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Emergent topological quantum orbits in the charge density
wave phase of kagome metal CsV3Sb5
Hengxin Tan 1, Yongkang Li1, Yizhou Liu1, Daniel Kaplan 1, Ziqiang Wang2 and Binghai Yan 1✉

The recently discovered kagome materials AV3Sb5 (A = K, Rb, Cs) attract intense research interest in intertwined topology,
superconductivity, and charge density waves (CDW). Although the in-plane 2 × 2 CDW is well studied, its out-of-plane structural
correlation with the Fermi surface properties is less understood. In this work, we advance the theoretical description of quantum
oscillations and investigate the Fermi surface properties in the three-dimensional CDW phase of CsV3Sb5. We derived Fermi-energy-
resolved and layer-resolved quantum orbits that agree quantitatively with recent experiments in the fundamental frequency,
cyclotron mass, and topology. We reveal a complex Dirac nodal network that would lead to a π Berry phase of a quantum orbit in
the spinless case. However, the phase shift of topological quantum orbits is contributed by the orbital moment and Zeeman effect
besides the Berry phase in the presence of spin-orbital coupling (SOC). Therefore, we can observe topological quantum orbits with
a π phase shift in otherwise trivial orbits without SOC, contrary to common perception. Our work reveals the rich topological nature
of kagome materials and paves a path to resolve different topological origins of quantum orbits.
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INTRODUCTION
The recently discovered kagome superconductors AV3Sb5 (A = K,
Rb, Cs)1 stimulate extensive studies for their intriguing charge
density waves (CDW)2–10, possible symmetry breaking without
magnetism2,11–21, topological band structure3,4,22–24, and exotic
superconductivity5,25–27. Aiming at deriving the Fermi surface (FS)
property of CsV3Sb5, a dozen quantum oscillation experiments
reveal complicated but similar oscillation frequencies28–36, bearing
the Fermi energy variation in different samples. However, the
nontrivial Fermi pockets (or quantum orbits), characterized by a π
phase shift in the fundamental quantum oscillation, are dissimilar
in different reports. For example, ref. 30 claimed nontrivial pockets
are 73 and 727 T in the fundamental oscillation frequency. Chapai
et al.35 found Fermi pockets of 79, 736, and 804 T are nontrivial.
Broyles et al.36 reported 28, 74, and 85 T to have a π phase shift.
Shrestha et al.32 stated that all seven quantum orbits (from 18 to
2135 T) observed are topological.
It is commonly believed that the measured π phase shift in a

quantum oscillation originates from the π Berry phase (ϕB) of Dirac
fermion in the system37,38. For example, graphene exhibits the π
Berry phase in quantum oscillation39. However, as pointed out by
refs. 40,41, the π phase shift in the quantum oscillation has broader
origins than the π Berry phase of a Dirac fermion because of the
orbital magnetic moment and Zeeman effect. The success of
manifesting the Berry phase of graphene lies in the negligible
spin-orbital coupling (SOC)42,43, resulting in a zero orbital
magnetic moment-induced phase ϕR and a small Zeeman
effect-induced phase ϕZ as a spin reduction factor in the quantum
oscillation intensity. In spinful systems (the SOC of AV3Sb5 is about
dozens of meV), the non-zero ϕR and ϕZ, due to spin-momentum
locking sensitive to the Fermi energy, cannot be separated from
ϕB in the total phase shift. As a result, the SOC-driven band anti-
crossing can generate quantum orbits with a π phase shift in a
proper energy window. Thus, the origin of observed nontrivial
Fermi pockets of CsV3Sb5 may deviate from the vaguely argued π-

