiral order parameter χ ¼ Si � ðSj ´ SkÞ

� �
at an

intermediate coupling regime U1 ~ 9t, and U2 ~ 11t17,20, and a
magnetic ordered Néel state at strong coupling. Note that χ= 0 in
the other two phases.
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in Fig. 2a to realize the staggered flux configurations between the
up and the down triangles, where θ= 0 corresponds to π/2 flux
within a triangle. TRS is preserved for θ= π/2.
Diagonalizing the Hamiltonian in Eq. (5) obtains the corre-

sponding spinon band structure. The uniform flux phase (θ= 0)
leads to a gapped spinon spectrum, as shown in Fig. 2b. Note that
the spectrum becomes gapless for the staggered flux configura-
tion with θ= π/2, and remains gapped for any other choice of θ.
The spinon spectrum is doubly degenerate for the spin-up and
spin-down components. The gapped bands acquire a nonzero
Chern number in the uniform flux configuration. Using the link
variable formulation42, we obtain the total Chern number
distribution for the bands as C ¼ f1;�1g in the cQSL phase.
Therefore, it is expected to host chiral spinon edge modes and
exhibit quantized Hall thermal conductivity at low temperatures43.

Analysis
Now we discuss the main results of this paper by focusing on the
electromagnetic signatures in the cQSL phase. Despite a charge-
neutral Mott insulator, the virtual hopping of electrons leads to a
nonvanishing expectation value of the charge fluctuations and
circulating loop currents in the cQSL phase35. In fact, such features
are expected in spin liquid systems44–46. The relevant operators for
the charge fluctuations and loop currents in the TLHM read35

δρ̂i;jk ¼ e
8t3

U3 Si � Sj þ Si � Sk � 2Sj � Sk
� �

; (9)

Î ij;k ¼ r̂ij
24e
_

t3

U2 Sk � Si ´ Sj
� �

; (10)

where 〈ijk〉 denotes an elementary triangle in the lattice, e is the
electronic charge, r̂ij is the unit vector along the bond 〈ij〉. The
forms of δρ̂i;jk and Î ij;k are uniquely determined by the
transformation of these quantities with respect to the following
symmetry operations: SU(2) spin rotation, TRS, and inversion
operation.
We now compute the expectation values of the above

operators in the spinon ground state. In this regard, we construct
the real space spinon Hamiltonian on a finite system of linear size
L= 30 and obtain the eigenvalues of the corresponding
eigenfunctions of the 2L2 × 2L2 Hamiltonian (see the Supplemen-
tary Material for more details). At first, we rewrite the above
operators in Eqs. (9) and (10) in the spinon degrees of freedom
using the same mean-field decomposition as in section “Results.”
For explicit numerical analysis, we need to fix the mean-field
parameters. For subsequent analysis in this section, we work in
units of ~t ¼ 1. This leads to a solution of m0 in terms of ~J, and ~Jχ

from Eq. (8) as 3m0
4 ¼ �~J=~Jχ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~J
2 þ 3~Jχ

q
=~Jχ . Next, we rewrite Eqs.

(9) and (10) in mean-field decomposition as

δρ̂i;jk ¼ ρ0 eiϕji f yi f j þ eiϕki f yi f k � 2eiϕkj f yj f k
� �

þ h:c:;

Î ij;k ¼ I0ieiðϕikþϕkjÞf yj f i þ h:c:þ permute fi; j; kg;
(11)

where ρ0 ¼ e 8m0t3

U3 , and I0 ¼ r̂ij e_
9m2

0t
3

U2 are parameters that depend
on the amplitude of the mean-field. Note that we added the
contributions of the spin degrees of freedom in Eq. (11) (see the
Supplementary Material for more details) because of the
degenerate spin bands and hence skipped the spin indices.
To obtain the total charge fluctuation and the loop current for a

