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A jeff= 1/2 Kitaev material on the triangular lattice: the case
of NaRuO2
Aleksandar Razpopov 1✉, David A. S. Kaib 1✉, Steffen Backes 2,3,4, Leon Balents5, Stephen D. Wilson 6, Francesco Ferrari 1,
Kira Riedl1 and Roser Valentí 1✉

Motivated by recent reports of a quantum-disordered ground state in the triangular lattice compound NaRuO2, we derive a jeff=
1/2 magnetic model for this system by means of first-principles calculations. The pseudospin Hamiltonian is dominated by bond-
dependent off-diagonal Γ interactions, complemented by a ferromagnetic Heisenberg exchange and a notably antiferromagnetic
Kitaev term. In addition to bilinear interactions, we find a sizable four-spin ring exchange contribution with a strongly anisotropic
character, which has been so far overlooked when modeling Kitaev materials. The analysis of the magnetic model, based on the
minimization of the classical energy and exact diagonalization of the quantum Hamiltonian, points toward the existence of a rather
robust easy-plane ferromagnetic order, which cannot be easily destabilized by physically relevant perturbations.
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INTRODUCTION
The first definition of a quantum spin liquid (QSL) state dates back
to the milestone paper by P.W. Anderson in 19731, in which the
resonating valence-bond wave function, a macroscopic liquid-like
superposition of singlet states, was proposed as a variational
guess for the ground state of the triangular lattice Heisenberg
antiferromagnet2,3. Another archetypal portrait of a QSL state is
more recent and originated from the seminal work of Kitaev4, who
set a bond-anisotropic spin model on the honeycomb lattice with
an exact spin-liquid ground state represented in terms of
Majorana fermions. Both these alternative descriptions of QSL
states, which are associated with different microscopic mechan-
isms of frustration, left an indelible mark in the context of
frustrated magnetism. On the one hand, the triangular lattice
antiferromagnet is the prototypical example of a system with
geometric frustration, where the presence of antiferromagnetic
Heisenberg couplings over odd-sided loops of sites fights the
tendency toward long-range magnetic order. On the other hand,
the possibility of realizing anisotropic interactions as a conse-
quence of the interplay between spin–orbit coupling (SOC), crystal
field splitting and Hund’s coupling5–7 has opened a whole new
field of investigation centered around the Kitaev materials8–10.
Even though the original Kitaev honeycomb model has no odd-
sided loops and hence no geometric frustration, it nevertheless
features exchange frustration10,11 due to the fact that bond-
directional interactions with competing quantization axes cannot
be satisfied simultaneously.
In this work, we investigate a recently synthesized compound,

NaRuO2, in which both paradigms of magnetic frustration
described above come into play. The crystal structure of this
material displays perfect triangular lattice planes of edge-sharing
RuO6 octahedra, separated by Na ions12–14 (illustrated in Fig. 1).
The space group of NaRuO2 is R3m. The same structural
arrangement is found in a family of rare-earth chalcogenides
which have been recently investigated as possible spin liquid

candidates15: NaYbO2
16, NaYbS217,18, and NaYbSe219. However, at

variance with the latter, in NaRuO2 the rare-earth ion is replaced
by ruthenium, which belongs to the d-block of the periodic table.
In analogy to the intensively studied honeycomb compound
α-RuCl38–10, the strong SOC of ruthenium, combined with the
geometry of edge-sharing ligand octahedra, is expected to realize
a prime example for the Jackeli–Khaliullin mechanism to form a
jeff= 1/2 magnet with significant Kitaev interaction7. Resistivity
measurements identified NaRuO2 to be indeed insulating, with a
small magnetization upon application of an external magnetic
field, and a paramagnetic Curie temperature dependence of the
magnetic susceptiblity13. These signatures point toward the
possibility of a QSL ground state, making a microscopically
motivated magnetic model for NaRuO2 not only intriguing but
also necessary.
The interplay between Heisenberg exchange and Kitaev

interactions on the triangular lattice20,21 has been investigated
in several works, revealing, for instance, the presence of crystals of
Z2 vortices in the proximity of the magnetic phase with 120∘

order22, and possibly a spin nematic state around the antiferro-
magnetic Kitaev point23–25. Furthermore, an extended spin model
featuring the Γ-exchange coupling26, which can favor the onset of
a stripy magnetic phase, has been investigated in connection with
the jeff= 1/2 iridate compound Ba3IrTi2O9

