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Weak-coupling to strong-coupling quantum criticality
crossover in a Kitaev quantum spin liquid α-RuCl3
Jae-Ho Han1,2,3,4,10, Seung-Hwan Do 1,5,6,10, Kwang-Yong Choi 5,7, Sang-Youn Park1, Jae-You Kim1,8, Sungdae Ji 9✉,
Ki-Seok Kim 1,2✉ and Jae-Hoon Park 1,2,8✉

We report a quantum criticality crossover representing two different universal scaling behaviors in a Kitaev quantum magnetic
material α-RuCl3. α-RuCl3 presents both a symmetry-breaking antiferromagnetic order and a long-range entangled topological
order of a quantum spin liquid, and thus could be a candidate system for a unique universality class involving deconfined
fractionalized excitations of the local Z2 fluxes and itinerant Majorana fermions. Theoretical analyses on the inelastic neutron
scattering, ac-magnetic susceptibility, and specific heat results demonstrate that Wilson–Fisher-Yukawa-type ‘conventional’ weak-
coupling quantum criticality in high-energy scales crosses over to heavy-fermion-type ‘local’ strong-coupling one in low-energy
scales. Our findings provide deep insight on how quantum criticality evolves in fermion-boson coupled topological systems with
different types of deconfined fermions.
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INTRODUCTION
Searching for a universality class near a quantum-critical point (QCP),
a precarious point of quantum instability between two competing
phases, is a fundamental paradigm with the emergence of exotic
elementary excitations. Quantum criticality involving quantum
instability1,2 has been demonstrated in various quantum systems
with two competing orders such as magnetic heavy-fermion
materials3, high-TC superconductors4, one-dimensional Ising sys-
tems5, and Luttinger liquids6,7. Meanwhile, topological orders with
emerging gauge fields develop ground states without symmetry
breaking as observed in fractional quantum Hall liquids8,9 and
quantum spin liquids (QSLs)10,11, and the low-energy physics is
described by deconfined fractionalized excitations. In particular, the
topological QSL state is exactly derived by fractionalizing the spin
excitations into localized Z2 gauge fluxes and itinerant Majorana
fermions (MFs) in a two-dimensional (2D) Kitaev honeycomb 1/2-spin
network with Ising-like nearest-neighbor bond directional Kitaev
exchange interactions12. Recently, α-RuCl3 has been found to host
both the 2D Kitaev model with fractionalized excitations and a
zigzag-type antiferromagnetic (AFM) order below TN ≈ 6.5 K13–16.
The Ru3+ ion in α-RuCl3 has a Jeff= 1/2 pseudospin17 due to strong

Ru 4d spin–orbit coupling, and the system becomes a spin–orbit-
coupled Mott insulator15. The orbital state forms three orthogonal
bonds in the honeycomb lattice to embody the Kitaev model in the
edge-shared octahedral environments18. Indeed, magnetic suscept-
ibility, specific heat, Raman spectroscopy, and neutron scattering
measurements consistently demonstrate the characteristic behaviors
of thermally fractionalized MFs above TN, suggesting proximity to the
Kitaev QSL phase competing with the AFM phase19–22. The quantum
nature of fractionalized MFs also reveals in the thermal Hall
measurements. Although are still debates with sample depen-
dence23,24 or quantum oscillation of transverse thermal

conductivity25, half-integer quantization of thermal Hall conductivity
emerges as the magnetic field becomes large enough to suppress
the AFM order26–28.
Meanwhile, the dynamic spin susceptibility, which agrees well with

the pure Kitaev behavior in a high-energy scale (T or ω≳ 5meV),
considerably deviates from the Kitaev behavior in a low-energy scale
(T or ω≲ 4meV) above TN20. Such proximity behaviors may indicate
that the system is nearby a QCP between competing topological QSL
and long-range-ordered AFM phases and possibly offers a univers-
ality class relevant to the topological order.
In this study, we report a quantum criticality crossover in α-RuCl3,

which represents two different universal scaling behaviors in the low
and high-energy scales. We demonstrate experimentally as well as
theoretically that the low-energy spin dynamics obtained from the
inelastic neutron scattering (INS) follows heavy-fermion-type strong-
coupling physics, although the high-energy one follows weak-
coupling physics close to the pure Kitaev. We also ensured that the
strong-coupling local quantum criticality at low energies emerges
from the weakly coupled rather conventional Wilson–Fisher-Yukawa-
type quantum criticality at high energies. The crossover behavior is
also confirmed in the magnetic-specific heat Cm, which displays a
peculiar plateau up to ~50 K above TN and then follows a T-linear
increase to ~100 K, as well explained with the low-energy strong-
coupling local critical physics and the high-energy weak-coupling
itinerant Dirac fermion one.

