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Quantum fluctuation of ferroelectric order in polar metals
Fangyuan Gu1, Jie Wang1,2, Zi-Jian Lang1,3 and Wei Ku 1,3,4,5✉

The polar metallic phase is an unusual metallic phase of matter containing long-range ferroelectric (FE) order in the electronic and
atomic structure. Distinct from the typical FE insulating phase, this phase spontaneously breaks the inversion symmetry without
global polarization. Unexpectedly, the FE order is found to be dramatically suppressed and destroyed at moderate ~ 10% carrier
density. Here, we propose a general mechanism based on carrier-induced quantum fluctuations to explain this puzzling
phenomenon. The quantum kinetic effect would drive the formation of polaronic quasi-particles made of the carriers and their
surrounding dipoles. The disruption in dipolar directions can therefore weaken or even destroy the FE order. We demonstrate such
polaron formation and the associated FE suppression via a concise model using exact diagonalization, perturbation, and quantum
Monte Carlo approaches. This quantum mechanism also provides an intuitive picture for many puzzling experimental findings,
thereby facilitating new designs of multifunctional FE electronic devices augmented with quantum effects.

npj Quantum Materials (2023)8:49 ; https://doi.org/10.1038/s41535-023-00578-3

INTRODUCTION
Ferroelectric (FE) order corresponds to an ordering of local electric
dipole moment in materials associated with a spontaneously
broken inversion symmetry in the absence of an external electric
field. Accordingly, insulating FE materials typically exhibit a field-
switchable global spontaneous polarization (P) and consequently
a rather strong dielectric response. This feature makes FE materials
highly functional in electronic devices and other practical
applications, including energy storage1–3, photovoltaics4–7, data
storage and switching8. In recent years, the attempt to
functionalize FE materials with additional metallicity has stimu-
lated intensive studies of the so-called “polar metal” phase in
charge carrier-doped FE materials, which hosts metallic carriers in
the presence of FE order.
Such a FE metallic “polar metal” state was first predicted by

Anderson and Blount9, who theorized broken inversion symmetry
along a polar axis and the persistence of FE-like phase transitions
in this metallic phase. It was not until 2013 the polar metallic state
was finally discovered in LiOsO3 by Shi et al.10. Since then, many
polar metals have been found in various carrier-doped FE
materials11, including perovskite oxides: BaTiO3

12–16, Sr1−xCax-
TiO3

17, PbTiO3
18,19, CaTiO3

20; NdNiO3
21, LiOsO3

10,22, Ca3Ru2O7
23,

and Cd2Re2O7
24; hexagonal FE materials: LiGaGe25 and LaAuGe26;

and 2D layered materials: WTe227,28 and MoTe229. These polar
metals are also found to display rich physical properties12,14,30,31,
showing unusual transport properties17,32,33 and even exotic
superconductivity34,35.
In polar metallic phase, as shown in phase II of Fig. 1, charge

carriers can propagate freely in materials as soon as the global P and
correspondingly the total electric field E is fully screened by δc1 ~ 2%
of carriers accumulating on the domain boundaries and surfaces36,37.
On the other hand, the FE order having a spontaneously broken
symmetry still exists up to δc2 ~ 10%12–14,16,18,20,23,24, despite the
absence of the global P. Naturally, with the screening of the beneficial
E, ferroelectricity is expected to be weakened as widely found in
current observations, for example, a decrease in phase transition
temperatures (Tc) and coercive field (Ec)12–14,32,38,39, a remarkably

reduced off-center FE distortions12–14, a softening of the soft mode
phonon39 and an emergence of the over-damped highly-anharmonic
central mode39,40.
There are however, many unexpected puzzling behaviors in this

phase, associated with the introduction of metallic carriers,
including an anomalous sign reversal in the Hall coefficient in n-
doped BaTiO3 single crystal32, a remarkably low carrier scattering
rate, a modest intrinsic carrier mobility33, and a sudden increase in
the real part of the dielectric function in sub-THz region in lead
halide perovskites30,31. Even more unusual is that the observed
transition temperature of the lowest-temperature FE phase
appears to be nearly doping independent12, or even slightly
increasing with doping in n-doped BaTiO3

14, despite the overall
weakening of the FE order.
Still, the most puzzling is why in this phase the FE order can

be so efficiently suppressed by merely ~ 10% of doping,
particularly when the global P and E are already fully
compensated in the entire phase. As shown in Fig. 1, apart
from accumulating at the FE surface/domain boundary to
screen the E field, the carriers also propagate in the field-free
region in this phase. Intuitively, when residing in the center
atom inside an octahedral cage, each carrier can enlarge the
atomic size and thus remove the local polar distortion and its
associated local dipole moment p. However, it is not obvious
how merely ~ 10% of depletion of local dipoles can destroy so
effectively the long-range order of the entire system, char-
acterizable via an order parameter o proportional to, for
example, the average local dipole moment 〈p〉. This strange
phenomenon clearly reflects the fundamental nature of the
polar metallic state. A proper microscopic understanding of it
would surely provide the basis for a natural explanation of
other puzzles above and pave the way for further engineering
and optimization of these functional materials.
This puzzling behavior, however, poses a clear challenge to

current pictures of polar metallic phase. The common mesoscopic
classical picture of nanometer-scale domain mixture13 and the
observation of ‘diffusive’ phase transition41,42 provide no mechan-
ism directly, particularly considering the rather small amount of
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impurities and the associated disorder effects. Another popular
scenario that leads to successful geometric design20,21,43, the so-
called ‘weak coupling hypothesis’44 between the carrier and the FE
order, is obviously not applicable to address the efficient
destruction of the latter via the introduction of the former.
Similarly, density functional studies45,46 or perturbation treat-
ments47 assume very large time-scale separation of electron and
lattice dynamics, directly contradicting the observed really low
carrier mobility33. Even more specific picture aiming to address
this particular issue, for example, consideration based on carriers’
screening of supposedly beneficial long-range interaction20

encounters difficulty since the long-range interaction was shown
unnecessary to establish a stable FE order48,49. In fact, classical
pictures50 would generically have fundamental difficulty circum-
venting the thermodynamical requirement of entropy reduction at
low temperatures, which instead promotes ordering even with the
introduction of itinerant carriers.
Here, we propose a general mechanism for the efficient

suppression of the FE order in the polar metallic phase through
its quantum fluctuation, associated with the generic formation of
itinerant “polarons”. As illustrated in Fig. 2 and quantified below,
the kinetic process of quantum carrier that allows it to move
between atoms can naturally lead to a superposition of
disoriented dipoles in its vicinity. Such a high-energy (fast) process
would ensure a rigid local structure of the carrier and its
surrounding disturbed dipoles at low energy (longer time scale)
relevant to the transport properties or broken symmetry phase of
these polar metallic materials. It is therefore convenient to regard
the resulting local structure as a new emergent mobile particle
named polaron. Since the dipoles are disrupted within, large
mobile polarons can thus efficiently weaken or destroy the long-
range FE order even at low carrier density, as observed
experimentally. In great contrast to the classical pictures, the
quantum superposition of disoriented dipoles indicates multiple
possible directions of each dipole even at zero temperature, since
a coherent superposition carries no internal entropy. We

demonstrate below the formation of such a quantum polaron
and its disrupting effects on FE order with a simple model using
exact diagonalization, perturbation, and world-line quantum
Monte Carlo. The proposed quantum mechanism can offer natural
explanations to many other anomalous experimental findings in
polar metals. Particularly, the explicit inclusion of quantum physics
should prove essential in understanding and engineering polar
metals in general.
To demonstrate the quantum mechanical formation of polaron

