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Pressure evolution of electron dynamics in the superconducting
kagome metal CsV3Sb5
Maxim Wenzel 1✉, Alexander A. Tsirlin 2,3✉, Francesco Capitani 4, Yuk T. Chan1, Brenden R. Ortiz 5,6, Stephen D. Wilson 5,
Martin Dressel 1 and Ece Uykur 1,7✉

The coexistence of the charge-density wave (CDW) and superconducting phases and their tunability under external pressure remains
one of the key points in understanding the electronic structure of AV3Sb5 (A= K, Rb, Cs) kagome metals. Here, we employ synchrotron-
based infrared spectroscopy assisted by density-functional calculations to study the pressure evolution of the electronic structure at
room temperature up to 17 GPa experimentally. The optical spectrum of CsV3Sb5 is characterized by the presence of localized carriers
seen as a broad peak at finite frequencies in addition to the conventional metallic Drude response. The non-monotonic pressure
dependence of this low-energy peak reflects the re-entrant behavior of superconductivity and may be interpreted in terms of electron-
phonon coupling, varying with the growth and shrinkage of the Fermi surface under pressure. Moreover, drastic modifications in the
low-energy interband absorptions are observed upon the suppression of CDW. These changes are related to the upward shift of the
Sb2 px+ py band that eliminates part of the Fermi surface around the M-point, whereas band saddle points do not move significantly.
These observations shed new light on the mixed electronic and lattice origin of the CDW in CsV3Sb5.
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INTRODUCTION
Discovered in 20191, the non-magnetic kagome metal series
AV3Sb5 (A= K, Rb, Cs) provides an exciting playground for
studying a plethora of fascinating electronic phenomena, includ-
ing the interplay between a charge-density wave (CDW) phase
and superconductivity. In CsV3Sb5, the CDW instability forms
below TCDW= 94 K2 (102 K for RbV3Sb53 and 78 K for KV3Sb51),
while superconductivity (SC) is observed below Tc= 2.5 K2 (0.92 K
for RbV3Sb53 and 0.93 K for KV3Sb54).
Recently, several electrical transport, magnetic susceptibility,

NMR, XRD, and μSR studies demonstrated the tunability of both
orders in the AV3Sb5 series under external pressure5–17. At low
pressures (p < 2 GPa), superconductivity in CsV3Sb5 exhibits a
double-dome feature, comprising an enhancement of Tc to ~7 K at
p1 ~ 0.6 GPa, and a second peak in Tc at p2 ~ 2 GPa with Tc ~ 8 K,
whereas the superconducting gap evolves almost monotoni-
cally18. Simultaneously, TCDW is gradually suppressed and vanishes
at p25,7,10. Experimental studies revealed a non-trivial evolution of
CDW across p1, suggesting that changes in the nature of CDW may
cause the double-dome behavior of superconductivity10,16,19. For
p > 2 GPa, superconductivity is gradually suppressed and vanishes
around 9 GPa. Surprisingly, at higher pressures (p > 12 GPa),
superconductivity re-emerges, with this second SC phase persist-
ing up to at least 100 GPa8,11,15. This re-entrant behavior, along
with the presence of a quantum critical point (QCP) at 2 GPa, has
sparked considerable debate on the superconducting pairing
mechanism. Some studies propose electronic correlations at
ambient pressure and CDW fluctuations around 2 GPa to be the
main driving force behind the formation of Cooper pairs20–22. On
the other hand, first-principle calculations revealed essential

changes in electron-phonon (e-ph) coupling around the QCP,
suggesting a conventional phonon-mediated mechanism23–26.
The CDW state in CsV3Sb5 is unique within the AV3Sb5 series as

both the 2 × 2 × 2 and 2 × 2 × 4 orders comprising stacked 2 × 2 in-
plane star-of-David and trihexagonal kagome superlattices are
possible at ambient pressure27–29. Moreover, the experimentally
observed CDW state features multiple anisotropic energy gaps30,31,
large anomalous Hall effect32,33, intrinsic chirality33–35, and a
temperature-driven re-arrangement of the order parameters includ-
ing an electronic nematic phase below ~35 K16,36,37. Some studies
discuss electron-phonon coupling as the driving force behind the
CDW instability in AV3Sb524,38,39, whereas others point towards a
more complex electronic origin40,41. It has been shown that band
saddle points (van Hove singularities) close to the Fermi energy lead
to a CDW instability in kagome metals42–44, making the pressure
evolution of the saddle points a potentially important ingredient for
understanding the phase transformations of CsV3Sb5 under pressure.
Linking the pressure-induced changes in the electronic proper-