Berry phase mechanism, which remains an open question.
Furthermore, the dissimilar frequencies of nontrivial Fermi pockets
of CsV3Sb5 remain to be reconciled.
Besides the discrepancy in the topological nature of Fermi

pockets, another intriguing puzzle is their structural origin.
Previous calculations based on the 2 × 2 × 1 CDW model of
CsV3Sb5 cannot rationalize their respective quantum oscillation
experiments29,30. The 2 × 2 × 1 CDW, i.e., the star of David (SD) and
inverse star of David (ISD)4 structures, have been commonly
adopted to understand various experiments and conceive
theoretical models. Recent experiments suggest two-fold or
four-fold interlayer modulation with alternative SD and ISD
layers6,29,44–48. The interlayer structural modulation-induced FS
reconstruction, which may help to understand the emergence of
novel density wave orders and superconductivity at lower
temperatures49, remains elusive.
In this work, we resolved the origin and topology of the

observed quantum orbits in CsV3Sb5 from theory. We derived
Fermi-energy-resolved and layer-resolved quantum orbits that
agree quantitatively with experiments in the cyclotron frequency
and nontrivial phase shift. According to the layer-contribution, we
classified all quantum orbits into three groups, i.e., SD, ISD, and
mixed (SD+ ISD) group, where most small quantum orbits show a
clear 3D nature. According to the topological origin, the nontrivial
quantum orbits are classified into four types, with the topology of
one type originating from the π Berry phase and the other three
originating from the SOC jointly with the Zeeman effect. Most
importantly, the SOC and/or Zeeman effect can lead to a trivial
quantum orbit (zero phase shift in the quantum oscillation), even
though the orbit has a π Berry phase in the spinless case. A hidden
Dirac nodal network protected by mirror symmetries in the 3D
CDW phase is revealed, which is weakly gapped in the presence of
SOC50,51. We not only resolve the topology of quantum orbits but
also reveal the appreciable 3D nature of Fermi surfaces in CsV3Sb5.
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RESULTS AND DISCUSSION
Fermi surface of CsV3Sb6

We consider three hexagonal CDW structures with the P6/mmm
space group symmetry, i.e., the 2 × 2 × 1 SD and ISD and the
2 × 2 × 2 CDW. The energetic stability of interlayer stacking has
been theoretically studied4,7,9,29,52. We adopt the 2 × 2 × 2 CDW
alternating SD and ISD layers without interlayer lateral shift as
suggested by recent APRES measurements47,48, shown in Fig. 1a.
As we will see, the 2 × 2 × 2 model captures the essential interlayer
interaction, which also occurs in more complicated structures like
the 2 × 2 × 4 CDW29.
The band structure calculated by density-functional theory

(DFT) is shown for the 2 × 2 × 2 CDW in Fig. 1b. By layer resolution,
bands and FSs are well separated into SD, ISD, and mixed SD+ ISD
types. The band structure can be regarded as overlapping SD and
ISD phases with considerable hybridization (see Supplementary
Fig. 1). Because the chemical potential in experiments11,23,24,29,53 is
usually lower than the theoretical charge neutral point (energy
zero), we will focus on the Fermi energy window of −100 to 0meV
and investigate corresponding FS properties. We show two typical
Fermi energies at –40 and –85meV in Fig. 1c–j to demonstrate the
layer- and energy-dependence of multiple quantum orbits.

We obtain extremal quantum orbits by extracting the maximal
and minimal FS area along the kz axis for the 2 × 2 × 2 CDW and
show their Fermi energy dependence in Fig. 2a, c. Most extremal
orbits distribute in high-symmetry planes of kz= 0/0.5 (in a unit of
2π/c, c is the out-of-plane lattice parameter), while some special
cases appear at a generic kz (see an example at –40meV in Table
1). We will identify the proper Fermi energy by comparing
calculated cyclotron frequencies with experimental values.
We summarized exhaustively recent quantum oscillation

measurements28–36 in Fig. 2b, d. Most experimental results can
be divided into three groups, i.e., the low-frequency region
0–250 T, medium-frequency region 550–950 T, and high-
frequency region ≥1150 T. Many high frequencies may be induced
by the magnetic breakdown by merging neighboring FSs41. Thus,
we will focus on cyclotron frequencies no larger than 1800 T.
There are 4–6 cyclotron frequencies in the low-frequency region,
2–6 frequencies in the medium-frequency region, and 1–6
frequencies in the frequency region of 1150–1800 T.
Considering both the number and distribution of frequencies in

three regions, we find theoretical results at energy ranges of [−50,
−35] meV and [−90, −75] meV match well with most experiments.
One may also find results in the range of [−20, 0] meV match
experiments at medium- and high-frequency regions. However,