in carrier-doped FE materials and its essential properties, let us
consider a general model hosting a strong coupling between the
electronic and atomic lattice degrees of freedom. As illustrated in
Fig. 3a, in each octahedron, their local structure is simplified to
one of the few low-energy local states resulting from some high-
energy physical mechanisms. (See Method section for more
details.) Specifically in the absence of itinerant carriers, the local
electronic and atomic structure at a particular octahedron site, i,
would be in a local symmetry-broken state, ayin 0j i (in second
quantized notation) that hosts an electric dipole along one of the
energetically favored directions with a fixed moment size p0, for
example, n= 1, 2,⋯ , 8 corresponding to one of the eight 〈111〉
directions, n̂, toward the face centers of a TiO6 octahedron in
BaTiO3. In contrast, with an itinerant carrier in the octahedron, the
local electronic and atomic structure would instead be in a locally
symmetric charged state, cyi 0j i, as a result of the enlarged size of
the central cation from its additional charge. The simplest but
rather generic effective Hamiltonian then reads,

H ¼ Ht þ HMD þ HDD þ HR

¼ P
ii0nn0

tii0 ðayinciÞ
yðayi0n0ci0 Þ þ

P
ii0n0

Ki;i0n0c
y
i cia

y
i0n0ai0n0

� P
ii0nn0

Jin;i0n0a
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P
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Rnn0a
y
inain0 ;

(1)

where cyi ðciÞ and ayinðainÞ follow fermionic and bosonic statistics,
respectively. Since each octahedron site can only host either one
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Fig. 1 Schematic phase diagrams of three phases in electron-doped FE materials upon increasing carrier density δ. a Illustrates the
macroscopic properties, such as the global dipole P and the FE order parameter o. b Demonstrates the underlying microscopic properties,
including spatial distribution of electronic density of states and electric dipole at different stages of the phase diagram. Stage I (FE insulator):
with a tiny amount of doped electrons, charges are exhausted to screen the electric field E and the global dipole P by accumulating at the
surface of the materials (or domain boundary). Stage II (polar metal): with enough electrons to fully screen the electric field E, some portion of
the doped carriers can propagate in the system, while the FE order (characterized via order parameter o) corresponding to the non-
centrosymmetric electronic and atomic structure remains. Stage III (paraelectric metal): with even more carriers introduced to the system, the
FE order is also destroyed and the surface charge is released to join the itinerant carriers.
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of the dipole modes or one with a carrier, they follow the strict
single-choice exclusion condition,

cyi a
y
in ¼ ayina

y
in0 ¼ 0

cyi ci þ
P
n
ayinain ¼ 1:

8<
: (2)

The third term HDD of Eq. (1) is simply the second quantized
representation of the familiar inter-site dipole-dipole coupling,
HDD ¼ �P

i;i0 Jii0=p
2
0

� �
pi � pi0 , between dipole moments

pi ¼ p0
P

nn̂a
y
inain. Similarly, the second term HMD represents the

monopole-dipole coupling, HMD ¼ �P
i;i0 Kii0=p0ð Þ̂rii0 � pi0 , between

the charged carrier and the surrounding dipoles31 along the
direction of relative position r̂ii0 ¼ ri � ri0ð Þ=jri � ri0 j. The last term
HR describes the intrinsic fluctuation between dipole modes
corresponding to the switch of the local dipole directions.
The intriguing physics introduced by itinerant carriers is mostly

through its quantum mechanical kinetic effect given by the first
term, Ht ¼

P
ii0nn0 tii0 ðayinciÞ

yðayi0n0ci0 Þ. It describes the ‘bare’ hopping
of an itinerant carrier from a site i0 to a neighboring site i and
thereby removing the dipole at site i. As described/enforced by
the single-choice exclusion constraint, Eq. (2), this process also
leave behind an uncharged site i0 that must then develop a dipole.
A key aspect of quantum mechanics is that the newly developed
dipole can in principle be in any possible modes n0, or more

x
y

z

Fig. 2 Schematic of the spatial structure of polarons. In polar metallic phase, itinerant low-energy carriers are slow emergent quasi-particles
named “polarons” made of charge centers and fluctuating local dipoles surrounding them. Such polarons acquire their internal structure via
fast dynamics of the charge that disrupts the orientation of nearby local dipoles, a process commonly referred to as quantum fluctuation.
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Fig. 3 Illustration of the quantum states and the quantum kinetic process in our model. a Nine possible local low-energy states of an
octahedron site i, either with a dipole in one of the eight preferred directions, or with a charged carrier. b Before the electron is introduced, the
local dipoles are well aligned along the ordered direction in the many-body state Φ0j i. c Upon introduction of an electron, in the many-body
state Φ1j i the local octahedron containing one more charge will be in the charged mode without a local dipole, effectively removing the original

dipole mode upon carrier addition, ðayinciÞ
y
. (d) When the electron propagates to the neighboring octahedron through the kinetic processes

tii0 ðayinciÞ
yðayi0n0ci0 Þ, it leaves behind a dipolar mode in one of the possible directions in the many-body state Φ2j i. As shown in d, a quantum

polaron state contains linear superposition (illustrated by multi-directional arrows) of all possible such quantum fluctuations in its vicinity.
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generally in a quantum superposition of them shown in Fig. 3d. As
to be demonstrated in the results below, this feature is the
essential ingredient for the quantum fluctuation of FE order inside
the polarons.
Note that Eq. (1) is specifically meant to capture the eV-scale

physics that establishes robust local polarons. It therefore does not
include many of the low-energy (sub-eV scale, slow) processes, for
example, the small fluctuation of dipoles near each stable mode
due to the 20 meV-scale phononic vibration of the atoms51, or
even slower ~4meV-scale domain wall dynamics of depolarization
field52. For a similar reason, very high-energy (multiple-eV scale,
rapid) dynamics beyond the scale of polaronic formation have
been conceptually decoupled from Eq. (1) through renormalizing
the remaining physical effects in Eq. (1). For example, one might
wonder about the dynamical process corresponding to the
disappearance/emergence of local dipoles associated with charge
addition/removal to the local transitional metal sites However,
since this involves a large beyond-eV scale Coulomb energy
change, for the eV-scale physics described by Eq. (1) the influence
of very high-energy physics is absorbed and contributes to the
strength of the remaining effective parameters.
Below we will study the structure of a single polaron using three

numerical calculations: exact diagonalization, perturbation theory,
and world-line quantum Monte Carlo (QMC). The first two provide
a clear picture of the polaron formation and kinetic energy
dependence of the polaron size, while the third reveals additional
effects of polaron motion on quantum fluctuation. To demon-
strate more cleanly the purely quantum kinetic effect, the classical
monopole-dipole term HMD is dropped in our calculation. This
simplification slightly weakens the quantum fluctuation but does
not modify our result qualitatively. Without loss of generality, only
nearest neighbors are included in Ht and HDD as well. Furthermore,
for the prototypical BaTiO3 derived polar metals of interest here,
the dipolar switch rate in HR is orders of magnitude smaller than Ht

and HDD and is thus neglected. (See the Methods section for a
detailed discussion on these simplifications.)