particular site or a bond, we need to add the contributions of all
the shared triangles35,46. Utilizing the mean-field expressions in
Eq. (11) for the relevant operators, we calculate their expectation
values in the spinon ground state (see the Supplementary Material
for more details) for a finite system, as mentioned earlier. The
numerical estimates converge beyond the linear size L ~ 20. In the
periodic boundary conditions (PBC), each isolated triangle leads to
identical estimates for the charge fluctuation and loop current
expectation values. Consequently, there are no charge redistribu-
tions or circulating loop currents in the cQSL ground state.
However, we obtain novel localized charge profiles and loop
currents around the system’s edges in a finite system i.e. with
open boundary conditions (OBC). The corresponding results are
shown in Fig. 3a. The arrows around the edge signify the
magnitude and direction of the localized currents. All values are in
units of 2jI0j. The magnitude of the loop currents is slightly larger
(~0.7145) around the corners [C1 in Fig. 3a] which are formed by
either an up or down triangle, whereas they are smaller (~0.6338)
around corners which are composed of both an up and a down
triangle [C2 in Fig. 3a]. Note that the loop currents quickly saturate
(~0.6764) as we move away from the corners along the edges and
are consistent with the inversion and C6 rotation symmetries.
Similarly, a finite charge fluctuation redistributes localized

charges around the system’s edges, as shown by blue and red
circles. In this case, all numbers are shown in units of 2ρ0. Like the
loop currents, the charge profile quickly saturates away from the
corners. The maximum charge fluctuations (+0.0217/−0.0185)
occur around the corner C1, whereas the minimum fluctuation
(+0.0201/−0.0163) occurs around the corners C2. The key feature
is that the smaller the number of shared triangles for a particular
site or a bond, the more the corresponding charge fluctuations or
localized currents are, respectively. Most interestingly, the charge
separation around the edges leads to the formation of a unique
dipole moment distribution that can be observed experimentally.

Case of a localized spinon
The cQSL supports spinons as its low-energy excitation. At the
sample edge, there exists a gapless chiral spinon edge mode due

Fig. 2 Phenomenological spinon tight-binding model on a triangular lattice and its dispersion. a Phenomenological spinon model on a
triangular lattice with bond-dependent hoppings and a two-sublattice unit cell illustrated within the orange-dashed box. The hopping phases
allow π-flux within each rhombus-shaped bipartite plaquette (see the main text for more discussion). For θ= 0, both the up and a down
triangle forming the rhombus acquire uniform π/2 fluxes, where the flux configuration is staggered for any nonzero θ. The spinon spectrum
for the uniform (gapped, θ= 0) and the staggered (gapless, θ= π/2) flux configuration are shown in (b, c), respectively.
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to the non-trivial topology of the spinon bands. However, the
spinon excitations are gapped inside the bulk. In a clean system
with translational invariance in bulk, there are no charge
fluctuations or loop currents in bulk [see Fig. 3a]. Here we focus
on an isolated/localized spinon excitation in bulk and discuss its
associated electromagnetic responses.
In a clean cQSL, the lower spinon bands with spin up and down

are fully occupied. To create a spinon hole, we demand that a
specific spin in the spin Hamiltonian does not participate in
fractionalization into spinons. In the mean-field description, this
can be achieved by setting the chemical potential for spinons at
the pinning site [see Fig. 3b, c] to be high so that spinons will not
occupy the defect site within the low-energy dynamics. This
creates a localized spinon hole at the pinning site. Now, we
consider a system as before with the defect formed by a large
chemical potential at the pinning site, as shown in Fig. 3b, c, and
impose periodic boundary conditions (PBC). Performing a similar
analysis as in section “Analysis” (See the Supplementary Material
for more details), we notice a redistribution of the charge profile
around the localized spinon hole and a build-up of localized
circulating loop current [see Fig. 3b, c]. As before, all the numbers
for charge and current are in units of 2ρ0 and 2jI0j, respectively.
We notice that the circulating loop current around the spinon hole
site has the opposite chirality compared to the loop current
flowing along the edge [see Fig. 3a] in the clean system with OBC.
On the other hand, dipole moments formed by the charge
redistribution are anti-aligned with the edge dipole moments in
the clean system. In the latter case, we only focus on the nearest-

neighbor location around the pinning site. Note that the charge
profile quickly vanishes away from the pinning center.