RESULTS
Physical picture
We first discuss a physical picture with respect to a universality
class and quantum criticality for critical spin fluctuations in a
model system with two competing interactions of 2D Kitaev and
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Ising-type AFM exchange interactions as in α-RuCl3. The AFM spin
fluctuations couple to two different types of deconfined fractional
excitations of localized Z2 fluxes and itinerant MFs dominantly in
low- and high-energy scales, respectively.
At high temperatures far above TN, the Z2 fluxes and MFs

dissolve to form an incoherent critical soup. The original
quasiparticle weights become vanishing, and emerging excita-
tions losing the quasiparticle nature specify characteristics of
weak-coupling conventional quantum criticality. This phenom-
enon is analogous to the physics of metallic quantum criticality
responsible for the marginal Fermi-liquid phenomenology in the
strange metallic phase of high-TC cuprates4, where the Landau
quasiparticle excitations dissociate into incoherent particle-hole
excitations due to their correlations. Remarkably, this conventional
quantum criticality evolves into strong-coupling local quantum
criticality at low temperatures above TN, where critically fluctuat-
ing local moments appear to carry the entropy, analogously to the
local quantum criticality of heavy-fermion systems3. This crossover
behavior in quantum-critical physics of α-RuCl3 originates from the
coupling between the Ising-type AFM fluctuations and the two
types of deconfined fractionalized fermions governing different
energy scales.
Figure 1a shows a schematic-phase diagram representing the

Kitaev QSL phase with the well-defined fractionalized excitations
and the zigzag AFM phase, similar to the diagram of the Landau
Fermi-liquid phase with well-defined quasiparticle excitations and
an associated symmetry broken phase, respectively. Here the
external tuning parameter, such as the magnetic field or pressure,
tunes the ratio of the AFM exchange J to the QSL Kitaev exchange
K. In a J= 0 limit, the spin-spin correlation is governed by K
leading to the Kitaev QSL ground state. The spin excitations are
fractionalized into itinerant MFs and gapped Z2 fluxes, which
become consecutively defined upon cooling through TH and TL,
respectively29,30.
In the Kitaev paramagnetic (PM) phase (TL < T < TH), the MFs

exhibit metallic behaviors under thermally fluctuating Z2 fluxes.
Below TL, the Z2 fluxes are frozen, and only low-energy MFs remain
itinerant. Even for a finite J, the QSL ground state persists if r= J/K
is sufficiently small. As r increases, the AFM coherence length (ξ)
increases, while the coherence temperature T* ~ ξ−1 decreases. In
a large r limit, the AFM long-range order (LRO) is stabilized below
TN due to the dominant J. The quantum phase transition between
QSL and LRO phases is expected to occur at a moderate value of
r= rC (QCP), and the physical behaviors become quantum critical
in the region (blue-shaded) around QCP. Considering that the
magnetic field-induced AFM to QSL transition α-RuCl3 occurs at

HC ~6 T (see Supplementary Fig. 3)26, its r-value is expected to be
near the critical point rC as presented in the figure.
The most fascinating physics is an apparent crossover behavior

across the high (green-shaded) to low-temperature (blue-shaded)
region, suggesting the presence of two types of ω/T quantum-
critical scaling physics in the dynamic spin susceptibility. This
crossover behavior results from the fact that the spin excitations in
high- and low-energy scales are governed by different fixed points
(FPs) and there appears a renormalization group (RG) flow
between these two FPs as a function of the energy scale
parameter (T or ω). As a result, the fractionalized excitations form
an intriguing QSL state in this quantum-critical region. Here the
phase boundaries are based on experimental observations20–22,26

and theories29,30, although the diagram is rather schematic. The
crossover region in Fig. 1a is referred to the neutron scattering
(Fig. 2b) and magnetic-specific heat results (Fig. 8a).
Building upon the physical picture described in Fig. 1a, we

explore the nature of this quantum criticality, where the critical
AFM spin fluctuations couple to both Z2 fluxes and MFs. Figure 1b
displays the RG flow diagram around the critical surface at r= rC.
The RG flows in the high-energy scale show actual calculation
results of the Wilsonian RG analyses conducted in the one-loop
level on the critical surface. On the other hand, those are
schematically presented in the low-energy scale, where the
physics involves strong coupling between the deconfined
excitations and AFM fluctuations to be beyond the perturbative
framework. However, it is worth noting that the existence of the
strong-coupling FP is verified by the dynamical mean-field theory
(DMFT) calculation, as discussed below.
In the absence of fractionalized excitations, the Ising spin

quantum criticality is represented with the Wilson–Fisher type
FP31 characterized by an effective critical interaction λ between
the Ising spin fluctuations. Meanwhile, as this spin sector
interaction is turned off (λ= 0), the fractionalized fermionic spin
excitations can be described in terms of an effective Yukawa-type
theory characterized by an effective critical Yukawa coupling g
between the fractionalized excitations and the spin fluctuations.
This theory naturally hosts a weak-coupling FP31. When λ ≠ 0, an
interacting FP, referred to as a Wilson–Fisher–Yukawa FP, emerges
on the critical surface as presented in Fig. 1b (the high-
temperature green-shaded region in Fig. 1a).
The proximity effect observed in α-RuCl3 at high temperatures is

expected to be governed by this interacting FP. The dynamic spin
susceptibility should exhibit a universal behavior and further
follow a universal scaling law characterized by an anomalous
critical exponent derived from this FP. It is remarkable to note that

Fig. 1 Schematic diagrams near the quantum-critical point. a Schematic-phase diagram as a function r (J/K), a ratio of the non-Kitaev
antiferromagnetic (AFM) exchange J to the Kitaev exchange K. The quantum-critical region is divided into a weak-coupling one in high
temperatures (green-shaded) and a strong-coupling one in low temperatures (blue-shaded) governed by different critical scaling physics,
resulting in a crossover behavior of the quantum criticality (QC). b Renormalization group (RG) flows on the r= rC critical surface described
with two coupling constants λ, g, and velocity vflux of the Z2 flux excitation. The RG flows at high temperatures (vflux= c) show actual results of
the Wilsonian RG analyses in the one-loop level, while those are schematically presented at low temperatures (vflux= 0).
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this Wilson–Fisher–Yukawa FP becomes destabilized at low
temperatures (T≲ 4meV) above TN to flow into another FP, where
the propagation velocity of the Z2 flux excitation is strongly
renormalized (localized Z2 flux excitation). Then the nature of spin
dynamics becomes locally critical (a strong-coupling FP) as
described for the local quantum criticality of heavy-fermion
physics. The appearance of the localized flux excitations in the
Kitaev QSL state is likely responsible for the heavy-fermion type
local quantum criticality in the low-energy scale.