RESULTS
Formation and internal structure of quantum polarons
Figure 4a demonstrates the structure of a quantum polaron from
the ground state of our exact diagonalization and perturbation
calculation. It shows a density distribution of a quantum state
describing the real charge carriers relevant to the slow transport
process. This carrier has a well-defined location, and its density
extends to surrounding atoms. Importantly, in each contribution
to the superposition of the quantum state of a polaron, the local
electric dipoles (not shown in Fig. 4) within the scope of this
extension are disrupted from the FE order 〈O〉 (so-called
“quantum fluctuation”). In other words, polarons indeed would
form in a polarizable media consisting of particles and their
nearby disrupted local dipoles.
Physically, this particular superpositioned polaronic structure

can be understood as follows. Within the short time scale inverse
proportional to tii0 of the quantum kinetic effect Ht, electrons can
rapidly hop between different sites. Thus from the perspective of a
longer time scale relevant to the transport properties, such fast
motion would lead to various probabilities of leaving behind trails
of disordered dipoles around an average center (c.f. right panel of
Fig. 2). Naturally, these rapid processes are impossible to decipher
using slower probes and thus can be regarded as part of the rigid
internal structure of a new quasi-particle named polaron. The
coherent quantum superposition is merely the mathematical
representation to encode partially the dynamics of these rapid
processes, including the density distribution. Following the
smooth decay of the carrier density away from the center, as
shown in Fig. 4b, the average internal structure of polaron would
correspond to a smooth distribution of transitional metal-oxygen
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Fig. 4 Spatial structure of the polaron and its disruption on the local dipoles. a The site-distribution of charge density, ρi � hcyi cii, of a
polaron with t/J= 2 in unit of `number of electrons per site' for each site i. b The same along the (0,-3,0)-to-(0,3,0) path and in the (x, y, 0) plane,
where the coordinates are in unit of lattice parameter, a0. c Kinetic strength, t/J, dependence of the average suppressed number of dipoles, Np,
calculated using ED and perturbation approaches up to the 12th order. The thick line represents the expected Np at ` ~∞ order' extrapolated
from available data from finite order calculation. d Enhancement of Np due to additional slower itinerant dynamics of the polarons, illustrated
by the t/J dependence of Np of a dynamic polaron (through fully converged world-line QMC calculation) with respect to that of a static one
(via the fully converged perturbation approach). Results from the finite-temperature world-line QMC calculation are extrapolated to the T= 0
quantum limit.

F. Gu et al.

4

npj Quantum Materials (2023) 49 Published in partnership with Nanjing University



bond length, on top of the typical long-short bond length pair
outside the polarons, in good agreement with the structural
refinement via neutron scattering53.

Kinetic-driven growth and effects of quantum polarons
Since the quantum polaron forms as a result of the rapid kinetic
processes associated with t/J, naturally the stronger the kinetic
process is, the larger the polaron becomes. Figure 5 shows that
the energy, E, decreases as the kinetic process extends to a
longer distance. For a fixed t/J, initially a significant energy gain
∣E∣ can be obtained by allowing the kinetic process to cover a
larger region. After a characteristic distance, the gain starts to
diminish such that the corresponding coherence can be
challenged by other low-energy physics. One can therefore
associate this characteristic distance as the radius of the polaron.
Figure 5 shows that not only a stronger t/J would indeed lead to
a larger quantum polaron, but also the effect is beyond linear.
(See Methods section for the similar superlinear growth under
various criteria.)
As an essential characteristic, the size of the polaron directly

affects its ability to locally disrupt the FE order 〈O〉. Figure 4c shows
the reduction of average local dipoles around a single polaron in

unit of number of local dipoles, Np ¼ P
i 1� hpii=p0ð Þ � P=jPjð Þð Þ,

obtained from our calculations. In the weak kinetic limit, t/J→ 0, the
density distribution of the polaron is concentrated near its central
atomic site and thus it removes only one dipole at that site Np→ 1.
As the kinetic strength of the bare carrier (t/J) grows, the size of the
polaron increases and is thus able to damage more effectively the
surrounding local dipoles, i.e. an increasing Np. (Notice that as the
polaron grows in size, it naturally requires a larger system size, or
higher order of perturbation, for the calculation to reach a fully
converged Np, as illustrated by the thick transparent lines.)
With such a rapid growth of disruption, the experimentally

observed efficient destruction of FE order can now be intuitively
understood. Even with a relatively low density such as δ ~ 10%, as
long as the polaron size grows to the percolation threshold ~ 1/δ
under strong enough kinetic processes, the remaining local
dipoles would be disconnected by the polarons and unable to
align their directions. In that case, given a large dipolar formation
energy53,54, the system would enter a paraelectric phase contain-
ing disordered local dipoles. From a general consideration of
entropy, such a low-temperature paraelectric phase with dis-
ordered local dipoles is nearly impossible to realize classically, but
rather natural given that quantum superposition of different
dipolar directions carries no internal entropy.
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Fig. 5 Superlinear growth of polaron radius with respect to the kinetic strength of the bare carrier, t/J. The insets show the lowering in
energy, E(r), referenced to the long-range ordered FE state, with the allowed distance r (in unit of lattice parameter, a0). for a polaron to grow
given each t/J parameter in our perturbation calculation. From this, the radius of the polaron (denoted by the short vertical lines) in the
presence of competing low-energy physics (of strength 6J for example) can be estimated as the bound at which the additional energy gain
from growing one step larger E(r+ a0)− E(r) is insufficient to overcome the competition. a0 denotes the lattice parameter.
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Low-energy dynamics of quantum polarons
In addition, the above disruption of FE order should be further
enhanced by the slow itinerant dynamics of the polaron. Figure 4d
shows that at larger t/J our resulting Np from the QMC calculation
becomes systematically larger than that of a single immobile
polaron obtained above. This is because, in the QMC calculation
the polaron can propagate in the system, thus introducing
additional dynamical (time-dependent) quantum fluctuation of
the electric dipoles. Consequently, such a dynamical effect can
further increase the efficiency in suppressing the long-range FE
order and thereby lower the critical carrier density δc2 in Fig. 1.
(Note that such an itinerant dynamics is hard to circumvent, since
in real materials disorder potentials are typical of sub-eV scale and
therefore insufficient to induce real localized states55, despite the
local screening density around the charged impurities12).

DISCUSSION
A less intuitive effect of such quantum fluctuation is the enhanced
stability of the ground state despite a reduced order parameter.
This is clearly indicated by an enlarged energy splitting between
the ground state and the excited states [c.f. Fig. 6a] due to the
quantum fluctuation in our calculation, as expected from the level-
repulsion principle of quantum mechanics. Consequently, com-
pared with the undoped systems that contain no itinerant carrier,
the transition temperature of the lowest-temperature phase
sometimes can instead increase slightly, even though its order
parameter is smaller, as shown in Fig. 6b. This is in great contrast
to the typical effect of thermal fluctuation that associates a smaller
order parameter with a lower transition temperature. Interestingly,
such a counter-intuitive effect has actually been observed in the
elastic measurement14 and the resistivity measurement16 of the
lowest-temperature orthorhombic (Amm2) to rhombohedral
(R3m) phase transition at 183K, showing a slight ~10K increase
upon δ= 0.0354 e− / f.u. doping. Similarly, in many prototypical
polar metallic materials, one finds a much weaker doping
reduction of the transition temperature for lower-temperature
transition12,13. Such an unusual trend is hard to explain via thermal
fluctuation, but is natural from the enhanced stability associated
with quantum fluctuation. (Obviously, for higher-temperature
transitions in Fig. 6b, the entropic consideration becomes
dominant and the typical reduction of transition temperature will
recover, in line with the weakening of the order parameter12–14,16).
An important consequence of the polaron formation is a serious