DMRG calculations
To validate the above mean-field calculations, we next study the
TLHM at an intermediate coupling [Eq. (2)] by using an unbiased
DMRG method, and compare the numerical results with our
phenomenological model in Eq. (3). Our DMRG calculations are
based on the 4-leg cylinder with length L= 64. We retain up to
bond dimensions D= 4800 U(1) states in the DMRG calculations,
and we ensure that the main numerical features shown below are
robust by tuning the bond dimension from D= 1200 to 4800. We
summarize our DMRG results in Fig. 3d, e with U= 10t, i.e., deep in
the cQSL regime. Here, we show the left half of the cylinder for
simplicity. We identify that the persistent electric current exists
only close to the boundary, manifested by the nontrivial topology
and spontaneous TRS breaking of the cQSL phase. The local
electrical current quickly reduces from the boundary to the bulk.
In the deep bulk, the net current is vanishingly small.
To create a spinon hole, we can add a local magnetic field

Hloc= Vi(ni↑− ni↓) to the Hamiltonian Eq. (2). (In practice, we add
two local magnetic fields and ensure that they are separated far
away. One pinning point is shown as the green dot in Fig. 3e, and
the other is in the other half of the cylinder, which is not shown
here.) Note that, introducing local magnetic fields explicitly breaks
the translational symmetry along the cylinder circumference
direction, so one cannot use the translational symmetry to boost
the DMRG calculations. The local magnetic field pins the spin
locally and forbids it from fractionalizing into delocalized spinons,

Fig. 3 Localized loop current and charge distributions in the chiral quantum spin liquid. a An illustration of the localized loop current and
charge distributions around the edge of a finite system of linear size L= 30 (in open boundary condition) within the mean-field spinon
description of the spin model in Eq. (3). For illustrative purposes, we do not show the explicit distribution of the loop currents within the bulk.
Note that the loop current and charge fluctuation quickly vanish after a few lattice spacings inside the bulk. The loop currents (b) and charge
distribution (c) around the localized spinon hole site were obtained in periodic boundary conditions with the same system size. Red and blue
signify opposite signs of charge redistribution. The numbers are presented in units of 2I0 and 2ρ0, respectively (see the main text). d, e Plots
of the local electric currents on the triangular Hubbard model for d without and e with a spinon hole located at the position labeled by the
green color obtained by the DMRG calculations. The loop current emerges around the local magnetic field. The red arrows represent the
direction of the loop current. The numbers around the bonds label the absolute value of the current in units of et/ �h. f Plot of the charge
redistribution around the local spinon hole on a finite-size system (illustrated by the green region) obtained by the DMRG calculations. For
clarity, the numbers are in units of 10−4e. Note that the triangular lattices are rotated by 90° between the top and bottom panels, for illustrative
purposes only.
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thus creating a spinon hole. Around the spinon hole, nonzero
electric currents emerge in bulk. Importantly, around the pinned
spinon hole, we identify the formation of a loop current (as
indicated by the dashed arrow). It is also clear that the electrical
charge distribution deviates from the average filling 1 required for
the Mott insulator, as shown in Fig. 3c, e. The general picture of this
loop current and charge distribution associated with a spinon hole
agrees with the prediction of the mean-field calculations in section
“Case of a localized spinon.” Due to the finite-size effect in the
narrow direction in the DMRG calculations, the current and charge
distribution do not respect C6 rotation symmetry along the spinon.