Inelastic neutron scattering
The dynamic spin susceptibility can be extracted from INS
measurements probing the magnetic excitations. The scattering
cross-section is proportional to the dynamic structure factor
S(Q,ω) of the spin correlation function, which displays the
magnetic excitations in the transferred momentum (Q) and
energy (ω) space. Figure 2a shows representative S(Q, ω) maps
of α-RuCl3 in the HK-reciprocal space measured at temperatures
below (T= 2.3 K) and above TN= 6.5 K (T= 25 K, 75 K, and 150 K).
The S(Q,ω) map at T= 2.3 K exhibits a strongly dispersive feature
of spin wave excitations originated from the zigzag AFM order
below 4meV. Besides the spin wave feature, it also displays broad
continuum excitations extending from near 0meV to even above
15meV through the whole Brillouin zone, which corresponds to
the fractionalized MFs excited from the Kitaev QSL state20,30.
These continuum excitations emerge upon cooling across the

fractionalization temperature (TH ~ 100 K) and persist even below
TN, reflecting the proximity to the QSL20.
Above TN (25 K and 75 K), one can recognize distinguishable

energy-dependent behaviors of the continuum excitation weight
around Q= Γ(0, 0, 0) across ~4meV; a strong spectral weight is
nearly maintained up to ~4meV and then become significantly
reduced with the increase of the energy. Such energy-dependent
behaviors can be clearly observable in the S(Q= Γ, ω) spectra in
the log–log scale as shown in Fig. 2b. Above ~4meV, the spectral
intensity merges on a linear line representing a single scaling of
criticality while it apparently deviates from the line below ~4meV,
alluding to the emergence of emergence of another scaling. This
result is consistent with the weak-coupling to strong-coupling
quantum criticality crossover as described above (also see Fig. 1)
and suggests that the nature of continuum excitations can be
characterized by two different universal scaling laws, i.e., one for
the weak-coupling and the other for the strong-coupling quantum
criticality in the high and low-energy scales, respectively.
Interestingly, a puzzling plateau feature above TN observed in
the specific heat20 persists up to 50 K, corresponding to the
deviation energy scale (~4 meV). We speculate that the deloca-
lized Z2 flux excitations at high temperatures become localized
below this temperature, although it is well above the freezing
temperature TL in the pure Kitaev29,30, causing a heavy-fermion
type local quantum criticality as discussed below.

Fig. 2 Temperature-dependent INS spectra of α-RuCl3. a Inelastic neutron scattering S(Q, ω) maps along high-symmetry directions as
indicated in the HK-reciprocal space of the rhombohedral (R3) structure. Each map presents combined two data sets with incident neutron
energies of Ei= 50meV (upper) and 22meV (lower). b S(Q,ω) spectra at Q= Γ(0, 0, 0) measured at T= 25 K and 75 K in a log–log scale. Red
dashed line is a linear guideline for a power-law behavior of the excitations above ~4meV. Error bars represent 1 standard deviation.
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Effective field theory
In this section, we introduce an effective field-theory modeling for
the spin excitations of α-RuCl3 with the AFM spin fluctuations
coupling to the Z2 fluxes and itinerant MFs in order to derive the
universal scaling applicable to the dynamic spin susceptibility
extracted from the INS results. The true magnetic lattice
Hamiltonian of α-RuCl3 is quite complicated and still under
debate. Thus we build up a simplified Kitaev QSL interacting with
the zigzag AFM order in the α-RuCl3 lattice.
We first adopt a coarse-grained lattice model (Fig. 3a) to

construct the effective Hamiltonian consisting of the Kitaev QSL
Hamiltonian HK, the zigzag AFM Ising spin Hamiltonian HAF, and
an effective Zeeman-type interaction VK-AF accounting for a
coupling between the Kitaev fermions and the zigzag AFM-
ordered spins. The total Hamiltonian can be described as
follows,

H ¼ HK þ HAF þ VK�AF;

HK ¼ �P
ijh i
Kγijσ

γij
i σ

γij
j ; VK�AF ¼ �g

P
i
ϕiσ

z
i ;

(1)

where σα
i , α= x, y, z are the Pauli matrices at honeycomb lattice

site i, ijh i represent nearest-neighboring sites, γij= x, y, z depend-
ing on the bond as shown in Fig. 3a, and ϕi is the zigzag AFM
order parameter fluctuations. Here, we do not specify HAF

explicitly due to the lack of concensus on the lattice magnetic
Hamiltonian. The detailed form of HAF is not important in this
study, only for the long-range physics. We will implement
dynamics of the zigzag Ising AFM order in a continuum expression
form when we construct the effective action below. The
interaction VK-AF between σ and ϕ is supposed to be in a local
Zeeman type.
The zigzag AFM order consists of alternating spin chains with

different spin states, and the original honeycomb lattice is
identically represented by a brick-wall lattice. Under the
Jordan–Wigner transformation for the spin variables described
in Fig. 3b, one can map the Kitaev spin model to a fermionic

model: Transforming the spin operators σα
i as

σz
i ¼ Ki ; σ

þ
i ¼ f yi

Y
j<i

K j; σ
�
i ¼

Y
j<i

K j

 !
f i; (2)

where Ki ¼ 2f yi f i � 1, and fi (f
y
i ) are fermion annihilation (creation)

operators. Then HK becomes

HK ¼ �
X

r;a¼x;y

Kaðψy
rþa � ψrþaÞðψy

r þ ψrÞ � Kz

X
r

ð2χyr χr � 1Þð2ψy
rψr � 1Þ;