ties to modifications in the electronic band structure has been the
subject of several high-pressure XRD studies, along with density
functional theory calculations11,23–25,45–48. The experimental con-
firmation of the proposed changes in the electronic band
structure, however, remains lacking because the powerful
ambient-pressure probes, such as ARPES and STM, are incompa-
tible with pressure environment. Hence, we utilize high-pressure
Fourier-transform infrared spectroscopy at room temperature to
experimentally probe the pressure-induced modifications in the
electronic structure. Assessing these changes in the normal state is
crucial for understanding the changes in low-temperature
instabilities of the system, because those instabilities are driven
by the evolution of the electronic structure in the normal state.
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As most high-pressure transport measurements are performed
using silicone or Daphne oil as pressure transmitting medium,
increasing pressure leads to increasing non-hydrostaticity49,50. It
has been shown that under such conditions, CsV3Sb5 transforms
from hexagonal to monoclinic symmetry above ~10 GPa46 as
sketched in Fig. 1a. The current reflectivity study has been
performed with the quasi-hydrostatic CsI51 as a pressure
transmitting medium, ensuring a good sample-diamond interface,
which is crucial for reliable measurements. Hence, here, a similar
phase transition can also be envisaged. However, as discussed
previously46, this monoclinic distortion affects the band structure
only marginally.
Our results reveal a drastic change in the interband absorption

around p2 where the CDW is suppressed. Using ab initio
calculations of the band structure and optical conductivity, we
show that these changes can be understood in terms of the
upward shift of the Sb2 px+ py band and the shrinkage of the
Fermi surface (FS) around the M-point. We further demonstrate
that the spectral weight due to localized carriers is strongly
suppressed around p2, suggesting the reduction in the e-ph
coupling. This spectral weight is partially restored above 10 GPa,
where re-entrant superconductivity is observed. Our data suggest
that changes in the e-ph coupling caused by the reconstruction of
the FS should be crucial for the pressure evolution of electron
dynamics in CsV3Sb5.

RESULTS
Intraband contributions
The decomposed real part of the in-plane optical conductivity at
selected pressure points is given in Fig. 2a–d (see Supplementary

Note 2 for details on the fitting process). While the high-energy
contributions (ω > 4000 cm−1) are not notably affected by the
applied pressure, major changes occur at low energies
(ω < 2000 cm−1). The optical spectrum at ambient pressure
(p= 0 GPa), reproduced from ref. 52, is characterized by several
interband absorptions and two clearly separated intraband
contributions (i) a sharp Drude peak due to free charge carriers
and (ii) an additional broad peak centered at finite frequencies
corresponding to the response of localized carriers. Both of these
intraband features are found to be highly sensitive to the applied
pressure, as illustrated in Fig. 2e, f. Already at moderate pressures
(p < 2.3 GPa), the intensity of the localization peak is drastically
reduced and continues to decrease up to ~9 GPa. Upon further
increasing the pressure, the localization peak becomes more
pronounced again. On the other hand, the opposite trend is
observed for the Drude contribution, signaling an interplay
between localized and free charge carriers.
To further explore this interplay, we calculate the spectral

weight (SW) by integrating the real part of the optical conductivity
of the fitted Drude and localization peaks according to53

SW ¼ 1
π2ε0c

Z ωc

0
σ1ðωÞdω; (1)

with ε0 being the permittivity in vacuum and c the speed of light. The
cut-off frequency is chosen as ωc= 50,000 cm−1 considering the
high-energy tail of the localization peak. Figure 2g shows the
pressure evolution of the Drude and localization peaks’ spectral
weight, as well as the total spectral weight of the intraband processes
(Drude + localization peak). While the total intraband SW is found to
be almost unaffected by pressure, a redistribution of spectral weight
between the Drude and the localization peaks is observed.