enhancement of the effective mass of the carriers and suppression

of their mobility. This is because these polaronic carriers are
heavily dressed by quantum fluctuation involving not only the
charge fluctuation but also the dynamics of the polarizable
medium around its center. For example, the effective mass can be
enhanced by more than two orders of magnitude at t/J < 0.1,
when the environment is strongly polarizable. Such an enormous
mass enhancement has in fact been observed in various
experiments32,33. Note that our proposed mechanism is capable
of slowing down the carrier dynamics from eV to 10meV or even
meV scale. This is in great contrast to the currently proposed
polaronic pictures employing slow31,56,57 (or even static30,58)
phonon modes, which are relevant only if the carrier dynamics
are of a similar time scale to that of the phonons. Our quantum
fluctuation-induced polaron formation offers a high-energy
mechanism to slow the carriers down significantly such that
further dressing the polaron through these lower-energy polaro-
nic mechanisms can become effective.
In summary, to explain the puzzling effective suppression of FE

order in polar metals through slight carrier doping, we propose a
general mechanism of polaron formation based on the quantum
fluctuation of carriers in a highly polarizable medium. We first
demonstrate the formation of polarons as the emerged slow
carriers that absorbs the faster dynamics into their internal
structure through quantum superposition of states with disor-
dered electric dipoles nearby. We then find that the size of
polaron is controlled mainly by the underlying kinetic processes,
such that a large polaron can easily form in reality to cause the
observed efficient suppression of FE order. This leads naturally to
the low-temperature quantum paraelectric phase indescribable by
classical physics. Consistent with the observed heavy mass of the
carriers, the remaining polaron dynamics can be orders of
magnitude slower than the underlying kinetic processes of energy
as high as eV-scale. Finally, our QMC calculation indicates that the
slow polaron dynamics further suppress the FE order. Our
proposed mechanism provides the essential foundation for
previously proposed slow polaronic mechanisms and sets the
basic framework for a generic description of polar metals.

METHODS
Physical origin of the model
In this work, we aim at illustrating the basic properties of polaron
formation via quantum fluctuation. It is therefore necessary to
incorporate a minimum effective model that contains only the
essential low-energy physics relevant to the formation of polarons.
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Here we explained how such a low-energy effective description
(Eq. (1)) can be derived, at least conceptually, from the first-
principle description.
Consider the following generic first-principle Hamiltonian

containing the kinetic and Coulomb interaction of all the electrons
and nuclei in the system,

Hfull ¼
X
i

p2i
2m

þ
X
i;j 6¼i

u xi � xj
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
He

þ
X
iα

V xi � Xαð Þ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

He�l

þ
X
α

P2α
2Mα

þ 1
2

X
α;β6¼α

U Xα � Xβ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hl

;

(3)

where the lower (pi, xi) and upper case (Pα, Xα) denote the
momentum and the position of the i-th electron and α-th nucleus,
respectively, and u, V, and U denote the interactions between
these particles. For ferroelectric materials such as BaTiO3, due to
the small size of Ti4+ ion, each TiO6 octahedron would host
multiple degenerate many-body ground states of Hfull, as denoted
by the red circles in Fig. 7a. Each ground state has the Ti4+ ion
deviating from the central symmetric position along one of the
eight 〈111〉 directions toward a face center of the oxygen

octahedrons, thus creating a local electric dipole pi in the
corresponding direction. In comparison, the non-degenerate
symmetric state with Ti4+ residing at the center of the octahedron
(denoted by the blue open circle in Fig. 7a) is of higher energy. In
contrast, with an additional electron, Ti3+ grows in size and the
ground state becomes the non-degenerate symmetric state of
pi= 0 with Ti3+ residing at the central position of the octahedrons
(c.f. blue circle in Fig. 7b).
The minimum effective model thus must include these low-

energy states and the description of their dynamics, under the
many-body renormalization by higher-energy states, such as those
denoted by open circles in 7a and b. This can be done (at least
conceptually) by either (1) integrating out the higher-energy states
in the corresponding Lagrangian of Hfull, or (2) block decoupling the
off-diagonal terms in Hfull that connect the low-energy states to the
rest via canonical transformation59 in a manner similar to the
Schrieffer-Wolff transformation60. Specifically, for the purpose of
this manuscript, it is necessary to retain those eight states with
stable electric dipoles (red circles) and the charged state (blue
circle) and their leading physical mechanisms, and ‘integrate out’ all

Fig. 7 Microscopic origin of the low-energy effective model and the significant consequence of the built-in strongly correlation.
a, b Show the local electronic and atomic states within each TiO6 octahedron. c, d Illustrate the kinetic process renormalization by
surrounding dipolar correlation in the t/J≪ 1 regime. a In the absence of doped carriers, the total energy E (thick line) indicates 8 degenerate
ground states (red solid circles), each with Ti4+ displaced along one of the 8 〈111〉 directions toward face centers of the octahedron, and thus
hosting an electric dipole. b With an extra doped carrier, the larger size of Ti3+ instead has lower energy at the symmetric central position of
the octahedron (c.f. blue solid circle) and hosts no electric dipole. Our minimum model retains only the essential local states (solid circles)
while `integrating out' conceptually all other higher-energy states (e.g. open circles) in the shaded area. In (c) heavily disordered states, the
kinetic processes are only weakly suppressed, since those eight possibilities [c.f. Fig. 3c, d] all have similar energies and are therefore all
available in the low-energy subspace. By contrast, in (d) well-ordered states, the hopping processes are heavily suppressed, since other than
the dipolar mode preserving one, the other seven all involve energy cost of the order of J and are thus removed from the low-energy
subspace.
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other states, such as those denoted by open circles including the
symmetric uncharged state (blue open circle). Consider that the
dipolar states of the octahedron (red circles) involve mostly the
atomic position degree of freedom, accompanied by minor
electronic density redistribution, they are convenient to denote
these states in second quantized notation via a bosonic creation
operator ayin 0j i. In contrast, since the charged state of the
octahedron (blue circles) includes an electron carrier, its second
quantized notation is conveniently through a fermionic creation
operator cyi 0j i. Note that unlike the typical use of second quantized
creation operators that create quasi-particles, ayin and cyi instead
create many-body states of an octahedron. Experienced readers
might recall a similar concept in the construction of Hubbard X-
operators61, which can be simply represented as XIJ � Ij i Jh j ¼ ayI aJ
in our notation, where Ij i and Jj i denotes local many-body states.

Strong constraints in the model
Solution of our Hamiltonian (Eq. (1)) is generically challenging
because it explicitly incorporates the constraint (c.f. Eq. (2)) that
ensures the strong correlation between the local dipoles and charges.
This correlation results from the fact that ayin and cyi create different
local many-body states. Since each octahedron can only be in one
and only one of the local many-body states, ayin and cyi must satisfy
‘single-choice exclusion’ condition expressed in Eq. (2). This strong
constraint implies a unignorable strong correlation between cyi and
ain, and dictates that even the simplest ‘bare’ hopping of carriers, Ht

of Eq. (1), is described as first annihilating a carrier ci0 (and developing
a dipole mode ayi0n0 ) on site i0, followed by creating a carrier cyi (and

removing a dipole mode ain) at site i, namely tii0 ðayinciÞ
yðayi0n0ci0 Þ.