27,28. In this regard, a
comprehensive overview of the different phases induced by
bond-anisotropic (nearest-neighbor) couplings on the triangular
lattice is provided by ref. 29. More recently, analogous anisotropic
spin Hamiltonians have been shown to capture the effective
magnetic interactions of certain transition metal dihalides30–32.
In addition to bilinear spin couplings, several magnetic

materials with a triangular lattice structure, e.g., organic charge-
transfer salts33, are characterized by non-negligible four-spin ring
exchange interactions34, which incorporate higher-order contribu-
tions in the perturbation-theory treatment of the Hubbard model
around the Mott insulating regime. While at the (semi-)classical
level ring exchange can induce the formation of spirals and
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non-trivial chiral orders (e.g., spin-vortex crystals)35, or significantly
affect the low-energy magnon spectra of collinear phases36, at the
quantum level it is argued to potentially stabilize QSL phases37,38;
in this regard, the possible appearance of a gapless QSL with a
spinon Fermi surface39, or a Kalmeyer–Laughlin chiral state40, has
been discussed. An additional level of complication arises in
magnetic systems with strong spin–orbit interactions, namely the
presence of spin-anisotropic ring-exchange interactions, which
have been scarcely investigated in the past41.
In this work, we perform a thorough inspection of the

magnetic properties of NaRuO2, from first-principles calculations
to microscopic spin models. We provide theoretical justification
for the low-energy description of NaRuO2 in terms of jeff= 1/2
pseudospin degrees of freedom, highlighting the importance of
different sources of interactions, such as intra- and inter-layer
exchange couplings, and bond-anisotropic bilinear and ring-
exchange interactions stemming from the strong SOC effects.
The analysis of (classical and quantum) magnetic models
indicate the existence of a robust easy-plane ferromagnetic
(FM) order, which cannot be easily destabilized by perturbations
around the ab initio derived spin Hamiltonian. Based on our
proposed magnetic model, we also provide theoretical inelastic
neutron scattering (INS) spectra, which can be directly com-
pared to the experiment.

ELECTRONIC PROPERTIES
We begin by analyzing the electronic properties of NaRuO2 with
the help of density functional theory (DFT) calculations, as detailed
in the “Methods” section. The octahedral environment of the Ru
4d5 sites leads to a crystal field splitting8,42,43 with unoccupied eg-
states and occupied t2g-states. The latter further split into jeff= 3/2
and jeff= 1/2 levels in the limit of strong SOC.
To estimate the Hubbard repulsion and Hund’s coupling of

NaRuO2, we employ constrained random phase approximation
(cRPA) calculations (see “Methods” section). In the non-relativistic
band structure, we observe a crossing between the Ru eg band
and a band with dominant Na 3s character close to the Γ point.
This poses the question of which bands should be included in the
Wannierization procedure prior to cRPA. One option is considering
only the five 4d Ru bands, which can be expected to lead to an
artificially enhanced eg screening. The corresponding cRPA result
is ðUavg; JavgÞ4d ¼ ð3:114; 0:4736Þ eV. Alternatively, the crossing
band may be included in a cRPA calculation based on a six-band
model. This choice leads to an artificially suppressed screening,
with ðUavg; JavgÞ4dþ3s ¼ ð3:1865; 0:4756Þ eV. Since it turns out that

both approaches lead to similar results, we choose to work with
the average of them: (Uavg, Javg)= (3.15, 0.47) eV.
We employ these values as correlation corrections on the Ru

4d electrons in a relativistic band structure calculation (GGA+
SOC+ U, see “Methods” section) with ferromagnetically aligned
magnetic moments. The resulting band structure and partial
DOS are shown in Fig. 2a. We choose the spin magnetic
moments to be polarized in the crystallographic a–b plane,
which is the most energetically favorable orientation. Within this
setting, we obtain an insulator with a charge gap of 2.1 eV which
is in agreement with recent resistivity experiments13. We find
that the combination of magnetism and Coulomb interaction is
necessary to open a realistic charge gap in NaRuO2, which is
further enlarged by SOC.

Fig. 1 NaRuO2 crystal structure, illustrations, and DFT results for the g-tensor values. a Crystal structure of NaRuO2 with an illustration of
interlayer bonds J⊥i. b Top view of the triangular Ru lattice, with an illustration of intralayer bonds and four-spin ring exchange plaquettes. The
cubic coordinates employed in the magnetic model are oriented approximately along Ru–O bonds, as shown in the top right corner.
c Trigonally compressed RuO6 octahedron and corresponding ab-initio g-tensor values, with b* defined perpendicular to the crystallographic a
and c axes.
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Fig. 2 Electronic band structure and density of states of NaRuO2.
a Ferromagnetic GGA+SOC+U results, with (Uavg, Javg)= (3.15, 0.47) eV
for the Ru 4d electrons, and magnetization polarized in the crystal-
lographic a–b plane. b Non-magnetic GGA+ SOC results. The partial
DOS for Ru 4d orbitals projected in the jeff basis (see Supplementary
Note 1) shows a dominant jeff= 1/2 weight close to the Fermi energy
(see inset).
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The partial DOS resolves the dominance of ruthenium weight
around the Fermi level, such that we can proceed with low-energy
modeling of this compound based on ruthenium bands.
The edge-sharing octahedral structure of NaRuO2 hints towards

the possibility of a jeff= 1/2 description of the low-energy
magnetic properties, in analogy with the intensively studied α-
RuCl3

8. To check the validity of the jeff= 1/2 picture for NaRuO2,
we calculate the non-magnetic band structure and project the
DOS in the jeff= {1/2, 3/2} basis obtained by considering only t2g
orbitals (see Supplementary Note 1). The results, reported in
Fig. 2b, show that the character of the DOS around the Fermi
energy is dominated by jeff= 1/2 states, thus justifying a low-
energy description in terms of jeff= 1/2 pseudospins.