Numerical estimates. The DMRG results allow us to estimate the
magnitude of the mean-field order parameter m0. First, we
provide a rough estimate of ~J;~Jχ in Eq. (3) based on ref. 17 and
Supplementary Material. Inserting characteristic values (also used
in our DMRG calculations) such as t= 1 eV, U= 10 eV, and
χ ~− 0.3517, we obtain ~J � 0:37 eV and ~Jχ � 0:15 eV. Note that
the absolute value of χ is larger than its classical upper limit, i.e. 18.
However, the estimate obtained from our DMRG and also
supported by ref. 17 provides ∣χ∣ ~ 0.35. We anticipate that such
a large departure of the absolute value of χ from its classical limit
is a consequence of large quantum fluctuations which are
unavoidably present away from the antiferromagnetic phase
transition. Here, χ is the nonzero chiral order parameter as defined
in Fig. 1. Since the eigenfunctions of the Hamiltonian in Eq. (5) do
not depend on the magnitude of ~t, we can compare the loop
current magnitudes around the edge of the system obtained by
DMRG with our mean-field analysis. Our estimates provide a
mean-field amplitude m0 ~ 0.1. Using this in Eq. (8), we obtain an
order of magnitude for our phenomenological hopping parameter
~t � 0:02 eV. Plugging in the magnitude (obtained by DMRG) of
the enclosed loop current around our localized spinons, we
estimate an emergent orbital magnetization ~0.01 μB, where μB is
the Bohr magneton.

Quantum field theory description
The orbital electrical current associated with a spinon can also be
understood from the quantum field theory perspective, which
sheds further light on the origin of the orbital electrical current.
One hallmark of the QSL is the fractionalization of spins and the
appearance of an emergent gauge field. Understanding the
coupling between the emergent gauge field and the physical
electromagnetic fields is crucial for the electromagnetic detection
of the QSL. In terms of the parton description, the electron
operator can be written as cσ= bfσ, where b is a boson operator
that carries the electron charge e, and fσ is a fermionic spinon
operator that carries the spin-12. In cQSL, fσ fermions form Chern
bands as was shown in section “Results.” The fractionalization
dictates that the charged boson is coupled to both the physical
gauge field A and an emergent gauge field a as
b ! b exp½iðA� aÞ�, while the spinon is coupled only to the
emergent gauge field as, f σ ! f σ expðiaÞ. The effective low-
energy Lagrangian for the b boson has the standard
Ginzburg–Landau form (we use the unit ℏ= e= c= 1)46–48

Lb ¼
X
μ¼x;y

jði∂μ þ aμ � AμÞbj2 � gjbj2 � u
2
jbj4 þ � � � : (12)

b boson is gapped with g > 0 in the cQSL which is a Mott insulator.
However, there is still a diamagnetic response in A− a due to the
local current loop in the presence of a magnetic field, similar to
Landau diamagnetism in metal, although the current loops are
strongly localized. Since the b boson is gapped, we can integrate it
out to obtain an effective Lagrangian as

L ¼ 2C
4π

ϵμνρaμ∂νaρ � χb
2
½∇ ´ ða� AÞ�2 � χB

2
ð∇ ´AÞ2; (13)

where the first term on the right-hand side is the Chern-Simon
term obtained by integrating out fσ that fills topological Chern
bands with a Chern number C (C= 1 in our model). Here, χb
accounts for the diamagnetic susceptibility due to the gapped
boson b, χB is the susceptibility of the background49. It is clear from
the Chern-Simon term that a spinon carries π/C flux of a50. The
physical magnetic field associated with the emergent magnetic
field, which can be seen in Eq. (13) by minimizing L with respect
to B≡∇ × A, is: B= χb/(χb+ χB)∇ × a. Hence, a spinon excitation
induces an orbital electrical current with a total flux of B equal to
χbπ/(χb+ χB)C.