Fig. 1 Crystal structure and layer-resolved band structure and Fermi surfaces of the 2 × 2 × 2 CDW. a The crystal structure with alternating
SD and ISD layers. b Band structure. The color bar indicates the ISD (red) and SD (blue) contributions. The energy of the charge neutral point is
set to zero. Energies of −40 and−85meV are indicated by dash-dotted lines. c–f Layer-resolved Fermi surfaces in the first Brillouin zone (BZ) of
the CDW state at −40 and −85meV on kz= 0 and 0.5 (2π/c) planes. The color bar is the same as (b). g–j show cyclotron frequencies (in units of
T) of the corresponding Fermi surfaces where the line color differentiates different Fermi surfaces. These seemingly open Fermi surfaces at the
BZ boundary extend to neighboring BZs and form closed Fermi pockets. SOC is included in calculations.
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the agreement in the low-frequency region in this energy range is
poor [see Fig. 2c, d]. In the following, we will analyze two
representative Fermi energies, −40 and −85meV, as shown in Fig.
1 and Table 1. In detail, the 2 × 2 × 2 CDW shows 8 frequencies in

the low-frequency region and 7 frequencies in the medium-
frequency region at both −40 and −85meV. In the high-
frequency region, it shows 1 frequency at −40meV and 2
frequencies at −85meV. Due to band folding and hybridization in

Fig. 2 Calculated cyclotron frequencies in comparison with experiments. a Cyclotron frequencies of extremal quantum orbits as a function
of Fermi energy for the 2 × 2 × 2 CDW. The energy of the charge neutral point is set to energy zero. Symbols with the same color and style
connected by dashed lines represent the evolution of the same quantum orbit. b Comparison of calculated cyclotron frequencies at −40 and
−85meV (on the left side of the red dashed line) with experimental values in literature. Experimental set A is from ref. 31, B from ref. 28, C from
ref. 29, D from ref. 30, E and F from ref. 32 for the angle between the magnetic field and c axis being 0∘ and 20∘, respectively, G from ref. 33, H and
I from ref. 34 for bulk and flake, respectively, J from ref. 35, and K from ref. 36. Numbers marked near the symbols are corresponding cyclotron
masses in units of m0. The experimental values are divided into three regions, i.e., low-frequency region 0–250 T, medium-frequency region
550–950 T, and high-frequency region ≥1150 T. c, d are a zoom-in of the low-frequency region in (a) and (b), respectively, which can be further
divided into three sub-regions as indicated by the three gray backgrounds.
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the 2 × 2 × 2 CDW, the large Fermi surfaces in the pristine phase
break into relatively smaller pieces. Thus theoretical results in low-
and medium-frequency regions generally agree better with
experiments than the high-frequency region, as shown in Fig. 2.
The highest frequencies at −40 or −85meV correspond to nearly
isotropic FSs centered at Γ (see Fig. 1), which originates in Sb-pz
bands. Corresponding FSs are very close to several neighboring
pockets. Thus, magnetic breakdown may occur to generate even
larger frequencies in experiments, rationalizing the magnetic
breakdown observed in ref. 35.
In contrast, we cannot find a satisfactory agreement between

experiments and the 2 × 2 × 1 CDW (SD or ISD) simultaneously in
all three frequency regions. The quantitative comparison similar to
Fig. 2 is shown in Supplementary Fig. 2. Our results are consistent
with refs. 29,30, where the SD or ISD could not match all
frequencies in their respective experiments.
Furthermore, we compare with experiments the cyclotron mass

m* (in a unit of bare electron mass m0) of quantum orbits in Table
1 and Fig. 2. In the low-frequency region in Fig. 2d, reported
masses are rather diverse in literature. Several experiments found
m*= 0.03–0.14, while ref. 32 and ref. 36 found m*= 0.16–0.40, [sets
F and K in Fig. 2d]. Our calculations agree better with ref. 32 and
ref. 36 (except the large value of 2.90 for the observed frequency
221 T) in the low-frequency region. In the medium- and high-
frequency regions, experiments30,32,35,36 found effective masses
typical from 0.3 to 1.7. In general, our calculated m* at −40 and
−85meV are within experimental ranges, by considering the
uncertainty of Fermi energy in experiments. Therefore, we
conclude that our calculations considering the interlayer structural