Magnetic model
As an appropriate magnetic model for NaRuO2, we consider a
jeff= 1/2 pseudospin Hamiltonian. To relate the pseudospin S of
the magnetic Hamiltonian to the magnetic moment, M ¼ μBG � S,
we calculate the gyromagnetic g-tensor from first principles (see
“Methods” section). We find it to be approximately diagonal with
ðga; gb� ; gcÞ ¼ ð2:46; 2:43; 1:57Þ in crystallographic coordinates
(with b* perpendicular to a and c). With respect to the triangular
plane, the in-plane components (ga; gb� ) are larger than the out-
of-plane one (gc), as a direct consequence of the trigonal
compression of the RuO6 octahedra along the crystallographic c
axis (see Fig. 1c)44.
For the magnetic interactions between the pseudospins, we

consider a Hamiltonian consisting of a bilinear exchange term H2
and a four-spin ring exchange term H4. We express this model in
the conventionally used cubic coordinates for Kitaev materials,
which consist of orthogonalized axes oriented approximately
along the Ru-O bonds, as illustrated in the top right corner of
Fig. 1b. We denote the three components of the pseudospin at
site i as Sμi , with μ= {x, y, z}. In this framework, the [111]
pseudospin direction is parallel to the crystallographic c-axis. For
completion, in Supplementary Note 2 we translate our model to
an alternative reference frame with crystallographic coordinates29.
The bilinear contribution to the magnetic Hamiltonian H2 ¼P
i<j

P
μνJ

μν
i;j S

μ
i S

ν
j contains, especially for nearest neighbors, aniso-

tropic bond-dependent terms. Considering the symmetry con-
straints of the R3m space group, the bilinear exchange tensor on a
Z1-bond (as defined in Fig. 1b) follows the form

JZ1�bond ¼
J1 Γ1 Γ01
Γ1 J1 Γ01
Γ01 Γ01 J1 þ K1

0
B@

1
CA: (1)

Here, J1 is the isotropic Heisenberg exchange, K1 is the Kitaev
coupling, and Γ1 and Γ01 the off-diagonal symmetric exchange
parameters. The bilinear interactions on X1- and Y1-bonds are then
related to this expression by C3 spin rotations around the [111]
axis, amounting to cyclic permutation of (x, y, z) spin components.
We performed DFT calculations to obtain the magnetic

exchange parameters as described in the “Methods” section. In
Table 1 we show the dominant magnetic couplings extracted for
nearest-neighbor bonds with the projED method45 and the
isotropic longer-range exchange from total energy mapping
analysis (TEMA). Both methods predict a dominant intralayer FM
Heisenberg J1 coupling. However, for a quantitative agreement of
the results, larger U values in the DFT+ U calculations with respect
to projED should be considered in this case. This is to be expected
since the two techniques rely on different implementations of the
Coulomb terms (see “Methods”). The readjustment can be directly
taken into account by considering a scaling factor JprojED1 =JTEMA

1 �
0:65 for the Heisenberg exchange couplings obtained by TEMA.
This is justified by the fact that the ratio between different
Heisenberg exchange couplings does not vary significantly as a

function of U for this system. In addition to the strong nearest-
neighbor FM J1, the shortest further-neighbor intralayer exchange
couplings are found to be non-negligible and of similar
magnitude, with J2 being anti- and J3 ferromagnetic. The interlayer
Heisenberg couplings J⊥1, J⊥2, and J⊥3 (shown in Fig. 1a) are one
magnitude smaller than the intralayer ones, with J⊥1 and J⊥2 being
ferromagnetic and J⊥3 antiferromagnetic.
Within the projED method, we obtain the bond-dependent

anisotropic couplings K1, Γ1, and Γ01 at nearest-neighbors, where
the cRPA values (Uavg, Javg)= (3.15, 0.47) eV are employed. Com-
pared to previously estimated magnetic parameters for other Ru
4d systems46–49, it is interesting to note that we have strongly
antiferromagnetic Kitaev K1 term and a dominant positive Γ1 as the
largest coupling. These are contributions that, to the best of our
knowledge, have not been observed in a real material with
effective spin 1/2 so far.
The microscopic origin of the unusual antiferromagnetic sign of

the Kitaev interaction encountered here can be understood as
follows: from the perspective of second-order perturbation theory in
a perfect octahedral environment (considering only the occupied t2g
orbitals)50, the Kitaev interaction scales as K1 / ðt1 � t3Þ2 � 3 t22. On
a Z-bond, the hopping parameters are defined as the ligand-assisted
hopping t2= t(xz; yz), as well as t1= t(xz; xz)= t(yz; yz) and t3= t(xy; xy),
which stem predominantly from direct d orbital overlap. For the
prime example of the honeycomb Kitaev material α-RuCl3, the
indirect hopping t2 is dominant, somewhat close to the t2-only model
in the Jackeli-Khaliullin mechanism, where the Kitaev interaction is
FM (K1 / �3t22)