(Recall a similarly unusual expression of the bare hopping in the t-J
model upon explicit inclusion of its ‘no double occupation’ constraint:
tii0c

y
iσci0σ ! tii0Pc

y
iσci0σP, where the many-body projection P ¼ Q

ið1�
cyi"c

y
i#ci#ci"Þ enforces the constraint of the model.)
Such a constraint renders completely inapplicable typical

analytical treatments, such as mean-field decoupling or gradient
expansion of c and a separately. For example, consider in the most
relevant t/J≪ 1 regime, the effective kinetic strength in two limits:
(c) heavily disordered states, o / hayi;1ai;1i � 0, and (d) well-
ordered state. Decoupling c and a in Ht,

P
hii0 inn0 tii0c

y
i ci0 hayi0n0aini,

would incorrectly disable the kinetic processes in case (c) and give
the strongest kinetic processes in case (d), when in fact the trend
is the opposite in our model, as demonstrated in Fig. 7.

Physical assumptions of numerical approaches
We therefore employ several unbiased numerical approaches to
study the formation and the static/dynamic properties of the polaron
induced by an itinerant carrier in the ground state long-range FE-
ordered perovskite: (i) Exact diagonalization (ED), (ii) Perturbation
theory, and (iii) World-line quantum Monte Carlo (QMC). In the
analysis, we aim at demonstrating the generic features and physical
trends in the strongly correlated regime, when the effects of kinetic
energy are weaker than those of the near neighboring interaction.
Since in this strongly correlated regime the most essential

physical trends are dominated by how quantum kinetic energy
adapts to the constraint of strong local interactions HDD and HMD,
we simplify our discussion by reducing the interactions to only the
nearest neighboring cooperative dipolar interaction62Jin;i0n0 ¼ J n̂ �
n̂0 with nearest neighboring J= 0.7 eV63, and explore the
parameter tii0 ¼ t for only the nearest neighboring hopping
ranging from 0+ to 6J. While the introduction of a longer-range
HDD ¼ �P

ii0nn0 Jin;i0n0a
y
inaina

y
i0n0ai0n0 can slightly modify the internal

shape of the polarons, it would not affect the qualitative trend
since their energy is much smaller than that of the cooperative
ligand displacements between the nearest neighboring unit

cells62. Furthermore, the monopole-dipole coupling HMD ¼P
ii0n0Ki;i0n0c

y
i cia

y
i0n0ai0n0 is known to quantitatively enhance the

polaron formation31 since it tends to align the direction of the
surrounding dipoles radially toward the charged carrier. Such a
classical effect should assist the quantum polaron formation
through modification of the internal structure of polarons and
thus is ignored in the calculations.
In addition, the intrinsic fluctuation between dipole modes,

HR ¼
P

inn0Rnn0a
y
inain0 , is expected to introduce additional quantum

processes that favor local FE correlation within the quantum
polaron. On the one hand, this could slightly reduce the
effectiveness of the damaging effect of the quantum polaron on
the FE order. On the other hand, it would lower the energy cost of
quantum fluctuation and therefore further enhance it (as if t/J is
effectively increased) and consequently the polaron formation.
Nonetheless, given the high energy barrier between the local
dipolar modes (~105 meV for BaTiO3

46,64), it is convenient to also
drop the much weaker local fluctuation HR, considering that the
corresponding fluctuation rate R must be orders of magnitude
smaller than the eV energy scale of t and J. In other words, the
time scale for such intrinsic fluctuation between dipolar modes is
so long that it cannot possibly affect the much faster quantum
polaron formation in any meaningful way.
Overall, omitting these terms in our study would not affect the

qualitative trends of the quantum polaron based on which our
main conclusions are drawn. Instead, it would help to demonstrate
more clearly the purely quantum polaronic effects.

Estimation of the renormalized kinetic strength
When the ground state of the polaron is energetically well
separated from the excited states, the renormalized kinetic energy
of the polaron is basically etjj0 ¼ ψj

� ��H ψj0
�� � � ψj

� ��Ht ψj0
�� �

, where
ψj

�� �
and ψj0

�� �
denote the polaronic ground states centered at

nearby sites, j and j0, respectively. (For larger polarons, correction
due to lack of orthogonality between ψj

�� �
’s might introduce

additional correction.) Note that ψj

�� �
is a many-body states

including not only the carrier, but also all the electric dipoles in the
system. It is therefore easy to see why the polaron generically
becomes very heavy: unless the electron first dynamically visits all
the dipoles in the back side of the polaron and happens to leave
them along the FE-ordered direction, the polaron cannot move its
center forward. As an example, in the small kinetic region, say
t/J= 0.1, we found the renormalized etjj0 ¼ 0:012t is easily
suppressed by two orders of magnitude.

Details of calculation

(i) Exact diagonalization (ED): In this study, we use an ED
calculation to provide accurate results for relatively small
polarons at small t/J values. We start with a pure FE-ordered
system with a single carrier introduced into the system as
schematically illustrated in Fig. 3. Regarding the hopping of
the doped carrier in a 3D bulk system, there are six
equivalent directions of the nearest neighboring unit cells
for the carrier to hop to. On the site that the carrier left from,
there are eight possible modes orients along 〈111〉 of the
local dipole moment. Therefore, the dimension of the
Hilbert space corresponds to the first hopping step is 48.
Likewise, the second hopping step enlarges the size of the
state space by 48 × 48. Sequentially, the size of this
configuration space grows exponentially (48n) with the
number of hopping steps (n). In order to capture the full
effects on local dipoles by a single itinerant carrier, the size
of the system needs to be large enough to fully cover the
polaronic region. However, the full diagonalization within
the ED approach requires high computational costs, thus
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limiting the system size one could reach. Np would saturate
with a larger t/J value which corresponds to a larger size of
polaron than the system size. This effect is clearly shown in
Fig. 4c. This ED approach is accurate with a small polaron
size in the t≪ J limit.
We use an in-house C++ code with Linear Algebra

PACKage (LAPACK) for the full diagonalization. The local
dipoles are well-ordered along the 111½ � direction in the
starting configuration. After each hopping step, the config-
urational energy is calculated by the inter-site dipole-dipole
coupling, Econfig ¼ �P

i;i0 Jii0=p
2
0

� �
pi � pi0 , between dipoles

pi ¼ p0
P

nn̂a
y
inain with site i and i0 are all pairs of the

nearest neighbors. An open boundary condition is used in
the ED calculation. Therefore, for the sites at the boundary
of the supercell system (3 × 3 × 3), the nearest neighbors
outside the system are treated to be well-aligned in the
symmetry-broken 111½ � direction as in FE-ordered state.