(3)

where the lattice site index i is separated into Bravais lattice
index r and the basis b or w for the black or white site,
respectively, as shown in Fig. 3. We also combine the fermions
attached to two ends of the z-bond as χr ¼ Ref r;w � iImf r;b , and
ψr ¼ Imf r;w þ iRef r;b . Now ψrs resemble the itinerant fermions in
the one-dimensional p-wave superconductor model and χrs
representing the Z2 fluxes describe localized fermions interact-
ing with ψr fermions31,32.
Now we consider VK-AF, the coupling between the Ising spin

fluctuations and the Jordan–Wigner fermions in the critical region.
In the coarse-grained representation, this coupling can be
expressed as a Yukawa-type effective interaction, and the model
Hamiltonian becomes an effective continuum field theory
described in terms of two types of fermion excitations coupled
with Ising spin fluctuations. The Yukawa-type effective interaction
is given by

VK�AF ¼ �ig
X
r

ϕrðψy
r χ

y
r þ ψrχrÞ: (4)

To obtain the low-energy effective field theory, we expand
both fermion fields near two gapless points for HK in the
momentum space. In the absence of zigzag AFM fluctuations
(ϕr = 0), χyr χr becomes a conserved quantity for each site r. The
ground state sector is χyr χr ¼ 0, and within this sector, the
Hamiltonian has gapless points at k= ± (4π/3, 0). Linearizing the
Hamiltonian and using the field near these gapless points, we
have

HK ¼
X
k

X
a¼±

ϵa;kψ
y
a;kψa;k þ

iΔa;k

2
ðψy

a;kψ
y
�a;�k þ ψa;kψ�a;�kÞ þ 2Kχya;kχa;k

� �
þ Hint;

(5)

Hint ¼ 4K
Nz

X
k;p;q

X
a;b¼±

χya;pχa;pþqψ
y
b;kþqψb;k þ

4K
Nz

X
k;p;q;

X
a;b¼±

χya;pχ�a;pþqψ
y
b;kþqψ�b;k ;

(6)

VK�AF ¼ � igffiffiffiffiffi
Nz

p
X
k;q

X
a¼±

ϕqðχy�a;�kþqψ
y
a;k þ χ�a;�k�qψa;kÞ; (7)

where ± signs in the subscript indicate two gapless points,
ϵ±,k= vkx, Δ±,k=− vky, v= 3 Ka, a is the lattice constants, Nz is
the number of z-bond. Here we are interested in the symmetric
phase of the Kitaev model, so Kx= Ky= Kz≡ K. Here Hint is four-
fermion interactions between itinerant and localized fermions. It
turns out that these effective interactions are not relevant in RG
sense, and we ignore these terms. Note that they can affect
behaviors in weak-coupling high-energy regions, but it is similar to
the effects due to the AFM coupling, as discussed in the
Discussion section. Therefore we construct the effective model
without Hint. Introducing spinors as

Ψk ¼ ðψþ;k ;ψ
y
�;�kÞ

T
; Xk ¼ ðχþ;k ; χ

y
�;�kÞ

T
; (8)

one obtains effective Hamiltonian in Dirac form

H ¼
X
k

Ψy
kðvkxτz þ vkyτ

yÞΨk þ 2K
X
k

Xy
kτ

zXk � igffiffiffiffiffi
Nz

p
X
k;q

ϕqðXy
kþqτ

xΨk � Ψy
kτ

xXk�qÞ:

(9)

Fig. 3 Schematic descriptions of the theoretical model and
quantum-critical scaling behaviors of dynamic spin susceptibility.
a Kitaev honeycomb lattice represented by two triangular sub-
lattices differentiated by black and white dots and zigzag
antiferromagnetic ordering. b Deformed brick-wall type lattice by
stretching the honeycomb lattice along the zigzag chain. The red
and yellow balls are fr,b and fr,w fermions, respectively. c Conceptual
diagram for emergent local quantum criticality in the low-
energy scale.
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Including a self-interaction term for AFM fluctuations ϕ, the
resulting effective action in the continuum limit is given by

S ¼ SK þ SAF þ SK�AF;

SK ¼
R

d3k
ð2πÞ3 ΨðkÞiγ � kΨðkÞ þ XðkÞðiγ0k0 þ iγ �MÞXðkÞ� �

;

SK�AF ¼ �ig
R d3kd3q

ð2πÞ6 ϕðqÞ Xðk þ qÞΨðkÞ � ΨðkÞXðk � qÞ� �
;

SAF ¼ 1
2

R
d3k
ð2πÞ3 ϕð�kÞðk2 þ rÞϕðkÞ þ λ

4!