modulation agree with recent quantum oscillation experiments in
both fundamental frequency and cyclotron mass.
These quantum orbits exhibit interesting interlayer hybridiza-

tion, as shown in Fig. 1c–f and Table 1. Approximately half of the
FSs at –40 and –85meV are solely contributed by either SD or ISD
layer, and the rest show a strongly mixed character of two layers,
labeled as mixed in Table 1. There are two ways to form a mixed
SD+ ISD FS. In one way, part of the Fermi contour is contributed
by the SD layer and the rest by ISD with weak hybridization
between two layers. This happens mostly in the kz= 0.5 plane, for
example, for orbits of 13 and 30 T at −40meV. The other way
involves strong hybridization between two layers and the Fermi
contour has comparable contributions from both layers almost
everywhere. This happens mostly in the kz= 0 plane, which is the
case for most mixed quantum orbits at kz= 0. Therefore, the
interlayer structural modulation is crucial in determining the
nature of FSs for the CsV3Sb5 CDW phase. Additionally, one can
find by comparing the kz= 0 and 0.5 planes that many large FS
pockets are quasi-2D while many small FSs are 3D in geometry.

Topological properties of quantum orbits
Next, we discuss the topological properties of these quantum
orbits that are debated in experiments. In the following, the sum
of the Berry phase, orbital and Zeeman phases under SOC is
dubbed the generalized Berry phase λ, i.e., λ= ϕB+ ϕR+ ϕZ.
According to previous discussions40, symmetries of quantum
orbits introduce additional constraints on λ. For CsV3Sb5 with both
inversion and time-reversal symmetries, all bands are doubly
degenerate with opposite generalized Berry phases ± λ (reduced
to –π–π) in the spinful case. The superposition of the doublets

Table 1. Quantum orbits of the 2 × 2 × 2 CDW at −40 and −85meV.

−40meV −85meV

Freq. kz m* Origin ϕB λ Δϕ Type Freq. kz m* origin ϕB λ Δϕ Type

(T) (2π/c) (m0) (π) (π) (π) (T) (2π/c) (m0) (π) (π) (π)