Dynamic spin-structure factor
In the previous sections, we established that spinon excitations in
the cQSL phase carry orbital electrical loop currents and charges.
Now, we proceed to investigate the electromagnetic response of a
cQSL in terms of optical conductivity and Faraday rotation. Before
considering the optical conductivity, which involves higher-order
spinon correlation functions, we consider the standard dynamic
spin-structure factor (DSSF) in the framework of spinon descrip-
tion. DSSF is an essential physical quantity that is routinely used as
an experimental tool to probe the nature of the magnetic ground
state and is defined as

Sðq;ωÞ ¼
X
i;j

eiq�ðri�rjÞ

Ns

Z 1

�1
dteiωt SiðtÞ � Sjð0Þ

� �
; (14)

where Ns denotes the number of sites, and q, ω denotes the probe
momentum and frequency, respectively. With the two-sublattice
structure as illustrated in Fig. 2a, we first rewrite Eq. (14) in terms
of spinon operators. The above expression simplifies upon
utilizing the spectral representation with the weighted summation
over the sub-lattice resolved spin-structure factors. The latter is
written as (see the Supplementary Material for more details)

Sηζðq;ωÞ ¼ 3
2

X
n;k

0jf yη;kf η;kþqjn
D E

njf yζ;kþqf ζ;kj0
D E

δðω� En þ E0Þ;

fη; ζg 2 A; B

(15)

where {A, B} denotes the two sublattice degrees of freedom, and En
denotes the eigen energy of the n -th excited state. Note that we
added the contributions from the degenerate spin up and down
bands, and consequently skipped the indices as before. Rewriting
in the diagonal basis and summing the sublattice degrees of
freedom, we obtain the DSSF in our phenomenological cQSL. In
Fig. 4b, we show the DSSF profile. Note that we have adopted a
normalization where the absolute maximum is set to unity for
convenience. The excited state nj i contains one pair of spinon hole
and spinon excitation, or spinon exciton, as evident from Eq. (15).
We notice that apart from a relatively strong peak centered in a

narrow region around the edge of the BZ at the K point, there are
almost no sharp features within the BZ. The broad continuum in
the BZ reflects the absence of any long-range magnetic order, i.e.,
there are no well-defined magnon excitations at a given
momentum q with energy ω. The relatively broad/diffused bands
(illustrated by the white halos) correspond to a two-spinon
continuum. At q= 0, the DSSF corresponds to the vertical spinon
exciton, as is evident from Eq. (15). In this case, the wave function
overlap between the wave function of the spinon hole in the
occupied band and the spinon in the unoccupied band is zero at
the same momentum and subsequently leads to a vanishing
weight distribution around the Γ point, as seen in Fig. 4b. To
illustrate this, we also plot the scattering density of states
g(ω, q)= ∑kδ(ω− εk+q− q) in Fig. 4a, where there is a finite
spectral weight around the Γ point. The absence of spectral weight
around the Γ point is common to the cQSL phase in other lattices,
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viz. kagome51,52. In reality, the fluctuations of the emergent gauge
field around the mean-field saddle point mediate the attraction
between the spinon hole and the spinon, which has been
neglected in the present discussion. However, even in that case,
the spectral weight around the Γ point will vanish due to the zero
overlap of the eigenfunctions51.

Optical conductivity and Faraday rotation
Finally, we focus on the main result of our work by showing that
optical responses below the Mott gap can be used to probe the
emergent cQSL state in the TLHM44,53,54. The longitudinal and
transverse optical conductivity in this regime become nonvanish-
ing because of the finite electronic polarization. Following the
work by Bulaevskii et al.35, we obtain the corresponding
expression for a three-site problem as

Px ¼ 4
ffiffiffi
3

p
ea

t3

U3 Si � Sj þ Si � Sk � 2Sj � Sk
� �

; (16)

Py ¼ 12ea
t3

U3 Si � Sj � Si � Sk
� �

; (17)

where a is the lattice constant, and t, U are the parameters defined
as before in Eq. (2). The above two expressions are particularly
relevant as we deal with a triangle lattice. However, note that
within a lattice framework we need to add the contributions of all
the triangles surrounding a particular site i to obtain the total
polarization P. The latter naturally couples to an external electric
field as− P ⋅ E(t). Consequently, the associated optical conductiv-
ity within the linear response theory reads54–56