7. In comparison, the direct hoppings t3 and t1 gain
importance in NaRuO2, where the nearest neighbor Ru-Ru bond
length is significantly smaller than in α-RuCl3. Indeed, for NaRuO2, a
non-relativistic DFT calculation yields t1= 80 meV, t2= 125 meV and
t3=− 261 meV. As dictated by the geometry, t3 is negative and
larger in magnitude than the positive t1. The resulting antiferromag-
netic Kitaev interaction in NaRuO2 can hence be directly related to
the shorter nearest-neighbor bond length of this triangular
compound. The perturbation theory perspective also offers an
explanation for the dominance of the off-diagonal symmetric
exchange Γ1, which scales approximately as Γ1∝ t2 (t1− t3)50. While
the magnitude of K1 reduces with the competition between indirect
and direct contributions, Γ1 increases proportional to the magnitude
of the hoppings, leading to a magnetic model dominated by the off-
diagonal symmetric exchange for NaRuO2.
Despite the antiferromagnetic sign of the Kitaev interaction, the

bilinear exchange Hamiltonian H2 features a ferromagnetically

Table 1. Magnetic exchange parameters.

dRu−Ru [Å] J [meV]

J1 3.056 −4.16

K1 +2.86

Γ1 +7.00

Γ01 +0.65

J2 5.293 +1.86

J3 6.112 −1.64

J⊥1 5.656 −0.14

J⊥2 6.429 −0.73

J⊥3 7.118 +0.39

Calculated magnetic interactions (J1 matrix, see Eq. (1)) for the nearest
neighbor, and the longer-range intra- (Ji) and interlayer (J⊥i) bonds. The
nearest neighbor couplings, as defined in Eq. (1), are extracted with the
projED method, while the isotropic J couplings are determined by TEMA
within the VASP framework. The TEMA results are scaled by a factor of
JprojED1 =JTEMA

1 ¼ 0:65 (see main text).
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ordered ground state, due to significant J1 < 0 and Γ1 > 0
interactions, as discussed in more detail below. To seek out
possible additional interactions that might destabilize the FM
ground state, we consider the effects of higher-order ring
exchange interactions. Compared to honeycomb Kitaev materials,
NaRuO2 could be predestined for such interactions, due to the
marginally insulating Mott state reported in experiments13 and to
its triangular lattice structure, where the shortest closed loops
consist of four (instead of six) sites. Four-spin ring exchange
without SOC effects has been discussed plentifully in the
literature34,36–38,40 and takes the form

Hiso
4 ¼ K iso

S2
P
hijkli

ðSi � SjÞðSk � SlÞ þ ðSi � SlÞðSj � SkÞ

� ðSi � SkÞðSj � SlÞ;
(2)

where the summation 〈ijkl〉 goes over plaquettes with sites i and k
lying across a diagonal34, Kiso is the coupling constant, and the
superscript “iso” denotes that this is the conventional isotropic
(i.e., SU(2)-symmetric) ring exchange. Note that the prefactor
conventions for the ring exchange interaction vary in the
literature35,39,40,51. Here, we choose to include a factor 1

S2
in Eqs.

(2), (3). Thus, in the convention without this prefactor (e.g., ref. 40),
the ring exchange coupling constants we compute below would
appear four times larger.
However, for NaRuO2 there is no reason why the ring exchange

between the pseudospin jeff ¼ 1
2 moments should follow the form

ofHiso
4 , since SOC is expected to induce anisotropic four-site terms

in the Hamiltonian. In the most general form, an anisotropic four-
spin exchange may be expressed as

Htot
4 ¼ 1

S2
X
hijkli

X
μνρη

Kμνρη
ijkl ðSμi Sνj SρkSηl Þ; (3)

where the tensorK contains the coupling constants. The presence
of inversion symmetry with respect to the center of each
plaquette, together with a C2 rotation axis parallel to the shortest
diagonal, reduces the 81 entries of K for one plaquette to 24
independent parameters. Furthermore, analogous to the X-, Y-,
and Z-bonds of bilinear exchange, it is convenient to define X-, Y-,
and Z-plaquettes, as shown in Fig. 1b. The three plaquettes are
related by C3 rotations around the out-of-plane axis and hence the
tensor of one plaquette type fully encodes Htot

4 .
Note that in contrast to conventional ring exchange, care has to

be taken for the order of the site numbering within a plaquette.
For example, for a single plaquette (with the site labeling
illustrated in Fig. 1b), swapping two sites across a diagonal is
not a symmetry of the ring-exchange tensor, i.e., Kμνρη