13 0.5 −0.25 mixed 1 0.68 1 I 5 0.5 −0.14 SD 0 0.93 1 II

20 0 −0.43 ISD 0 0.38 0 14 0 0.21 mixed 1 0.77 1 I

30 0.5 0.34 mixed 1 0.83 1 I 33 0 0.25 SD 0 0.84 1 II

77 0.5 0.75 mixed 0 0.92 1 III 40 0.5 −0.23 SD 0 0.44 0

98 0 0.90 mixed 0 0.87 1 IV 51 0.5 −0.25 ISD 0 0.52 1 IV

152 0.5 0.46 SD 0 0.98 1 II 76 0 0.27 SD 0 0.02 0

202 0 0.66 SD 0 0.37 0 99 0.5 −0.50 mixed 0 0.89 1 II

230 0 −0.46 mixed 0 0.84 1 II 224 0 −0.65 ISD 0 0.57 1 III

609 0 −0.30 mixed 0 0.48 0 429 0.5 3.14 SD 0 0.06 0

730 0.5 −0.38 SD 0 0.92 1 II 605 0 0.70 SD 1 0.38 0

734 0 1.69 SD 0 0.22 0 617 0.5 0.72 SD 1 0.35 0

894 0 −0.55 mixed 0 0.19 0 672 0 2.10 mixed 0 0.11 0

898 0.1 1.66 mixed 0 0.71 1 IV 735 0 −0.35 mixed 0 0.55 1 IV

912 0 2.00 mixed 0 0.31 0 765 0.5 1.09 ISD 0 0.60 1 III

1067 0.5 0.90 SD 0 0.33 0 940 0.5 −0.56 ISD 0 0.07 0

1445 0.5 0.57 ISD 0 0.26 0 1267 0 0.79 mixed 0 0.25 0

1293 0.5 1.60 mixed 0 0.08 0

Frequency (Freq.) is in unit of T. kz refers to the kz plane (in a unit of 2π/c, c is the lattice constant) the corresponding quantum orbit located in. The wavy-
underlined kz indicates a minimal Fermi surface cross-section and the others correspond to maximal ones. The maximal/minimal orbit provides helpful
information to determine the sign of the extra π/4 phase shift when analyzing quantum oscillations of a three-dimensional material. The cyclotron mass m* is
in a unit of bare electron mass m0, where positive and negative values are for electron and hole pockets, respectively. The origin of quantum orbits (i.e., layer-
contribution) is indicated by SD, ISD, and mixed (SD+ISD), as obtained from Fig. 1(b)–(f ). The Berry phase ϕB of the quantum orbit is calculated without SOC
and the generalized Berry phase λ is calculated with SOC (reduced to the range of –π to π). All quantum orbits are doubly degenerate and have λ of the same
magnitude but reversed signs (only the positive set is listed). Depending on ∣λ∣ being either smaller or larger than 0.5π, the final phase shift (Δϕ) in quantum
oscillation contributed by two degenerate quantum orbits is either 0 or π. The four types of nontrivial quantum orbits are defined in the main text and
classified according to Table S1 and S2 in Supplementary.
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leads to a 2j cosðλÞj scaling of the quantum oscillation intensity,
and the λ itself is no longer the total phase shift of the quantum
oscillation. Instead, the quantum oscillation always exhibits a
quantized phase shift Δϕ (see the method section and Supple-
mentary Notes 1–3). Here, Δϕ is 0 or π, depending on whether the
reduced ∣λ∣ is smaller/larger than 0.5π. According to the origin of λ,
nontrivial quantum orbits characterized by Δϕ= π (or ∣λ∣ > 0.5π) in
CsV3Sb5 can be classified into four types. Type-I refers to the Dirac
point-driven quantum orbit exhibiting a robust ϕB= π and small
ϕR and ϕZ. Type-II shows strong SOC-induced large ϕB+ϕR with a
small ϕZ. In type III, the ϕZ is dominant over the ϕB+ϕR. In type IV,
both the SOC-induced ϕB+ϕR and ϕZ are crucial. We point out that
strong SOC and/or Zeeman effect can also suppress the λ heavily
(∣λ∣ < 0.5π) for some quantum orbits with a robust ϕB of π.
We first calculate the accumulated Berry phase along the

quantum orbit in the 2 × 2 × 2 CDW phase using the Wilson loop
method54–56 without including SOC. To demonstrate the type-I
quantum orbits, we show the band structure without SOC in Fig.
3(a). At the K/H point, one can find Dirac points in kz= 0/0.5 planes
caused by the kagome structure symmetry, where we mark the
higher Dirac point as K1/H1. However, these Dirac points cannot

be isolated band crossing points because they locate inside mirror
planes in the 3D momentum space. Otherwise, they would exhibit
a monopole-like Berry charge which violates the mirror symmetry.
Consequently, Dirac points expand inside the mirror plane and
present a continual nodal line/ring. Along the K− H line, there
indeed exists a Dirac nodal line connecting K1 and H1. As shown
in Fig. 3d, quantum orbits surrounding the nodal line show a π
Berry phase, which is the case of two medium-frequency orbits
(605 and 617 T) at the Fermi energy –85meV (Table 1). After
considering SOC, however, the generalized Berry phases λ of these
two quantum orbits are heavily reduced (∣λ∣ < 0.5π) by the large
Zeeman phases (roughly proportional to the cyclotron mass, see
Supplementary Table 2). Thus such orbits are trivial in quantum
oscillation showing no phase shifts. Recent experiments indeed
observed quantum orbits with similar frequencies
(580–590 T29,35,36 and 645 T36). However, none of them shows a
π phase shift. Furthermore, there are additional Dirac points due to
band crossings on the M− K line [Di, i= 1–8, see Fig. 3a] and also
on the L− H line (Pi). Because of the mirror symmetry with respect
to the MKH plane, Di and Pi are linked by a nodal line inside the
MKH plane and related bands have opposite mirror parities.