σabðωÞ ¼ iω
V_

X
n≠0

ψ0jPajψnh i ψnjPbjψ0h i
ω� ωn þ iϵ

þ a $ b
ωn ! �ωn

; (18)

where ψ0j i, and ψnj i are the ground and excited states,
respectively, H ψnj i ¼ En ψnj i8n 2 f0; 1; 2; ¼ g; V is the volume,
and ωn= En− E0, where E0 is the energy of the ground state. Note
that the above expression is valid in the frequency regime much
less than the energy scale (U) associated with the charge gap in
the Hubbard model, i.e. ℏω≪ U. Additionally, broken TRS in the
chiral phase immediately implies non-vanishing off-diagonal
components (a ≠ b). This leads to a finite MOFE signal proportional

to the real part of the transverse optical conductivity defined in
Eq. (1).
We proceed as before in section “Dynamic spin-structure factor”

by rewriting the polarization operator in terms of spinon degrees
of freedom. Readers are referred to Supplementary Materials for
the details of the calculations. However, in stark contrast to the
DSSF analysis, here we need to consider the correlation functions
involving eight spinon operators, as is evident from Eq. (18) (see
the Supplementary Material for more details). We perform
numerical integration in Mathematica with a quasi-Monte Carlo
routine and obtain the transverse and longitudinal optical
conductivity as a function of the frequency as shown in Fig. 5.
Both the real (σ0) and imaginary (σ″) parts of the quantities are
shown in panel (a) and panel (b), respectively. Similar to section
“Dynamic spin-structure factor,” we adopted a normalization in
which the absolute maximum of the quantities is set to unity.
We notice that σ0

xyðωÞ changes sign at a frequency ω0 � 9~t that
is almost twice the spinon gap around the BZ edge at the M point.
Around the same frequency jσ00

xyðωÞj attains its largest magnitude.
σ0xxðωÞ, and σ00xxðωÞ also show similar characteristics at frequencies
close to twice the spinon gap at the M point. Plugging in
characteristic numbers [aimed towards κ-(BEDT)Cu2(CN)3] as
t=− 0.05 eV, U= 10 eV, m0 ~ 0.1, a ~ 10 Å, and ~t � 0:02 eV, we
obtain σ0

xy � ´ 10�10 e2
_ for ω ~ 20 THz. This leads to an estimated

Faraday rotation angle of around 20 nRad/μm per thickness of the
sample. The magnitude is probably slightly beyond the allowed
resolution of current experiments57. Our results suggest that Mott
insulators with a larger t are beneficial for a stronger MOFE signal.

DISCUSSION
This paper provides extensive mean-field analysis for the
electromagnetic response of a cQSL phase. We started from a
phenomenological cQSL Hamiltonian as in Eq. (3) and analyzed
the spectrum of fractionalized excitations in terms of spinon mead
field theory. Despite being deep inside the Mott insulator regime,
where the charge degrees of freedom are gapped, we obtain a
nonvanishing electrical loop current distribution and charge
fluctuations associated with a localized spinon excitation. Addi-
tionally, we performed unbiased DMRG calculations in the
triangular lattice Hubbard model at the intermediate coupling

Fig. 5 Calculated optical conductivity in the chiral quantum spin liquid. The real (a) and the imaginary (b) part of the normalized transverse
(dashed line) and longitudinal (solid line) optical conductivity as a function of the frequency of the incident light.