R d3kd3pd3q
ð2πÞ9 ϕð�kÞϕð�p� qÞϕðpÞϕðk þ qÞ:

(10)

Here, Ψ(k) and X(k) are Dirac spinors formed by itinerant and localized
fermions, respectively, and M= (M, 0), M is the Z2 flux gap.
Interestingly, the Z2 flux gap appears as a momentum shift of nodal
points, and this shift plays a central role in the quantum-critical
scaling of dynamic spin susceptibility at the Γ point. There appears an
effective ϕ4-type field theory of self-interactions31, which describes
the critical dynamics of the Ising spin fluctuations in the coarse-
graining procedure. The details are in Supplementary Notes.
In the following sections, we derive the scaling behavior of the

dynamic spin susceptibility and the specific heat based on Eq. (10)
in the weak-coupling limit for the high-energy region and also in
the strong-coupling limit for the low-energy region.

Weak-coupling high-energy region
In the high-energy region, the coupling becomes weak so we derive
the universal scaling function using perturbative analysis. The zigzag
AFM order parameter also strongly fluctuates and thus the “localized”
X(k) fermions become delocalized due to the interaction SK-AF. As a
result, the two fermionic excitations can be described in the Dirac
theory with different Dirac velocities. We first perform the Wilsonian
RG analyses of these two itinerant Dirac field models up to the one-
loop level and reveal the Wilson–Fisher–Yukawa FP. Then we
evaluate the dynamic spin susceptibility at the FP for comparison
with the INS results of α-RuCl3.
Reflecting delocalization of the Xk fermions, we replace γ0k0

with γ ⋅ k to modify the SK term in Eq. (10) as follows;

SK !
Z

d3k

ð2πÞ3 ΨðkÞiγ � kΨðkÞ þ XðkÞiγ � ðk þMÞXðkÞ� �
: (11)

With the modified effective action, we follow the standard
Wilsonian RG procedure. We first divide the fields into high- and
low-energy components,

ΨðkÞ ¼ ΨðkÞθ kðΛ=b� kÞ½ � þ ΨðkÞθ ðΛ� kÞðk � Λ=bÞ½ � � ΨlðkÞ þ ΨhðkÞ;
(12)

and similar to X and ϕ fields. Integrating over high-energy field
degree of freedom, i.e., performing the functional integration

R
DΨhðkÞDXhðkÞDϕhðkÞe�S in the perturbative way of the

cumulant expansion, we obtain quantum-fluctuation corrections
on the dynamics of low-energy degrees of freedom. After
rescaling the momentum coordinates and all low-energy fields,
we obtain an effective action for the low-energy fields with
renormalized couplings. The relations between the low-energy
fields and renormalized fields are

ΨRðkÞ ¼ b�2Z�1=2
Ψ Ψlðk=bÞ; XRðkÞ ¼ b�2Z�1=2

X Xlðk=bÞ; ψRðkÞ ¼ b�5=2Z�1=2
ϕ ψlðk=bÞ;

(13)

and that between the bare coupling constant and the renorma-
lized ones are

gR ¼ b1=2Z�1
g Z1=2

Ψ Z1=2
X Z1=2

ϕ g; λR ¼ bZ�1
λ Z2

ϕλ; MR ¼ bZ�1
M ZXM:

(14)

Here, the subscript R represents the renormalized field. The first
factors, exponents of b in the fields and coupling constants, originate
from the classical scaling. The renormalization factors Za, a=Ψ, X,ϕ
which are defined by Z�1

a ¼ 1þ δa contain quantum corrections δa
which are calculated from self-energies and vertex corrections.
Within the one-loop level, self-energies and vertex corrections

are

ΣΨ ¼ g2
R Λ
Λ=b

d3q
ð2πÞ3 GXðk þ qÞGϕðqÞ; ΣX ¼ g2

R Λ
Λ=b

d3q
ð2πÞ3 GΨðk þ qÞGϕðqÞ;

Σϕ;1ðqÞ ¼ �2g2
R Λ
Λ=b

d3k
ð2πÞ3 Tr GΨðk þ qÞGXðkÞ½ �; Σϕ;2ðqÞ ¼ � λ

2

R Λ
Λ=b

d3k
ð2πÞ3 GϕðkÞ;

(15)

and

Γg ¼ �ig3
R Λ
Λ=b

d3q
ð2πÞ3 GϕðqÞGΨðqÞGXðqÞ;

Γλ;1 ¼ � 3λ2

2

R Λ
Λ=b

d3q
ð2πÞ3 GϕðqÞ

� �2
; Γλ;2 ¼ g4

R Λ
Λ=b

d3q
ð2πÞ3 Tr GXðqÞGΨðqÞGXðqÞGΨðqÞ½ �;

(16)

with Green functions,

GΨðkÞ ¼ � iγ � k
k2

; GXðkÞ ¼ � iγ � ðk þMÞ
ðk þMÞ2 ; GϕðkÞ ¼ 1

k2
: (17)

The diagrams are shown in Fig. 4a. From the self-energies and
vertex functions, one can deduce renormalization constants and
renormalized couplings. The quantum corrections are δa=− ∂

iγ⋅kΣa(k)∣k=0 for Ψ and X fields, and δa ¼ �∂k2ΣaðkÞjk¼0 for ϕ field
from the self-energies, and δa= Γa from vertex corrections. Then
the beta functions for coupling g and λ are given by

βg � dgR
d log b ¼ gR

2 � g3R
4π2 þ OðMÞ;

βλ � dλR
d log b ¼ λR � 3λ2R

16π2 þ
3g4R
2π2 þ OðMÞ;

(18)