1234 ≠Kμνρη
1432,

even in presence of the aforementioned symmetries.
To compute the ring-exchange tensor K from first principles,

we employ the projED method, which has been used previously to
determine ring-exchange couplings for organic triangular lattice
compounds35,52. Results on a Z-plaquette are given in Table 2, and
details of the calculation are outlined in the “Methods” section. We
do not attempt to create a minimal model here and show
agnostically the full ab-initio result. Overall, the four-site ring
exchange contribution in NaRuO2 does not seem to be obviously
negligible, with a strength of roughly 5–10% of the nearest-
neighbor bilinear exchange parameters. As anticipated, the shown
results deviate substantially from the conventional isotropic ring
exchange Hiso

4 . This is not surprising because of the strong SOC in
NaRuO2. For instance, among the diagonal components char-
acterizing the Z-plaquette, the Kzzzz

1234 term strongly differs from
Kxxxx

1234 ¼ Kyyyy
1234.

To quantify the degree of anisotropy of the total ring exchange
Hamiltonian encoded in Table 2, we express it as a sum consisting
of the conventional isotropic ring exchange from Eq. (2) and a
purely anisotropic contribution: Ktot ¼ Kiso þKani. The choice of
this splitting is not unique, but we choose the coupling constant

Kiso in Kiso� �μνρη
1234 ¼ K iso δμνδρη þ δμηδνρ � δμρδνη

� �
(cf. Eq. (2)) such

that the tensor-norm of the anisotropic part,
kKanik ¼ kKtot �Kisok, is minimized. Here, the tensor 1-norm is
used (kKk ¼ P

μνρηjKμνρη
1234j). This choice is motivated by an

analogy to the case of the bilinear Hamiltonian, where the same
procedure splits the bilinear exchange tensor Jμν

ij into an
(isotropic) Heisenberg exchange part and an anisotropic part,
arriving at the same definition of Heisenberg-J as in Eq. (1).
Dissecting the ring-exchange interaction in this way leads to
Kiso=− 0.06meV and kKanik = kKisok ¼ 5:6, which shows that
ring exchange in NaRuO2 is dominated by the anisotropic
contributions.

Properties of the magnetic model
We investigate the ground state of the magnetic model given in
Table 1 by applying two different methods. We consider the
classical ground state via an iterative minimization method of the
energy53,54 and then we include quantum fluctuations by tackling
the Hamiltonian with exact diagonalization (ED) on finite clusters
with up to 27 sites (see “Methods” section and Supplementary
Note 3).
First, we consider the classical ground state of the H2

Hamiltonian restricted to the triangular lattice plane. The omission
of inter-layer couplings is justified by their small estimated
magnitude compared to intra-layer couplings (cf. Table 1). The

Table 2. Four-spin ring exchange couplings for NaRuO2.

Kμνρη
1234

[meV]
Sμ1S

ν
2S

ρ
3S

η
4

0.1829 (xxzx + yyzy + zxxx + zyyy)

0.1828 (xxzy + yxzy + zyxx + zyyx)

0.1819 (zxzy + zyzx)

0.1810 (xzyz + yzxz)

−0.1740 (zzzz)

−0.1559 (xyzz + yzzx + zxyz + zzxy)

−0.1457 (xzzx + yyzz + zxxz + zzyy)

−0.1398 (xxxx + yyyy)

−0.1284 (xxxz + xzxx + yyyz + yzyy)

0.1122 (zxzz + zyzz + zzzx + zzzy)

−0.0969 (xyxy + yxyx)

−0.0829 (xyzy + yxzx + zxyx + zyxy)

0.0602 (xyzx + yyzx + zxxy + zxyy)

−0.0596 (xyxz + xzxy + yxyz + yzyx)

−0.0581 (xzzz + yzzz + zzxz + zzyz)

−0.0580 (xxzz + yzzy + zyyz + zzxx)

−0.0570 (xzyx + xzyy + yxxz + yyxz)

−0.0542 (xxxy + xyxx + yxyy + yyyx)

0.0354 (xxyz + xyyz + yzxx + yzxy)

−0.0352 (xzzy + yxzz + zyxz + zzyx)

−0.0272 (xxyy + xyyx + yxxy + yyxx)

0.0252 (xzxz + yzyz)

0.0145 (xxyx + xyyy + yxxx + yyxy)

0.0069 (zxzx + zyzy)

The corresponding ring-exchange expression is defined in Eq. (3) and the
parameters in this table refer to a Z-plaquette, with the site labeling
1, 2, 3, 4 illustrated in Fig. 1b. The ring-exchange parameters are calculated
with projED starting from a three-orbital Hubbard model. For simplicity, we
abbreviate Sμ1S