(ii) Perturbation theory: In perturbation calculations, we also start
with a clear limit t≪ J, in which the hopping term Ht can be
treated as a perturbation of the total effective Hamiltonian
(Eq. (1)). As the kinetic strength (t) is treated as the
perturbation term, a larger t/J value naturally requires

higher-order term corrections. The highest order at which
the total energy of the polaron converges shows the farthest
octahedral site that the carrier would reach in the virtual
dynamical process, which also indicates the rough radius (rk)
of the polaron. It is worth noting that one of our assumptions
being made, which is the higher energy dynamical process
corresponding to the disappearance/emergence of local
dipoles, may not be able to be fully absorbed into the
Hamiltonian in the t≫ J limit. Therefore, other higher-energy
physical processes may be of relative importance in this limit.
A convergence test is conducted for higher-order perturba-
tion calculations. For a (j+ 1)th order perturbation, the
energy correction to the total energy is: ΔEjþ1 ¼ Ejþ1

n ¼P
m1

P
m2

P
m3

� � �Pmj

ψðnÞ jV̂ jψðm1 Þh i ψðm1ÞjV̂ jψðm2Þh i¼ ψðmj ÞjV̂ jψðnÞh i
EðnÞ�Eðm1Þð Þ EðnÞ�Eðm2Þð Þ¼ EðnÞ�Eðmj Þð Þ . In

our study, the average energy change EðmiÞ � Eðmiþ1Þ of each
hopping step i is ~4.136J with t/J= 1.0, and
ψðmiÞjV̂ jψðmiþ1Þ� � ¼ t. Therefore, we can roughly estimate this
energy correction at (j+ 1)th order to be proportional to
tjþ1=ððjÞ!ð4:136JÞjÞ, with the total energy gain with the
distance shown in the inset of Fig. 5. As a natural
consequence, at small t/J→ 0, the correction in the energy

t/JE
E

|E
(r

+
a 0

)−
E(

r)
|

|E
(r

+
a 0

)−
E(

r)
|

allowed distance (a0)allowed distance (a0)

allowed distance (a0) allowed distance (a0)

t/J

t/J

t/J

t/J t/J t/J

R R R

(a) (b)

(c) (d)

(e) (f) (g)

Fig. 8 Detailed analysis establishing a super-linear growth of the polaron size with respect to t/J. a, c The lowering in the total energy, E(r),
with the allowed distance (r) for a polaron to grow given each t/J parameter in our perturbation calculation. The allowed distance r is in the
unit of a0, a single unit cell length. b, d The energy correction (ΔE= ∣E(r+ a0)− E(r)∣) with the allowed distance of the electron (r), or to say, of
each order of perturbation j= 2, 4, 6, 8, 10, 12. e The polaron radius changes with t/J, with the radius defined as the bound (r+ a0/2) at which
E(r+ a0)− E(r) ≤ 6J. In the presence of competing low-energy physics, it is physical to define the bound of the polaron at which the additional
energy gain from growing one lattice site larger ∣E(r+ a0)− E(r)∣ is insufficient to overcome the competition. f The polaron radius change with
t/J, with the radius defined as the bound (r+ a0/2) at which ∣E(r+ a0)− E(r)∣/E(r)≤10%. g The polaron radius changes with t/J, with the radius
defined by the full-width half maximum (FWHM) of the peak of the continuous fitting of the E(r).
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of each perturbation order (ΔEj) monotonically decreases
with the number of orders (j); while t/J is large, the energy
correction increases to the maximum value at a certain
higher order, then gradually converges with the number of
order. The total energy E and the energy correction of each
perturbation order (ΔEj) for different t/J values is shown in
Fig. 8a–d, respectively. As the energy correction at (j+ 1)th
order is proportional to tjþ1=ððjÞ!ð4:136JÞjÞ, the contribution
of the infinite order term is always zero as limj!1

tjþ1

ðjÞ!ð4:136JÞjð Þ ¼ 0. Also, Fig. 8e–g from three different common

criteria all show a similar superlinear growth of the polaron
radius (R) against t/J. Note that with the form of ΔEj,Qmj

m1
En � Emj

� � ¼ 0 leads to divergence in perturbation
calculation. In our calculation, it is required that the carrier
leaves a site with a different local dipole mode from its original
mode at each hopping step. The virtual processes that keep
the local dipole in the same direction are preserved in the low-
energy subspace of this polaronic Hamiltonian (Eq. (1)).

In our calculation, the farthest octahedral site that the
virtual dynamic process of the carrier could reach, which is
also half of the highest perturbation order, is six formula
unit cells (rk= 6). (With the perturbation calculation of
different orders, we extrapolate the real trend of Np with t/
J as shown in Fig. 4c. The linear extrapolation of different t/
J values is shown in Fig. 9.) We use an in-house C++ code
for the perturbation calculations, with a 7 × 7 × 7 supercell
size. The size of the supercell is large enough as the
highest order we reach is the 12th order, which indicates 6
outward hopping steps at maximum. A periodic boundary
of the system is used for the virtual hopping process. The
energy of each configuration is exactly the same as in ED
calculations, calculated as Econfig ¼ �P

i;i0 Jii0=p
2
0

� �
pi � pi0 . It

is worth noting that, the carrier can hop to every
neighboring site at each step as long as it returns to the
original doped site after 12 hopping steps. Therefore, the
carrier’s trajectory could form loops, or revisit a single site
multiple times without restriction.

Fig. 9 Convergent analysis for the average number of suppressed dipoles, Np, against the order of perturbation, λ. Np is plotted as a
function of 1/λ at different t/J values for λ= 2, 4, 6, 8, 10, 12: (a) t/J= 0.01, n= 1; (b) t/J= 0.05, n= 1; (c) t/J= 0.1, n= 1; (d) t/J= 0.2, n= 1; (e)
t/J= 0.3, n= 1; (f) t/J= 0.67, n= 1; (g) t/J= 1.0, n= 1; (h) t/J= 2.0, n= 2.5; (i) t/J= 2.67, n= 2.5.
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(iii) World-line quantumMonte Carlo (QMC): We use QMC tomeasure
the thermal average of the FE order 〈O〉 at finite temperatures.
The HR term in Hamiltonian (Eq. (1)) is not included in order to
study the quantum effect only. The FE order can be written as
hOi ¼ 1

Z TrðO expð�βHÞÞ, where H is the Hamiltonian, β= 1/
(kBT) is the inverse temperature, and Z ¼ Trðexpð�βHÞÞ is the
partition function. In our QMC calculation, the basis is taken as
cyi
Q

ja
y
jnj 0j i. The dimension of Hilbert space is 8L

3�1 ´ L where L
is the system size. The Hamiltonian can be written in terms of
H= T+H0, where H0 is the diagonal part and T is the non-
diagonal part. Using an interaction picture, we can represent the
Boltzmann factor as expð�βHÞ ¼ expð�βH0Þ

P1
k¼0 ð�1Þk R β

0

dτ1
R τ1
0 dτ2 � � �

R τk�1

0 dτkVD
τ1
VD
τ2
� � � VD

τk
where VD

τi
¼ expðτiH0Þ

V expð�τiH0Þ. Here we treat τ as the imaginary time and plug
complete relations between each VD

τi
, then 〈O〉 can be treated as

a weighted average among all possible closed paths (world line)
in space-time. The non-diagonal term (the kinetic part) leads to a
‘hop’ between lattice sites, thus creating a ‘kink’ on the world
line. Importance sampling is done through the Metropolis
algorithm. Ergodicity and detailed balance ensure the sequence
of world lines converges to the desired distribution.
We use an in-house MATLAB code for the world-line

QMC calculations, with a 5 × 5 × 5 supercell under periodic
boundary conditions. The supercell size used was tested by
a system size scaling as shown in Fig. 10a. At every kink
point, we store the imaginary time, the electron position,
and the dipole configuration as matrices, and build a
mapping between them. The weight of the paths and the
estimator can be calculated from these matrices. In the
update scheme, we generate a random kink-antikink pair at
τ1 and τ2. Between these two time points, we propose a
carrier hopping to one of the neighboring sites, randomly
leaving a dipole orientation at the original site. Then, we
shift the kink from τ1 to τ2 correspondingly. We accept
these updates with certain probabilities obtained from the
detailed balance. Through this scheme, the system
gradually converges to its thermally equilibrated state.
The calculation only converges fast at high temperatures
(kBT)/J > 0.1, below which the acceptance ratio becomes
exponentially small.
As shown in Fig. 10b, Np slightly decreases as T increases

in the low-T range. The slight decrease in Np is attributed to
the rise in temperature, which causes the thermal
distribution to suppress the impact of the virtual kinetic
process by averaging out thermodynamically equilibrated
Bloch states into a localized state. Figure 10b also
showcases the dominance of thermal fluctuations over
quantum fluctuations in the high-temperature range.