Fig. 4 Feynmann diagrams and the renormalization group flow diagram of coupling constants. a Green functions and one-loop Feynman
diagrams for self-energies and vertex functions. b RG flows in a ~g-~λ coupling space with ~g2 ¼ g2=8π2 and ~λ ¼ λ=8π2 by solving the coupled β-
functions. Various fixed points (FPs) are indicated, two unstable FPs (black dots) and one stable interacting FP (red dot).
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and the anomalous scaling dimensions are

ηΨ ¼ 1
2
∂ log ZΨ

∂ log b
; ηX ¼ 1

2
∂ log ZX

∂ log b
; ηϕ ¼ 1

2
∂ log Zϕ

∂ log b
: (19)

See Supplementary Notes for details. The RG flow and the FPs are
shown in Fig. 4. As can be seen in the figure, when g= 0, the
fermions are decoupled from the zigzag AFM fluctuations, and the
system flows towards a well-known stable Wilson–Fisher FP. Turning
on the coupling (g≠ 0) between fermions and zigzag AFM
fluctuations, it flows to another FP, Wilson–Fisher–Yukawa FP.
Essential information on the interacting FP is the critical exponents
to describe anomalous scaling dimensions of the delocalized and
itinerant fermion excitations, and the exponents originate from their
correlations with the critical Ising spin fluctuations.
To compare with INS data at Γ point, we calculate uniform spin

susceptibility. In order to extract the dynamical spin susceptibility
at the Γ-point, we introduce a uniform field Zeeman coupling
HUZ ¼ �gu

P
iσ

z
i H

u
i , which can be reformulated as

HUZ ¼ igu

Z
d3kd3q

ð2πÞ6 HuðqÞ Xðk þ qÞγ0ΨðkÞ � ΨðkÞγ0Xðk � qÞ� �
:

(20)

Here, we do not take into account the coupling between the
zigzag AFM ϕ(k) and the uniform field since its effect is negligible
in comparison with the ferro-component contribution of the Γ-
point. Then, the spin susceptibility is given by

χu ¼
1
V
δ2 log Zeff ½HðqÞ�
δHuð�qÞδHuðqÞ jHðqÞ¼0

¼ �g2uZΨZX

Z
d3k

ð2πÞ3 Tr GXðk þ qÞ þ GXðk � qÞ½ �γ0GΨðkÞγ0f g;

(21)

where Zeff is the effective partition function, including the Zeeman
term. The renormalization factors play roles of anomalous scaling
dimensions in the spin susceptibility and account for the absence of
well-defined quasiparticle excitations near the interacting fixed point.
After the integration and taking into account the field

renormalization factors and anomalous dimensions, one can find
the scaling theory for the spin susceptibility,

Imχuðω;M; TÞ ¼ b1þ2ηΨþ2ηX Imχu
ω

b
;
M
byM

;
T
b

	 


¼ T1þ2ηΨþ2ηX Imχu
ω

T
;
M
TyM

; 1

	 

;

(22)

where we set b= T in the second equality and yM is the scaling
dimension of M which is calculated from MR ¼ bZ�1

M ZXM � byMM.
Assuming M=TyM � 1, one can expand χuðω=T ;M=TyM ; 1Þ in M=TyM .
The lowest non-vanishing term is ðM=TyMÞ2 and in the quantum-
critical regime of ω/T≳ 1, the spin susceptibility is given by

Imχuðω;M; TÞ ¼ χ0M
2T�2yMþ1þ2ηΨþ2ηX

T
ω

	 
1�2ηΨ�2ηX

tanh
ω

4T
;

(23)

where χ0 is a cutoff dependent and non-universal constant. Within
the one-loop level, we obtained the anomalous scaling dimension
of the spin susceptibility ηχ= 2yM− (1+ 2ηΨ+ 2ηX)= 1 and
critical exponent 1− 2ηΨ− 2ηX ≈ 1.25. Then the universal scaling
function is

Tα Imχðω; TÞQ¼Γ ¼ χ0M
2 T

ω

	 
1:25

tanh
ω

4T
: (24)

with α= 1. Here, tanh ω
4T reflects “particle”–“hole” excitations of

both fractionalized fermions. M is the momentum-space distance
between the Dirac points of the Majorana fermion and the Z2 flux
and reduces to the Z2 flux gap at zero temperature. It is

remarkable to observe that the spin susceptibility at the Γ-point
is proportional to M2. Although the spectral intensity of the two-
particle correlation function should vanish at the Γ-point with
M= 0, the appearance of the spectral intensity at the Γ-point
indicates that a shift in the nodal point effectively retains the Z2
flux gap, like the inter-band transition gap.
To investigate the critical behavior of α-RuCl3, the neutron

scattering results at Q= Γ with diverse temperatures are
compared to the scaling function model. Here, the imaginary
part of the dynamic spin susceptibility is extracted through the
fluctuation-dissipation theorem33Imχ Q;ωð Þ � χ00 Q;ωð Þ ¼ SðQ;ωÞ
1� e�_ω=kBT
� �

from S(Q,ω) measured at T= 2.3 K, 6 K, 25 K, 75 K,
and 150 K in a full energy range of 1meV < ℏω < 15meV available
in the present experimental conditions (see Sec. A in SI). Figure 5
displays χ″(Γ, ω)Tα versus ℏω/kBT in the log–log plot. The scaling
function data extracted from the zero-field INS S(Γ,ω) in the
ranges ℏω= [1, 9] meV with incident neutron energy Ei= 22meV
and ℏω= [6, 15] meV with Ei= 50meV at T= 2.3 K, 6 K, 25 K, 75 K,
and 100 K. The data are compared with the theoretical universal
scaling function (blue solid line) for the weak-coupling quantum
criticality, Eq. (24). The fitting value of the exponent α is 0.91,
which is close to the theoretical value 1. The χ″(Γ, ω)Tα value itself
strongly varies with energy and temperature, while those values
collapse onto a single line over two decades for ℏω≳ 5meV. Such
behaviors certainly reflect the universal scaling involving the
weak-coupling quantum criticality applicable to the high-energy
scale. This merging line corresponds to the universal law for
χ″(Γ, ω)Tα derived from the theoretical model calculations as
described above. Meanwhile, one can recognize that the dynamic
spin susceptibility does not follow the university scaling at low
energies, and the deviation becomes considerable for ℏω≲ 4meV
commonly at different temperatures as can be seen in Fig. 5
(blurred circle plots). This common deviation at the low energies
indicates that the weak-coupling quantum criticality is valid only
at the high energies (also see Supplementary Fig. 1).

Strong-coupling low-energy region
In the low-energy region, the perturbative analysis is not
applicable since the strong-coupling physics emerges. Thus we
first examine the INS results for a possibility of a universal scaling
at the low energies and construct an empirical formula for the
dynamic susceptibility in the effective model Hamiltonian with the
local quantum criticality. Then we check the validity of the
criticality using self-consistent analyses based on the DMFT
description.

Fig. 5 Scaling plot in ℏω/kBT for the dynamic spin susceptibility at
high energies, ℏω ≥4meV. Blurred circles present the data in the
low-energy range ℏω= [1, 4] meV, which are out of the universal
scaling behavior. Error bars represent 1 standard deviation.
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To examine the low-energy universal scaling of the dynamic
spin susceptibility, we measure S(Q, ω) at more diverse tempera-
tures of T= 2 K, 10 K, 16 K, 25 K, 40 K, 75 K, 100 K, 125 K, and 160 K
in a low-energy range of 1 meV≤ℏω≤5 meV and extract χ″(Γ, ω)
T0.14 values scaled in ℏω/kBT, as shown in Fig. 6. Remarkably, the
χ″(Γ, ω)T0.14 values also merge to a single line of another universal
scaling distinguished from the high-energy one. The universal
scaling behavior drastically changes in the low-energy scale
below ~ 5meV. The slop changes its sign across ℏω/kBT ~ 2. In
addition, the low-energy spectral weight is rather uniformly
distributed in the momentum space around Q= Γ, differently
from the high-energy spectral weight (referred to Fig. 5). These
two aspects recall an effective Bose–Fermi Kondo-type model
adopted to the heavy-fermion local quantum criticality in a
system with magnetic impurity states, collective bosonic modes,
and dispersive fermions34. Those are analogous to the localized
Z2 fluxes, Ising AFM fluctuations, and itinerant Majorana fermions
appearing in α-RuCl3, respectively. This local quantum criticality is
schematically pictured in Fig. 3c. Here, the AFM fluctuation
interacts with the Z2 fluxes and MFs to become locally critical.
The previous study for the heavy-fermion local quantum

criticality3 suggests a scaling expression for the dynamic spin
susceptibility

χ ω; T ;Hð Þ ¼ A
aT � iωð Þα þ aαT�α ; (25)

which represents the susceptibility of a local moment coupled to a
critical continuum. Here, a, A, and α are parameters, T* is the
characteristic temperature, shown in Fig. 1a. A key feature of this
local spin susceptibility is the branch-cut singularity with a critical
exponent α and the existence of the huge dissipation proportional
to the transfer energy. We derive the universal scaling function at
Γ for the strong-coupling local quantum criticality in a limit of the
inverse of quantum coherence time T*→ 0 (QCP) as follows (see
Supplementary Notes for details);

Tα Imχðω; TÞQ¼Γ ¼
A

a2T2 þ ω2
� �α=2 sin α tan�1 ω

aT

� �n o
: (26)

As can be seen in Fig. 6, this theoretical scaling function well
explains the low-energy universal scaling behavior obtained from
the INS results ranging over about two orders of magnitude in ℏω/

kBT above TN with α ≈ 0.14, the overall constant A ≈ 63.9, and the
order 1 constant a ≈ 0.88.
One may point out that the high-temperature INS data even

above 100 K but below 5meV follow the strong-coupling locally
quantum-critical scaling behavior, although those data points are
in ℏω/kBT < 1, which may not belong to the quantum-critical
scaling region. Since the temperature would play the role of a
lower cutoff in the RG flow of the spin-spin correlation function, it
is natural to expect that the potential existence of other length
scales at low energies might spoil the scaling behavior in ℏω/
kBT < 1. Interestingly, the present scaling analysis shows the
existence of this high-temperature but low-energy scaling
behavior, although its origin is not clear.
To confirm the existence of the local quantum criticality at low

temperatures in the vicinity of the genuine QCP, we perform a DMFT
analysis for the localized Z2 flux excitations, itinerant MFs, and locally
critical Ising AFM spin fluctuations within a non-crossing approxima-
tion34,35. Compared to the Gross–Neveu–Yukawa-type model for the
weak-coupling quantum criticality at high temperatures, two
essential modifications have been made; the velocity of Z2 flux
fluctuations is strongly renormalized to vanish, and the dynamics of
Ising spin excitations is governed by the inverse of the locally critical
spin susceptibility instead of their relativistic dispersion.
Based on the empirical form of the spin susceptibility, Eq. (25), we

write an effective action for the low-energy region as
S= SK+ SAF+ SK-AF. This action is the same as Eq. (10) (in Matsubara
frequency space36) except for SAF which is modified as follows,