ν
2S

ρ
3S

η
4 with “μνρη”. Parameters for X- and Y-plaquettes follow

by C3 rotations around the out-of-plane axis.
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minimum of the classical energy is provided by an FM spin
arrangement, with spins lying in the triangular lattice plane. The
FM nature of the ground state turns out to be stable upon
different perturbations of the Hamiltonian around the ab initio
model (as discussed in Supplementary Note 4) and upon the
inclusion of anisotropic ring exchange or out-of-plane interactions.
For what concerns the latter, the classical energy minimum yields
an FM ground state, with spins being parallel to each other both
within and between layers, consistent with total energy calcula-
tions within DFT. However, the configuration with ferromagneti-
cally stacked FM layers is lower in energy than the one with
antiferromagnetically stacked FM layers only by ~0.1 meV/Ru. ED
calculations, performed on various two-dimensional clusters with
different shapes and numbers of sites, confirm the stability of the
FM ground state when quantum effects come into play. The
addition of the ring-exchange interactionHtot

4 does not destabilize
the FM order, neither for classical nor for quantum spins, but leads
to a small tilt of the ordered moment out of the triangular lattice
plane (by less than 1° in our model).
After having established the FM character of the ground state,

we move on to compute excitations, namely the INS intensity
predicted by the magnetic model. We employ linear spin-wave
theory (LSWT), complemented by ED to investigate effects beyond
LSWT. The results are summarized in Fig. 3, where the ab initio
magnetic form factor for Ru3+ is taken into account for the
calculation of spectral intensities55, such that the magnetic spectra
can be directly compared to neutron scattering experiments.
As previously mentioned, the magnetic moments of the FM

ground state of the H2 Hamiltonian lie within the triangular lattice
plane, without picking any preferred direction on the classical level.

However, this continuous symmetry is accidental and is lifted by
quantum fluctuations, which select the configurations in which the
moments are perpendicular to one of the nearest-neighbor bonds29.
At the linear spin wave theory level we then expect the appearance
of a gapless pseudo-Goldstone mode, which becomes gapped
when quantum effects beyond the lowest order are considered56,57.
The ED results, compared to the LSWT prediction in Fig. 3b, confirm
this picture and find a gap at q= 0 of the order of 1–2meV.
A further effect beyond LSWT that one might expect here is the

appearance of strong scattering continua even in magnetically
ordered phases. Such continua were observed in the honeycomb
Kitaev material α-RuCl358, where they have been traced back in a
spin-wave description to originate from significant anharmonic
effects due to Γ1 exchange46. However, despite the dominant off-
diagonal Γ1 exchange in the case of NaRuO2 (cf. Table 1), no
substantial scattering continuum is found here and the ED spectrum
qualitatively follows the sharp modes of LSWT, as shown in a
comparison in Fig. 3b. This can be understood as a consequence of
the fact that in the present FM state, the pseudo-Goldstone modes
remain at the ordering-wave vector Q= 0 (Γ-point), such that a
potential decay of single-magnons into a two-magnon continuum via
Γ1-exchange is kinematically not allowed. We note that the inclusion
of ring exchange increases the magnon energies by ~2meV, but
does not qualitatively change the main features of the spectrum.
We also compute the powder-averaged INS spectrum that

might be relevant for direct comparison of the predicted FM state
to experiments13. Here, the effect of inter-plane couplings is
included, in order to obtain meaningful integration over out-of-
plane momenta. The results from LSWT are shown in Fig. 3c and
feature the gapless pseudo-Goldstone mode at the smallest
momenta, and a less intense gapless mode around 1.2Å−1 arising
from the inter-layer FM stacking. Indeed, such a low-energy mode
and dominant FM fluctuations (i.e., small ∣q∣-excitations) are also
suggested by recent INS powder data at T= 0.25 K on NaRuO2

13.

DISCUSSION
In this work, we investigated the magnetic properties of NaRuO2, a
layered system of corner-sharing RuO6 octahedra, which constitutes
a prime example of the realization of anisotropic spin couplings,
such as the Kitaev interaction, on a triangular lattice structure. By
combining two complementary first-principle methods, TEMA and
projED, we derived a jeff= 1/2 pseudospin Hamiltonian for NaRuO2,
which displays a sizable antiferromagnetic Kitaev coupling. This is a
direct consequence of the comparatively smaller nearest-neighbor
Ru–Ru bond length in NaRuO2, leading to a dominance of direct
hopping mechanisms in contrast to other spin-1/2 Kitaev materials
to date. The strongest interactions of the model are however a
symmetric Γ1 exchange and an FM J1 Heisenberg term. The spin
Hamiltonian with bilinear interactions possesses a rather robust FM
order, oriented parallel to the triangular lattice plane formed by
ruthenium ions, also when longer-range intra- and inter-plane
exchange interactions are taken into account.
In a recent work59, the nearest nearest-neighbor spin Hamilto-

nian for NaRuO2 has been calculated from quantum chemistry
methods. While the signs of the nearest-neighbor couplings
match with the ones of our model, the Γ1 term of ref. 59 is smaller
than the J1 exchange strength, contrary to our results. The authors
explore the possibility of destabilizing the FM order by an
antiferromagnetic third-neighbors exchange, which is in contrast
with our first-principle prediction of an FM J3 coupling.
The parameters of the magnetic Hamiltonian, as obtained by

first-principles calculations with the pristine structure of NaRuO2,
place this material deep inside an extended FM phase, which
cannot be easily destabilized by perturbing the Hamiltonian
around the ab initio point. Since the experimentally available
results do not show the conventional features of long-range FM
order and suggest the possibility of a marginally insulating Mott