Fig. 3 Dirac nodal lines and nodal networks in the band structure. a Band structures on kz= 0 (left part) and 0.5 (right part) planes without
SOC. Eight Dirac points on the MK (LH) line near the charge neutral point are labeled from D1 to D8 (P1–P8), respectively. Selected Dirac points
at K and H are labeled as K1 and H1, respectively. The two dash-dotted horizontal lines indicate the energy positions of −40 and −85meV,
respectively, where nontrivial Fermi surfaces (ϕB= π) are indicated by blue ellipses. Dirac nodal lines/rings connecting D1 to D8 (P1–P8) Dirac
points are divided into four groups, as sketched in (b–e). Blue circles in (b) and (d) indicate Fermi surfaces surrounding a nodal line at −40 and
−85meV in (a, b), respectively. For simplicity, we show those Dirac nodal lines/rings and Fermi surfaces partly near one M/L and one K/H point.
The full Dirac nodal lines/rings and nontrivial Fermi surfaces can be obtained by crystal symmetries (P6/mmm). We note that nodal lines except
the K1− H1 line are not necessarily straight along kz but locate inside the mirror plane.
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Because kz= 0 and 0.5 planes are mirror planes, some of Di/Pi
extend further inside the kz= 0/0.5 planes and form nodal rings.
Therefore, intriguing Dirac nodal networks with linked nodal lines
and nodal rings emerge in the momentum space. For example,
D1 & P1 (also P4 & D4 and D5/6/7 & P5/6/7) are connected to form
a cylinder-like network, and P2 & P3 are linked to constitute a 3D
network. For the nodal network, the quantum orbit can exhibit a π
Berry phase if it surrounds one nodal line and avoids crossing
other nodal lines/rings. This is the case for the D5-induced FS (14 T
at –85meV) in Fig. 3d and P1-induced FS (30 T at –40meV) in Fig.
3b which are type-I quantum orbits (Table 1). In contrast, a Dirac-
like crossing cannot generate a nontrivial FS in a plane if there is
also a related nodal ring in the same plane. For example, D1/D4
fails to create a nontrivial FS in the kz= 0 plane. In addition, there
is another nodal line crossing the X point [Fig. 3(b)], leading to a π
Berry phase of the 13 T orbit at –40meV, which belongs to the
type-I quantum orbits. These Dirac nodal lines and networks may
generate nontrivial quantum orbits in a relatively large energy
range besides –40 and –85meV. We note that Dirac nodal lines
were reported in the pristine phase of AV3Sb52,57,58 rather than the
CDW state.
Other three types of nontrivial quantum orbits originated from

either strong SOC and/or strong Zeeman effect, are shown in
Table 1 (see details in Supplementary Tables 1, 2). Most type II to
type IV nontrivial quantum orbits are centered at time-reversal
invariant points [i.e., Γ, A, M, and L points, see Fig. 3b]. Thus their
Berry phases ϕB and orbital phases ϕR are strictly zero without SOC
due to the time-reversal symmetry constraint (see Supplementary
Note 2). Only when SOC is involved the ϕB and ϕR can appear in
quantum orbits.
Overall, we found sixteen nontrivial quantum orbits at two

Fermi energies. More than half of them originate from a mixture of
SD and ISD layers. We list calculated nontrivial quantum orbits and
the experimental ones in Table 2 for convenience of comparison.
Except for extremely high-frequency orbits, our calculations agree
well with experiments in the fundamental frequency, cyclotron
mass, and topology.
Recently, Zhou and Wang proposed an effective single-orbital

model for the 2 × 2 × 1 CDW with time-reversal symmetry break-
ing loop-currents49, where reconstructed small Chern Fermi
pockets carrying concentrated Berry curvature of the Chern band
emerge at M points. These pockets are connected by one-quarter
and three-quarters of the primitive reciprocal lattice vectors and
may play a crucial role in the observed pair density wave order in
the superconducting state5. We verified the existence of such
Fermi pockets at M for the realistic 2 × 2 × 2 CDW. They can be
seen at –40 (20 T) and –85meV (99 T) in Fig. 1g, j, respectively.
Moreover, we find that under SOC, the 20 T pocket does not have