Fig. 1 Pressure evolution of the crystal structure and Fermi surface. a Hexagonal (left) and monoclinic (right) crystal structures of CsV3Sb5
as determined by XRD measurements at ambient pressure1 and 14.2 GPa under non-hydrostatic conditions46, respectively, visualized by
VESTA73. b, c Representative Fermi surfaces, at 0 and 20 GPa, respectively, created with FermiSurfer74. Hexagonal structures45 were used
for the calculations. The color code represents the band velocity.
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The plasma frequencies are obtained via ωp=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWDrude þ SWloc

p
and normalized to the value at ambient

pressure from a previous study52 (see Supplementary Note 3 for
details). As displayed in Fig. 2h, a good match between the
experimental and DFT plasma frequency is observed. Here, even
small features in the experimental plasma frequency like dips
around 2.5 GPa, 8 GPa, and 11 GPa are well reproduced by our
calculations. This good agreement between experiment and ab
initio calculations over a wide pressure range suggests that electrons
in CsV3Sb5 are almost uncorrelated, consistent with the previous
assessment of the correlation strength at ambient pressure52. Hence,
the main effect beyond the pure band picture is the damping of
charge carriers manifested by the localization peak.

Interband transitions
Having discussed the intraband contributions in great detail, we
now turn to analyzing the low-energy interband transitions. It has
been shown that, compared to its sibling compounds, CsV3Sb5
possesses inverted band saddle points, leading to very different
low-energy interband transitions52,54. At ambient pressure, optical
spectroscopy has revealed the existence of characteristic inter-
band absorptions below 0.06 eV (marked by the red arrow in
Fig. 3c), which could be well reproduced by DFT52.
Upon applying pressure, the experimental data show a sudden

reduction of the low-energy transitions at around 0.03 eV, already
at the lowest measured pressure of 1.7 GPa as depicted in Fig. 3d.
This trend is corroborated by the calculated optical conductivity

plotted in Fig. 3g. Note that the difference in intensity between
theoretical and experimental interband absorptions is due to the
absence of electron scattering in the zero-temperature calcula-
tions. Band-resolved optical conductivity calculations displayed in
Fig. 3b for 4.9 GPa, where the spectral weight below 0.06 eV is
almost suppressed, reveal that these low-energy absorption arises
from transitions between bands B and C according to the labeling
in Fig. 3a. A closer look at the knot of bands that cross the Fermi
level along Γ−M shown in Fig. 4a suggests that this part of the
band structure changes significantly already at low pressures. With
the Sb2 px+ py band becoming steeper and pushing vanadium
bands above the Fermi level, several bands crossing the Fermi
level disappear, and parts of the Fermi surface shrink around
3 GPa, illustrated in Fig. 4c. This effect is even better visible away
from the Γ–M line (Fig. 4b), where interband transitions at
0.03–0.06 eV are clearly suppressed by pressure, and only
interband transitions at ω > 0.1 eV remain.
With this suppression of absorption below 0.1 eV, the experimental

interband optical conductivity at low energies can be described by
two absorption peaks as plotted in Fig. 3d–f. One of these peaks only
slightly changes with pressure (black dotted line), while the other
reveals a shift to higher energies (solid green line). This behavior is in
line with our calculations showing a systematic shift of band C around
the M-point away from the Fermi level, leading to a blue shift of the
absorption peak related to the B-C transitions. The high consistency
of the energy shift between calculations and experiment, as depicted
in Fig. 3h, further supports the use of the uncorrelated band picture
for the description of CsV3Sb5 over a broad pressure range.
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Fig. 2 Decomposition of optical conductivity and intraband spectral weight analysis. a–d Decomposed optical conductivity at several
pressure points consisting of a Drude peak (green), a localization peak (blue), and multiple interband transitions (orange). The data at ambient
pressure were taken from a previous study52. e, f Pressure evolution of the Drude and localization peaks, respectively. g Calculated spectral
weight of the two intraband contributions (Drude and localization peaks). h Pressure dependence of the experimental plasma frequency
deduced from the total intraband spectral weight as explained in the text and plasma frequency calculated by DFT. i Schematic pressure
phase diagram of CsV3Sb5 as determined by several electrical transport, magnetic susceptibility, NMR, XRD, and μSR studies5–17. The gray
shaded areas mark critical pressure regions corresponding to (i) the vanishing of CDW state at ~2 GPa (ii) the disappearance of the first
superconducting dome at around 9 GPa, and (iii) the re-emergence of superconductivity at approximately 12 GPa.
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Moreover, due to the increasing slope of the Sb2 px+ py band
under pressure, band A comes closer to the Fermi level and
even crosses it at higher pressures (see Supplementary Note 4).
Consequently, the contribution of the A-B transitions