Fig. 3 Computed neutron scattering intensity within the mag-
netic model. a Momentum path in the Brillouin zone of the
triangular lattice, b INS intensity for the Hamiltonian H2 without
inter-plane interaction along the high symmetry lines in momentum
space. The color plot shows ED results combined from different
clusters up to 27 sites. Due to elsewise overbearing intensity at
q= 0, the plotted intensity is adjusted for q= 0, by reducing the
plotted intensity and broadening at q= 0 (see “Methods”). The
overlayed band dispersion is the single-magnon energy from LSWT.
As the ED ground state is a superposition of different degenerate
magnetic domains, the compared LSWT energy is plotted as the
average of three calculations, corresponding to expansions around
in-plane ferromagnetic order, with polarization perpendicular to X1-,
Y1- or Z1-bonds. c Calculated powder-averaged INS spectrum from
LSWT, for the model in Table 1, including inter-plane exchange
couplings. Intensities above ~3.5% of the maximum intensity are cut
off due to large intensity at q ≈ 0.
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state in NaRuO2
13, we explored the effects of higher-order spin

interactions, computing four-spin ring exchange couplings from
the projED method. However, although the latter turn out to be of
a non-negligible size, they seem insufficiently strong to melt the
FM order. Nevertheless, the nature of the ring exchange
interaction is strongly anisotropic and its consequences warrant
further investigation, also in the context of other Kitaev materials.
Furthermore, employing LSWT calculations and ED on finite

clusters, we computed the INS spectra for NaRuO2. Comparison of
the powder-average neutron scattering intensity with experimen-
tal observations shows a similar weight distribution which may
signal the presence of underlying ferromagnetism in the system,
although no long-range magnetic order was observed in
experiments13,14. This raises the question of the role of disorder
in the material, which may be addressed in future investigations.

METHODS
First-principles calculations
All first principles calculations employ the crystal structure
published in ref. 13. For the calculation of electronic properties
we use the full potential local orbital (FPLO)60 package 18.00-57
and the Generalized Gradient Approximation (GGA)61 as the
exchange-correlation functional. The correlation for the strongly
localized Ru 4d electrons are corrected via the GGA+ U
approximation using the “atomic limit” implementation62. All
calculations are carried out on a 12 × 12 × 12 k-grid in the
primitive unit cell. Relativistic calculations are performed within
the GGA+ SOC+ U functional. The estimates of the t1–t3
hoppings discussed in the “Magnetic model” section have been
obtained within a non-relativistic GGA calculation.
The electronic properties (band structure, density of states

(DOS)) have been cross-checked with the linearized augmented
plane-wave basis set as implemented in Wien2k63 version 19.1,
with Ru 4d correlation correction included via the SIC method64,65

with effective Coulomb repulsion Ueff= 2 eV.
We also compute the gyromagnetic g-tensor from the first

principles. For this calculation, we consider a [RuO6]9− molecule
within the quantum chemistry ORCA 5.03 package66 with the
functional TPSSh, basis set def2-TZVP, and complete active space
self-consistent field method for the d orbitals CASSCF(5,5). A
conductor-like polarizable continuum model (C-PCM)67 is
employed with a Gaussian charge scheme, a van der Waals-type
cavity, and an infinite dielectric constant.

Constrained random phase approximation
Based on the electronic structure obtained with the Wien2k
package v21.163 we estimate the electronic two-particle interac-
tion terms in NaRuO2 with the constrained random-phase
approximation (cRPA)68,69, as implemented in the FHI-gap code70.
The integration of the Brillouin zone is done on an 8 × 8 × 8 grid.
The static low-energy limit of the partially screened interaction is
projected onto the relevant orbitals, where screening processes in
the same window are excluded. The spherical symmetric
expressions for d electrons in the atomic limit are based on Slater
integrals Fk65 as follows:

Uavg ¼ 1

ð2l þ 1Þ2
X
αβ

Uαβ ¼ F0 (4)

Javg ¼ 7
5

1
2lðl þ 1Þ

X
α≠β

Jαβ ¼ F2 þ F4
14

; (5)

where α, β are orbital indices and l is the angular momentum
quantum number.
As mentioned in the “Results” section, due to a band crossing of

the Ru eg bands with a Na 3s band in NaRuO2, there are two

sensible ways to select the relevant orbitals considered in the
Wannier projection. We denote results based on the five Ru 4d
orbitals as ðUavg; JavgÞ4d and results including also the Na 3s band
as ðUavg; JavgÞ4dþ3s. Since both these options lead to very similar
results, further calculations in the main text adopt the average of
both cRPA results.