DATA AVAILABILITY
The codes of exact diagonalization, perturbation and world-line quantum Monte
Carlo as well as the data that support the findings of this study are available from the
corresponding author upon reasonable request.

Received: 13 March 2023; Accepted: 1 September 2023;
Published online: 23 September 2023

REFERENCES
1. Li, J., Claude, J., Norena-Franco, L. E., Seok, S. I. & Wang, Q. Electrical energy

storage in ferroelectric polymer nanocomposites containing surface-
functionalized BaTiO3 nanoparticles. Chem. Mater. 20, 6304–6306 (2008).

2. Shen, Z., Wang, X., Luo, B. & Li, L. BaTiO3–BiYbO3 perovskite materials for energy
storage applications. J. Mater. Chem. A 3, 18146–18153 (2015).

3. Lin, Y. et al. Excellent energy-storage properties achieved in BaTiO3-based lead-
free relaxor ferroelectric ceramics via domain engineering on the nanoscale. ACS
Appl. Mater. Interfaces 11, 36824–36830 (2019).

4. Fahy, S. & Merlin, R. Reversal of ferroelectric domains by ultrashort optical pulses.
Phys. Rev. Lett. 73, 1122–1125 (1994).

5. Zenkevich, A. et al. Giant bulk photovoltaic effect in thin ferroelectric BaTiO3

films. Phys. Rev. B 90, 161409 (2014).
6. Sharma, S., Tomar, M., Kumar, A., Puri, N. K. & Gupta, V. Enhanced ferroelectric

photovoltaic response of BiFeO3/BaTiO3 multilayered structure. J. Appl. Phys. 118,
074103 (2015).

7. Wang, S. et al. An unprecedented biaxial trilayered hybrid perovskite ferroelectric with
directionally tunable photovoltaic effects. J. Am. Chem. Soc. 141, 7693–7697 (2019).

8. Arimoto, Y. & Ishiwara, H. Current status of ferroelectric random-access memory.
MRS Bull. 29, 823–828 (2004).

9. Anderson, P. W. & Blount, E. I. Symmetry considerations on martensitic trans-
formations: “ferroelectric” metals? Phys. Rev. Lett. 14, 217–219 (1965).

10. Shi, Y. et al. A ferroelectric-like structural transition in a metal. Nat. Mater. 12,
1024–1027 (2013).

11. Bhowal, S. & Spaldin, N. A. Polar metals: principles and prospects. Annu. Rev.
Mater. Res. 53, 8.1–8.27 (2023).

12. Kolodiazhnyi, T., Tachibana, M., Kawaji, H., Hwang, J. & Takayama-Muromachi, E.
Persistence of ferroelectricity in BaTiO3 through the insulator-metal transition.
Phys. Rev. Lett. 104, 147602 (2010).

13. Fujioka, J. et al. Ferroelectric-like metallic state in electron doped BaTiO3. Sci. Rep.
5, 13207 (2015).

14. Cordero, F. et al. Probing ferroelectricity in highly conducting materials through
their elastic response: Persistence of ferroelectricity in metallic BaTiO3−δ. Phys.
Rev. B 99, 064106 (2019).

15. Zhou, W. X. et al. Artificial two-dimensional polar metal by charge transfer to a
ferroelectric insulator. Commun. Phys. 2, 125 (2019).

16. Yang, X. et al. A doping threshold for polar metals. arXiv https://doi.org/10.48550/
arXiv.2302.11721 (2023).

17. Wang, J. et al. Charge transport in a polar metal. npj Quant. Mater. 4, 61 (2019).
18. He, X. & Jin, K.-j Persistence of polar distortion with electron doping in lone-pair

driven ferroelectrics. Phys. Rev. B 94, 224107 (2016).
19. Gu, J.-x et al. Coexistence of polar distortion and metallicity in PbTi1−xNbxO3.

Phys. Rev. B 96, 165206 (2017).

Fig. 10 Convergence check against system size in our QMC calculation and detailed T→ 0 extrapolation of the resulting Np. a The t/J
dependence of Np at various cubic system size L3 for L= 5, 6, 7, 8 under a fixed finite temperature kBT/J= 0.2. b Temperature dependence of Np
for different t/J parameter.

F. Gu et al.

11

Published in partnership with Nanjing University npj Quantum Materials (2023) 49

https://doi.org/10.48550/arXiv.2302.11721
https://doi.org/10.48550/arXiv.2302.11721


20. Benedek, N. A. & Birol, T. ‘Ferroelectric’ metals reexamined: fundamental
mechanisms and design considerations for new materials. J. Mater. Chem. C 4,
4000–4015 (2016).

21. Kim, T. H. et al. Polar metals by geometric design. Nature 533, 68–72 (2016).
22. Laurita, N. J. et al. Evidence for the weakly coupled electron mechanism in an

Anderson-Blount polar metal. Nat. Commun. 10, 3217 (2019).
23. Lei, S. et al. Observation of quasi-two-dimensional polar domains and ferroelastic

switching in a metal, Ca3Ru2O7. Nano Lett. 18, 3088–3095 (2018).
24. Sergienko, I. A. et al. Metallic “ferroelectricity” in the pyrochlore Cd2Re2O7. Phys.

Rev. Lett. 92, 065501 (2004).
25. Zhang, H., Huang, W., Mei, J.-W. & Shi, X.-Q. Influences of spin-orbit coupling on

Fermi surfaces and Dirac cones in ferroelectric-like polar metals. Phys. Rev. B 99,
195154 (2019).

26. Du, D. et al. High electrical conductivity in the epitaxial polar metals LaAuGe and
LaPtSb. APL Mater. 7, 121107 (2019).

27. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560,
336–339 (2018).

28. Sharma, P. et al. A room-temperature ferroelectric semimetal. Sci. Adv. 5,
eaax5080 (2019).

29. Sakai, H. et al. Critical enhancement of thermopower in a chemically tuned polar
semimetal MoTe2. Sci. Adv. 2, e1601378 (2016).

30. Wang, F. et al. Solvated electrons in solids ferroelectric large polarons in lead
halide perovskites. J. Am. Chem. Soc. 143, 5–16 (2021).

31. Miyata, K. & Zhu, X. Y. Ferroelectric large polarons. Nat. Mater. 17, 379–381 (2018).
32. Kolodiazhnyi, T. Insulator-metal transition and anomalous sign reversal of the

dominant charge carriers in perovskite BaTiO3−δ. Phys. Rev. B 78, 045107 (2008).
33. Zhu, X. Y. & Podzorov, V. Charge carriers in hybrid organic–inorganic lead halide

perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6,
4758–4761 (2015).

34. Tomioka, Y., Shirakawa, N. & Inoue, I. H. Superconductivity enhancement in polar
metal regions of Sr0.95Ba0.05TiO3 and Sr0.985Ca0.015TiO3 revealed by systematic Nb
doping. npj Quant. Mater. 7, 111 (2022).