Fig. 4 Normalized scattering density of states and the dynamic spin structure factor in the chiral quantum spin liquid. The normalized
scattering density of states g(q,ω) (a) (see definition in the main text) and the dynamic spin structure factor S(q, ω) (b) along the high
symmetry points of the triangular lattice Brillouin zone (BZ). The analysis is performed neglecting any spinon interactions which are present
when the dynamics of the emergent gauge field are considered explicitly.
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regime, where the cQSL is stabilized. The DMRG results confirm
the physical picture of the parton mean-field results, where both
approaches provide similar structures of the loop currents and
charge redistributions in the cQSL phase, as illustrated in Fig. 3.
The DMRG calculations further allow us to estimate the magnitude
of the electrical charge and orbital current associated with a
spinon excitation. Assuming a typical value of t= 1 eV and U= 10
eV, we estimate the electrical current and charge around the
localized spinons to be around 17 μA, and ± 0.1% of e,
respectively. In addition, we performed quantum field theory
analysis to unravel the connection between the spinon excitation
and emergent and physical gauge fields, which clearly shows that
a flux of the physical magnetic field dresses a localized spinon.
The electromagnetic characteristics of spinon excitations imme-

diately imply a nonvanishing optical response in the cQSL. We
compute the optical response functions by focusing on the optical
conductivity. The nonvanishing transverse optical conductivity
σ0xyðωÞ below the Mott gap can be considered a smoking gun
signature of the underlying chiral nature of the QSL. Note that the
finite transverse optical conductivity along with the absence of any
long-range magnetic order as illustrated by the structure factor [no
sharp features] is considered as a clear evidence for the cQSL in the
TLHM. Since a finite σ0

xyðωÞ signifies a non-zero Faraday rotation
angle ΘF, our predictions can be directly tested by suitable optical
techniques such as MOFE or Kerr effect. Since σ0

xyðωÞ changes sign
as the frequency increases, an experimental signature of cQSL
would be to see if, as a function of incoming photon frequency, the
Faraday rotation angle changes sign or not. For completeness and
as an intermediate step, we also analyze the dynamic spin-structure
factor of the cQSL as illustrated in Fig. 4b. The absence of sharp
features signifies no well-defined magnon excitations in the QSL. Of
course, an external magnetic will be break the TRS and may lead to
a finite transverse optical conductivity. However, the key message
of our proposal is that the TLHM in the intermediate coupling
supports finite transverse optical conductivity even in the absence
of any external TRS-breaking fields due to the emergence of cQSL.
In cQSL, each unit triangle carries an orbital current. However, this

orbital current cancels in the bond shared by two neighboring
triangles for a translationally invariant system. This cancelation is not
perfect in the presence of impurities or near edges, leaving finite
orbital magnetization localized around impurities. Therefore, the
orbital magnetization localized around impurities already serves as a
signature of time-reversal symmetry breaking in QSL. This defect-
induced orbital magnetization can be distinguished from spinons,
which are dynamical excitations (despite being gapped) of cQSL.
Depending on the protocol to tune the system into the cQSL, spinons
can be created at different system locations, and the protocol can
control their density. On the contrary, the orbital magnetization
localized around impurities does not depend on the protocol.
Compared to our previous theoretical work on Kitaev materi-

als46, here, TRS is spontaneously broken due to considerable
charge fluctuations in a Hubbard model at intermediate coupling
strength. As noted in our quantitative estimates for the loop
current or associated charge polarization, the latter translates into
a larger electromagnetic response. Note that the associated gauge
structure for the cQSL in the TLHM is U(1), whereas the Kitaev spin
liquid has a Z2 gauge structure. Recently, a few theoretical works
have proposed experimental probes of the Kitaev spin liquid via
NV center magnetometry58 or spin-polarized STM59. Meanwhile,
spinon Fermi surface induced transverse conductivity has been
proposed to be hallmark signatures for U(1) QSLs60,61. Our
proposal to detect the cQSL phase based on the electromagnetic
signatures closely complements them.
In summary, we show that spinon excitations in cQSL carry an

electrical charge and orbital current, despite the system being a
Mott insulator. Such an electromagnetic response can be detected
experimentally using the MOFE or Kerr effect. Therefore, our work
provides a clear electromagnetic signature of the cQSL, which

helps determine the nature of non-magnetic states observed in
certain materials realizing the triangular lattice Mott insulator.
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