a Berry phase without time-reversal symmetry breaking, while the
99 T pocket has a Berry phase close to π. Upon closer examination
(Supplementary Fig. 4 for FS unfolding), the 20 T pocket around M
at –40meV originates from the ISD layer due to folding a pocket
centered at the crossing point between Γ− K and M−M in the
primitive Brillouin zone, which can be captured by a 2 × 2 × 1 real
CDW with ISD bond order59. In contrast, the 99 T pocket in the
kz= 0.5 plane is of mixed ISD and SD character generated by
folding a pocket at the kz= 0.25 plane in the primitive zone, which
is unique to the alternate stacking of the ISD and SD layers of the
3D CDW.
Additionally, recent Raman experiments60,61 and time-resolved

angle-resolved photoemission spectroscopy62 detected CDW-
driven phonon modes. Measured CDW modes can be described
by intralayer vibrations, except that the lowest-energy phonon is
attributed to the interlayer Cs vibrations. Compared to phonons,
electrons experience a more three-dimensional CDW structure
and show stronger interlayer interaction in CsV3Sb5. The present
2 × 2 × 2 CDW is a minimal model to capture the interlayer
coupling and reproduce all quantum orbits measured in experi-
ments (except large orbits due to magnetic breakdown). If we
adopt the 2 × 2 × 4 models in calculations, it will bring a much
larger number of quantum orbits and complicate the physics
understanding.
We point out that Dirac nodal lines and networks may be a

general characteristic of kagome materials. For example, the
K1− H1 nodal line comes from the characteristic Dirac points of
the Kagome lattice. This scenario applies both to nonmagnetic
and magnetic kagome materials. For instance, a similar K1− H1
nodal line was also found in the noncollinear kagome antiferro-
magnets Mn3Sn/Ge63. Because many mirror planes (e.g., the MKH
plane and ΓML) exist, degenerate band crossing points form nodal
lines inside mirror planes and nodal lines from intersecting planes
may link to each other. In the presence of strong SOC, these nodal
lines are usually gapped out50,51 and generate large Berry
curvature64 or spin Berry curvature65. Some nodal lines also lead
to drumhead-like topological surface states66 on a specific facet.
In summary, we studied the Fermi surface properties of the 3D

CDW in CsV3Sb5. The comprehensive analysis of quantum orbits
indicates that the 2 × 2 × 2 CDW with interlayer structural
modulation agrees broadly with recent quantum oscillation
experiments in fundamental frequencies, cyclotron mass, and
nontrivial phase shifts. The nontrivial Berry phases reveal a hidden
Dirac nodal network in the momentum space due to mirror
symmetry protection in the spinless case. We advanced the study
of quantum oscillations in layered materials by identifying the
different structural and topological origins of all quantum orbits.
Our work not only resolves the Fermi surface puzzle in CsV3Sb5
but also serves as the first realistic example to show the crucial
role of SOC in determining the topology of quantum orbits in
quantum oscillation experiments.

METHODS
Fermi surface calculation
We have performed density-functional theory (DFT) calculations
with the Vienna ab initio Simulation Package (VASP)67,68 and fully
relaxed all structures. Except for structural relaxation, spin-orbital
coupling (SOC) is considered in electronic structure calculations if
otherwise stated. More details about DFT calculations are referred
to in ref. 4. High-resolution Fermi surfaces are calculated via
Wannier functions69 (V-d and Sb-p orbitals) extracted from DFT. k-
meshes of at least 100 × 100 × 100 and 100 × 100 × 50 are used to
calculate band structures in the full BZs of 2 × 2 × 1 and 2 × 2 × 2
CDWs, respectively. The in-plane extremal (maximal and minimal)
orbits of the closed FS at different energies, which corresponds to
the magnetic field parallel to the c axis in quantum oscillation

Table 2. Frequencies of calculated and experimentally observed
nontrivial quantum orbits.