DFT-based derivation of the magnetic model
We extract the dominant magnetic Heisenberg couplings via the
TEMA71–73, which is a two-step process. First, we calculate the total
energies within DFT (GGA+U) of different magnetic configurations
of chosen supercells of NaRuO2. In the second step, we fit the DFT
energy of the different magnetic configurations to an effective
Heisenberg spin-1/2 Hamiltonian using the method of least squares.
The first step is performed in the VASP 5.3 framework74 using spin-
polarized DFT+U, where we apply the Dudarev scheme75, with
effective Coulomb repulsion Ueff= 3.5 eV. Here, we consider 14
different magnetic configurations. The calculations are performed
within a 3 × 2 × 1 supercell on a 5 × 8 × 3Γ-centered k-grid with an
energy cut-off of 540 eV for the plane-wave basis set. The quality of
the TEMA for the considered model is discussed in Supplementary
Note 5. We have checked that different values of the effective
Coulomb repulsion don’t significantly affect the ratio between the
various exchange couplings.
As a second method, we employ the so-called projED

technique45. The approach consists of two main steps. First, an
effective 4d electronic Hamiltonian Htot ¼ Hhop þHU is con-
structed, where Hhop consists of complex electronic hopping
parameters, determined from first principles via Wannier projec-
tion of a relativistic band structure calculation (GGA+ SOC). Here,
we extract the Wannier functions by using the FPLO60 package
18.00-57. HU contains the electronic two-particle Coulomb
interaction45. In a second step, the electronic Hamiltonian is
solved by ED on a two-site five-orbital cluster and its low energy
states are projected onto spin operators, arriving at the desired
effective spin Hamiltonian, e.g., H2 ¼ PHtotP ¼ P

i<j

P
μνJ

μν
i;j S

μ
i S

ν
j .

Note that here S is a pseudospin with jeff= 1/2. We employ the
projED method for the calculation of nearest-neighbor couplings,
while for longer-range interactions we resort to TEMA results. This
choice is motivated by the fact that, within projED, the indirect
hoppings over multiple sites, which are expected to become more
and more important for longer-range couplings, cannot be
accounted for due to computational limitations.
We also employ the projED method to extract the four-spin ring

exchange Hamiltonian Htot
4 . Due to computational limitations, the

parameters are extracted by diagonalizing a four-site three-orbital
electronic Hamiltonian involving only Ru t2g orbitals. We adopt
this approximation since the aim of this work is to estimate the
general form and order of magnitude of the ring exchange
interaction in a strongly spin-orbit coupled system like NaRuO2.
Possible refinements of this approach are beyond the scope of this
work and will be pursued in future studies.

Iterative minimization (classical spins)
We obtain the classical ground state of the spin Hamiltonian H by
performing a numerical minimization of the energy on a finite
lattice with periodic boundary conditions. We employ an iterative
method in which the orientation of the spins (unit vectors at the
classical level) is initialized with random values and updated by
performing local moves. A single update is performed by selecting
a random site i and changing its spin orientation according to

Si 7! � hi

khik where hi ¼ ∂H
∂Sxi

;
∂H
∂Syi

;
∂H
∂Szi

� �
: (6)

In other words, we anti-align the spin at site i to the effective field
hi created by the interactions with the other spins in the lattice. The
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procedure is repeated several times until the minimum energy is
reached. To try to mitigate the possibility of ending up in local
energy minima, we perform a number of different calculations
starting from different random initializations. Most numerical results
have been obtained on a triangular lattice of N= 12 × 12= 144 sites.
For calculations involving inter-layer couplings, we used a three-
dimensional cluster of N= 6 × 6 × 6= 216 sites.

Exact diagonalization
We perform ED of the jeff= 1/2 model on two-dimensional clusters
of up to N= 27 sites. The INS intensity at momentum q and
energy ω is given by

Iðq;ωÞ / f 2ðqÞ
Z

dt e�iωt
X
μ;ν

δμ;ν � kμkν
k2

� �
Sμ�kðtÞSνkð0Þ
� �

(7)

where f(q) is the atomic form factor of Ru3+. To compute it, we
employ the continued fraction method76. To access a higher number
of q-points, we plot together results coming from clusters of different
shapes and sizes up to N= 27 (clusters shown in Supplementary
Note 3), similar to as done in, e.g., ref. 46. On all clusters and in the
LSWT results, the intensity at small momenta q ≈ 0 is found so large
that in a simple color plot, the intensity at q away from q ≈ 0 would
be almost invisible. We, therefore, opted for Fig. 3b to plot a smaller
broadening and a reduced intensity only at the q= 0 point. Without
this adjustment, the intensity at q= 0 would appear ~21 times
larger, rendering the rest of the dispersion invisible to the eye. q-
points with q ≠ 0 are broadened by 1 meV Gaussians and q= 0 by
0.5meV, in order to make the gap in ED better visible by eye.

Linear spin-wave theory
LSWT calculations are performed with the SpinW 3.0 library77. The
INS intensity is computed by taking the powder average of Eq. (7).
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