increases upon applying pressure, compared to the B-C
transitions that were dominant at ambient pressure, leading
to an increase of spectral weight at around 0.2 eV (see
Fig. 3g).
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Fig. 3 Pressure evolution of the band structure and interband transitions. a Calculated band structure at 4.9 GPa. b Band-resolved
contributions to the in-plane component of the calculated optical conductivity. c–f Experimental interband transitions at selected pressures.
The red arrow marks the low-energy transitions (ω < 0.06 eV) that become suppressed abruptly between 0 and 3 GPa. At low energies, the
pressure data are described by two distinct absorption peaks (solid green line and black dotted line). With increasing pressure, a systematic
blue shift of the green absorption is observed. g Pressure evolution of the calculated optical conductivity. The red arrow marks the
suppression of low-energy absorption and the circles highlight the shifting interband absorption peak. h Pressure evolution of the blue-
shifting low-energy interband absorption peak from the experimental and calculated optical conductivities.
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Fig. 4 Low-pressure band structures and pressure evolution of the Fermi surface. a Band structure along Γ–M at low pressures. b Band
structure away from the Γ–M line shows the suppression of the low-energy interband transitions highlighted by black arrows. c Pressure
evolution of the Fermi surface at kz= 0, illustrated using FermiSurfer74 with the band velocity as color scale.
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DISCUSSION
Previously, several optical studies demonstrated a close link
between the low-energy interband absorptions and fine details in
the electronic band structure of the AV3Sb5 series52,54,55. On the
other hand, the localization peak, a common feature among
several kagome metal compounds52,54–57, can not be explained
within the simple band picture. Free charge carriers interacting
with low-energy degrees of freedom, such as phonons and electric
or magnetic fluctuations, can lead to a backscattering of the
electrons, causing localization effects manifested in a displaced
Drude peak58,59. In the absence of magnetism and electronic
correlations, interactions between electrons and phonons become
the most plausible reason for the appearance of the localization
peak. This interpretation is further supported by the gradual shift
of the localization peak to low energies on cooling, as phonons are
suppressed52. Moreover, optical studies of KV3Sb5 and RbV3Sb5
find strong phonon anomalies, which are associated with the
phonon modes coupling to the electronic background54,55. In the
magnetic rare-earth kagome metal series RMn6Sn6, a close link
between the behavior of phonon modes and the localization peak
was also observed56.
It is then natural to use the spectral weight of the localization

peak as an experimental gauge of the electron-phonon coupling.
Our data suggest that this coupling should be strongly suppressed
around 2 GPa, where the CDW disappears, and Tc starts
decreasing. Concurrently, the increase in the spectral weight of
the localization peak above 10 GPa indicates that the e-ph
coupling becomes more prominent as superconductivity re-
appears. On the microscopic level, first-principle calculations
confirm this picture24 and reveal a strong coupling of the V-V
bond-stretching and V-Sb bond-bending phonon modes to the V
3dxy;x2�y2;z2 , V 3dxz,yz, and Sb1 5pz bands26. Above 2 GPa, a drastic
reduction of the coupling strength λ is proposed, corresponding
to the suppression of superconductivity. Consequently, above
12 GPa, the increase of the localization peak most probably signals
an increase of e-ph coupling due to the new Fermi surface around
A, as displayed in Fig. 1b, c. Here, Sb2 pz electrons appear at the
Fermi level for the first time (see Supplementary Fig. 4 for the
band structures at higher pressures), and probably cause the re-
entrant superconductivity as illustrated in Fig. 2i. Given the
unusual non-monotonic behavior of Tc under pressure, several
other scenarios influencing superconductivity in CsV3Sb5 can be
excluded. Due to only weak changes in the plasma frequency
(Fig. 2h), as well as a very different pressure evolution of the
electronic density of states at EF (see Supplementary Fig. 3d),
the behavior of Tc cannot be explained by modifications in the
electronic structure. Moreover, the continuous evolution of the
crystal structure45,46,48, as well as of phonons according to
previous DFT calculations23,24, eliminates the Debye temperature
as a dominant factor, leaving changes in the e-ph coupling as the
most likely reason for the observed pressure evolution of Tc.
Apart from high-pressure investigations, CsV3Sb5 was subject to