Exp. −40meV −85meV

5

1832 13 14

2836 30 33

7330, 7436, 7935, 8536 77 51

10232 98 99

152

23932 230 224

72730, 73635, 78832, 80435 730 735, 765

86532 898

160532

213532
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experiments, are determined by tracking the FS slice changes
along the kz direction. The cyclotron frequency of an electron on a
closed quantum orbit is calculated according to Onsager’s
relation70, F ¼ _c

2πe Ae , where Ae is the area of an extremal orbit at
Fermi energy εF, e is the electron charge and ℏ is the reduced
Planck constant. The effective mass of a cyclotron electron is
calculated with m� ¼ _2

2πm0

∂Ae
∂εF
, where m0 is the bare electron mass.

Quantum oscillation phase calculation
Comprehensive explanations of different phases in quantum
oscillations are found in Supplementary Notes 1–3. Here we
provide a brief introduction to how to calculate them. More
theoretical backgrounds can be found in refs. 40,41.
In the quantum oscillation experiment, electrons undergo

cyclotron motion whose phase interference condition gives rise
to Landau level. There are mainly six contributions to the total
phase and the quantization rule for the total phase is,

l2BAe þ λa � ϕM ¼ 2πn (1)

where lB ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

_c=eB
p

is the magnetic length. The first term is the
sum of the de Broglie phase and Aharonov–Bohm (A-B) phase. ϕM

is the Maslov correction and equals to π for a simple closed
smooth curve (all the cyclotron orbits considered in this paper
belong to this category). The generalized Berry phase λa (a= 1, 2
the degenerate band indices) has three contributions (Berry phase
ϕB, orbital phase ϕR, and spin Zeeman phase ϕZ) and can be
calculated from the eigenvalue eiλa of the propagator U[C] of loop
C (exp means path-ordered exponential),

U½C� ¼ exp i
I

ðAþ AÞ � dk þ g0_
4mv?

σzjdkj
� �� �

(2)

where Amn= i〈umk∣∇kunk〉 (m; n 2 ZD, ZD is the degenerate band
group being considered.) is the non-Abelian Berry connection, and
the first term is the Berry phase for the multiband case. The
second phase, which comes from the orbital magnetic moment, is

Amn � dk ¼
X

l∉ZD

Ax
mlΠ

y
lndkx=2vy þ ðx $ yÞ (3)

with Πln= 〈ulk∣v∣unk〉 being the interband matrix elements of the
group velocity operator v. Here, we emphasize the importance of
the orbital phase which is usually ignored in experiments. Since
CsV3Sb5 has inversion and time-reversal symmetries, the orbital
phase is identically zero for all quantum orbits without SOC. But in
the presence of SOC, it may contribute non-negligibly to the total
phase λa. For example, it can compensate the loss of the π Berry
phase in a Dirac model with a Semenoff mass71 (see also
Supplementary Note 3). The last term comes from the spin
Zeeman effect and is usually written as a reduction factor72,73 in
quantum oscillation. When SOC is not included, the three terms
can be calculated separately. Under SOC, the three contributions
to the propagator must be calculated as a whole, so separating
the spin reduction factor is no longer possible. In other words, the
orbital and Zeeman phases must be calculated together with the
Berry phase to get observable results.
The Berry phase, with or without the inclusion of the orbital

phase and the generalized Berry phase λa calculated for quantum
orbits of the 2 × 2 × 2 CDW are listed in Supplementary Table 1, S2.
Due to the double degeneracy of quantum orbits ensured by both
inversion and time-reversal symmetries, their generalized Berry
phases are λ1=+ λ and λ2=−λ. Thus the sum of two oscillations
is

cosðl2BAe þ λ1 � ϕM ± π
4Þ þ cosðl2BAe þ λ2 � ϕM ± π

4Þ
¼ 2 cosðλ1�λ2

2 Þ � cosðl2BAe þ λ1þλ2
2 � ϕM ± π

4Þ
¼ 2j cosðλÞj � cosðl2BAe þ Δϕ� ϕM ± π

4Þ
(4)

where the final phase shift Δϕ is 0 or π, depending on whether
cosðλÞ is positive (∣λ∣ < 0.5π) or negative (∣λ∣ > 0.5π). If ∣λ∣= 0.5π,
the oscillation may not be observable because cosðλÞ ¼ 0. Notice
that the ± π

4 phase correction comes from the kz integral in a
three-dimensional case (it does not exist in a two-dimensional
system).
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