35. Rischau, C. W. et al. A ferroelectric quantum phase transition inside the super-
conducting dome of Sr1−xCaxTiO3−δ. Nat. Phys. 13, 643–648 (2017).

36. Tangsritrakul, J. et al. Effects of iron addition on electrical properties and aging
behavior of barium titanate ceramics. Ferroelectrics 383, 166–173 (2009).

37. Ivanchik, I. I. Spontaneous polarization screening in a single domain ferroelectric.
Ferroelectrics 145, 149–161 (1993).

38. Härdtl, K. & Wernicke, R. Lowering the Curie temperature in reduced BaTiO3. Solid
State Commun. 10, 153 – 157 (1972).

39. Hwang, J., Kolodiazhnyi, T., Yang, J. & Couillard, M. Doping and temperature-
dependent optical properties of oxygen-reduced BaTiO3−δ. Phys. Rev. B 82,
214109 (2010).

40. Hlinka, J. et al. Coexistence of the phonon and relaxation soft modes in the ter-
ahertz dielectric response of tetragonal BaTiO3. Phys. Rev. Lett. 101, 167402 (2008).

41. Chakraborty, T. & Ray, S. Evolution of diffuse microscopic phases and magnetism
in Ca, Fe co-doped BaTiO3. J. Alloys Compd 610, 271–275 (2014).

42. Jin, L. et al. Diffuse phase transitions and giant electrostrictive coefficients in lead-
free Fe3+-doped 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. ACS
Appl. Mater. Interfaces 8, 31109–31119 (2016).

43. Filippetti, A., Fiorentini, V., Ricci, F., Delugas, P. & Íñiguez, J. Prediction of a native
ferroelectric metal. Nat. Commun. 7, 11211 (2016).

44. Puggioni, D. & Rondinelli, J. M. Designing a robustly metallic non-censtrosymmetric
ruthenate oxide with large thermopower anisotropy. Nat. Commun. 5, 3432 (2014).

45. Michel, V. F., Esswein, T. & Spaldin, N. A. Interplay between ferroelectricity and
metallicity in BaTiO3. J. Mater. Chem. C 9, 8640–8649 (2021).

46. Esswein, T. & Spaldin, N. A. Ferroelectric, quantum paraelectric, or paraelectric?
Calculating the evolution from BaTiO3 to SrTiO3 to KTaO3 using a single-particle
quantum mechanical description of the ions. Phys. Rev. Res. 4, 033020 (2022).

47. Klein, A., Kozii, V., Ruhman, J. & Fernandes, R. M. Theory of criticality for quantum
ferroelectric metals. Phys. Rev. B 107, 165110 (2023).

48. Senn, M. S., Keen, D. A., Lucas, T. C. A., Hriljac, J. A. & Goodwin, A. L. Emergence of
long-range order in BaTiO3 from local symmetry-breaking distortions. Phys. Rev.
Lett. 116, 207602 (2016).

49. Wang, Y., Liu, X., Burton, J. D., Jaswal, S. S. & Tsymbal, E. Y. Ferroelectric instability
under screened Coulomb interactions. Phys. Rev. Lett. 109, 247601 (2012).

50. Chandra, P. & Littlewood, P. B.A Landau Primer for Ferroelectrics, 69–116 (Springer
Berlin Heidelberg, 2007).

51. Kozina, M. et al. Terahertz-driven phonon upconversion in SrTiO3. Nat. Phys. 15,
387–392 (2019).

52. Zhao, D. et al. Depolarization of multidomain ferroelectric materials. Nat. Com-
mun. 10, 2547 (2019).

53. Jeong, I.-K. et al. Structural evolution across the insulator-metal transition in
oxygen-deficient BaTiO3−δ studied using neutron total scattering and Rietveld
analysis. Phys. Rev. B 84, 064125 (2011).

54. Stern, E. A. Character of order-disorder and displacive components in barium
titanate. Phys. Rev. Lett. 93, 037601 (2004).

55. Berlijn, T., Lin, C.-H., Garber, W. & Ku, W. Do transition-metal substitutions dope
carriers in iron-based superconductors? Phys. Rev. Lett. 108, 207003 (2012).

56. Wang, F. et al. Phonon signatures for polaron formation in an anharmonic
semiconductor. Proc. Natl Acad. Sci. USA 119, e2122436119 (2022).

57. Bonn, M., Miyata, K., Hendry, E. & Zhu, X. Y. Role of dielectric drag in polaron
mobility in lead halide perovskites. ACS Energy Lett. 2, 2555–2562 (2017).

58. Ma, J. & Wang, L.-W. Nanoscale charge localization induced by random orienta-
tions of organic molecules in hybrid perovskite CH3NH3PbI3. Nano Lett. 15,
248–253 (2015).

59. White, S. R. Numerical canonical transformation approach to quantum many-
body problems. J. Chem. Phys. 117, 7472–7482 (2002).

60. Schrieffer, J. R. & Wolff, P. A. Relation between the Anderson and Kondo
Hamiltonians. Phys. Rev. 149, 491–492 (1966).

61. Ovchinnikov, S. G. & Val’kov, V. V. Hubbard Operators in the Theory of Strongly
Correlated Electrons. (Imperial College Press, 2004).

62. Bellaiche, L. & Íñiguez, J. Universal collaborative couplings between oxygen-
octahedral rotations and antiferroelectric distortions in perovskites. Phys. Rev. B
88, 014104 (2013).

63. Zhong, W., Vanderbilt, D. & Rabe, K. M. First-principles theory of ferroelectric phase
transitions for perovskites: The case of BaTiO3. Phys. Rev. B 52, 6301–6312 (1995).

64. Gu, F., Murray, E. & Tangney, P. Carrier-mediated control over the soft mode and
ferroelectricity in BaTiO3. Phys. Rev. Mater. 5, 034414 (2021).

ACKNOWLEDGEMENTS
We acknowledge helpful discussions with Wei Wang, Chi-Ming Yim, Weikang Lin, and
Anthony Charles Hegg. This work is supported by the National Natural Science
Foundation of China (NSFC) grants #12274287 and #12042507, as well as the Innovation
Program for Quantum Science and Technology (Project number: 2021ZD0301900). We
also acknowledge the support from the International Postdoctoral Exchange Fellowship
Program (YJ20210137) by the Office of China Postdoc Council (OCPC).

AUTHOR CONTRIBUTIONS
W.K. and F.G. conceived the idea of the project. F.G., J.W., and Z.-J.L. developed the
model through exact diagonalization, perturbation and quantum Monte Carlo
approaches. F.G. performed the ED calculations and the perturbation calculations.
J.W. performed the quantum Monte Carlo calculations. F.G. and W.K. analyzed the
results and wrote the paper. All authors discussed the results and contributed to
revising and editing the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to Wei Ku.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023, corrected publication 2023

F. Gu et al.

12

npj Quantum Materials (2023) 49 Published in partnership with Nanjing University

http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Quantum fluctuation of ferroelectric order in polar metals
	Introduction
	Results
	Formation and internal structure of quantum polarons
	Kinetic-driven growth and effects of quantum polarons
	Low-energy dynamics of quantum polarons

	Discussion
	Methods
	Physical origin of the model
	Strong constraints in the model
	Physical assumptions of numerical approaches
	Estimation of the renormalized kinetic strength
	Details of calculation

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