various doping studies60–66. We would like to point out that while
in some cases, for instance, through partial substitution of V-atoms
with Nb-atoms, the effects on the electronic properties are similar
to applying pressure, i.e., the suppression of the CDW order, along
with an enhancement of Tc, doping has a somewhat different
effect on the band structure. As revealed by our study, the
energies of the band saddle points are only weakly affected by
pressure, while the Sb2 px+ py bands show a significant upward
shift already at moderate pressures. On the other hand, Nb-doping
leads to modifications near the Γ- and M-points, highly affecting
the band saddle points62,66. These differences in the band
structure evolution entail a distinct behavior of the low-energy
interband optical transitions. The application of external pressure
leads to a systematic shift of band B away from the Fermi energy
around the M-point, resulting in a blue-shifting interband

absorption peak. Conversely, this low-energy absorption peak at
around 400 cm−1 shifts to lower energies upon Nb-substitution65.
Our study revealed that the reduction in the e-ph coupling

around 2 GPa is likely the main reason for the CDW suppression in
CsV3Sb5. The simultaneous change in the interband absorption
gives us a strong hint that this behavior is caused by the reduction
of the FS along Γ–M. The Sb2 px+ py band, which was so far
almost disregarded in the context of the CsV3Sb5 physics, shows
an upward shift and pushes some of the V 3d bands above the
Fermi level. This effect is qualitatively different from the scenario
of band saddle points at M moving away from the Fermi level and
pulling V 3d bands down in energy, consequently increasing the
FS. We thus find a delicate interplay between electronic and lattice
degrees of freedom in CsV3Sb5 and identify a large tunability of
the kagome bands via changes in the Sb sublattice.

METHODS
Optical measurements
High-quality single crystals were grown and prepared according to
ref. 1. For the optical measurements, a freshly cleaved sample with
a surface area of 150 μm× 150 μm and a thickness of ~60 μm
was used.
High-pressure reflectivity measurements were performed at

room temperature at the SMIS beamline of the SOLEIL synchrotron,
France, on a homemade horizontal microscope with custom
Schwarzschild objectives (NA= 0.5). A diamond anvil cell (DAC)
with type-IIa diamond anvils and a culet of 400 μm diameter was
utilized. Finely ground CsI powder served as the pressure
transmitting medium, making it possible to reach pressures up
to 17.05 GPa. The sample and Ruby spheres used as pressure
gauges were placed inside a stainless steel gasket with a 200 μm
diameter hole. The pressure was determined by monitoring the
calibrated shift of the ruby R1 fluorescence line as described in
ref. 67.
The reflectivity spectra at the sample-diamond interface were

recorded in a broad spectral range of 150–10,000 cm−1 by a
Thermo-Fisher iS50 interferometer with KBr and solid substrate
beamsplitters, using a MCT detector and a liquid helium-cooled
bolometer. The reflectivity of a gold foil loaded into the DAC at
ambient pressure served as a reference. Other optical quantities
like the complex optical conductivity ~σðωÞ, or the dielectric
permittivity ~εðωÞ, were obtained using standard Kramers-Kronig
(KK) analysis considering the sample-diamond interface as
explained in Supplementary Note 1.

Computational details
Density-functional (DFT) band-structure calculations were per-
formed with the Wien2K code68,69 and cross-checks have been
conducted with the FPLO code70. In all cases, the Perdew-Burke-
Ernzerhof flavor of the exchange-correlation potential71 was used,
and self-consistent calculations were converged on the k-mesh
with 24 × 24 × 12 points. Experimental crystal structural para-
meters from refs. 1,45 were used. Considering that the monoclinic
distortion does not have a fundamental impact on the band
structure46, we used hexagonal structure throughout the pressure
range for a simpler comparison. Optical conductivity was
calculated using the optic module72 on the dense k-mesh with
up to 100 × 100 × 50 points. Spin-orbit coupling was included in all
the calculations.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
authors upon request.
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