SAF ¼ 1
2

R β
0 dτdτ0

R
d2x ϕðτ; xÞχ�1

LQCPðτ � τ0Þϕðτ0; xÞ;
χ�1
LQCPðiω; T ;HÞ ¼ ðaT þ jωjÞα þ aαT�α½ �=A: (27)

Note that χ�1
LQCP is the inverse of Eq. (25). This expression looks

quite similar to that of the description of high-energy delocalized
quantum criticality. However, there exists an essential difference in
that both the spin and Z2 flux dynamics are local. We perform the
DMFT analysis in the non-crossing approximation37,38, which
confirms that this renormalization ansatz is self-consistent.
The one-loop self-energies for Ψ and X fermions are

ΣΨðiω; kÞ ¼ � g2

2

R
iΩ;qχLQCPðiΩÞGXðiω� iΩ; k � qÞ;

ΣXðiω; kÞ ¼ � g2

2

R
iΩ;qχLQCPðiΩÞGΨðiω� iΩ; k � qÞ;

(28)

where
R
iΩ;q � 1

β

P
iΩ

R d2q
ð2πÞ2 and GΨ;X are renormalized Green’s

functions given by the Dyson equations

G�1
Ψ ðiω; kÞ ¼ iωγτ þ ik � γ � ΣΨðiω; kÞ;

G�1
X ðiω; kÞ ¼ iωγτ þ iM � γ � ΣXðiω; kÞ:

(29)

Here, γa, a= τ, 1, 2 are the Euclidean forms of Dirac gamma
matrices in two-dimension. The self-consistent condition is formed
from the renormalized spin susceptibility given by

χLQCPðiΩÞ ¼
Z

iω;k
Tr GXðiω; kÞGΨðiωþ iΩ; k þ qÞ½ �; (30)

Resorting to self-consistent analyses in the non-crossing approx-
imation, we found the susceptibility constraint for the power-law
behavior with the critical exponent α as χ�1ðω; TÞ / aT � iωð Þα,
although a reliable α-value is hard to be determined theoretically
within the present mean-field analysis for the strong-coupling
limit. Introduction of higher-order perturbative corrections would
yield the exponent α to be positive due to unitarity, consistent
with the phenomenological value ≈ 0.14 determined from the INS
results. These DMFT analyses at least validate the existence of the
heavy-fermion-like local quantum criticality at low temperatures
due to emergent local dynamics of the Z2 flux and Ising AFM
fluctuations.
To further confirm the local quantum criticality in α-RuCl3, we

also performed ac-magnetic susceptibility measurement in a

Fig. 6 Scaling plot for the dynamic spin susceptibility obtained at
low energies, ℏω ≤5meV. The quantity χ″Tα with α= 0.14 is plotted
against ℏω/kBT. The red line is a fit to the local quantum criticality
model as described in the text. The gray circles presenting the 2 K
data deviate from the universal scaling due to the dominant
magnon excitation at a low-energy AFM state below TN ≈ 6.5 K. Error
bars represent 1 standard deviation.
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nonzero applied magnetic field. Figure 7a shows the real part of
the ac magnetic susceptibility χ0acðT ;HÞ measured with magnetic
fields along H//a (see the inset of Fig. 7b for the field direction),
representing the phase diagram in the temperature and the
magnetic field. The low-temperature χ0acðHÞ below 4 K reveals two
anomaly peaks, indicating phase transitions between zigzag AFM1
(ZZ1), zigzag AFM2 (ZZ2), and polarized FM (PF), in turn. The
appearance of the multi phases in the magnetic field is consistent
with the phase diagrams provided by previously reported specific
heat, ac-magnetic susceptibility, and neutron diffraction measure-
ments39,40. Figure 7b shows χ0acðTÞ at various magnetic fields near
the phase boundary between the ZZ2 and PF. In particular, χ0acðTÞ
exhibits a power-law behavior below 14 K at HC= 7.2 T, revealing a
criticality where the zigzag antiferromagnetic order is suppressed
by the magnetic field. The collected χ0acðTÞ are scaled with χ0acT

α

with α= 0.14, and this quantity collapses onto a single line as a
function of (H− HC)/kBT for the fields above HC. The observed
critical exponent α= 0.14 is consistent with the critical exponent
from the dynamical spin susceptibility at the low energy, re-
confirming the local quantum criticality in the α-RuCl3.

Magnetic-specific heat: Weak to Strong-coupling crossover
The crossover behavior of the quantum criticality is also
observable in the magnetic-specific heat Cm of α-RuCl3

20. As
shown in Fig. 8a, Cm exhibits a low-temperature plateau up to
~50 K above TN and then follows a T-linear like behavior up to TH
~100 K. The latter, which was attributed to the Dirac-like itinerant
MFs29, indeed agrees well with the contribution calculated in a
system with free Dirac fermions, consistent with the weak-
coupling quantum criticality. Remarkably, the plateau feature,
which has been puzzling, turns out to be understood with the low-
energy local quantum criticality. Using the dynamic spin suscept-
ibility, we construct a standard form of the free energy F T ;Hð Þ ¼
�T
P

iω log χðiω; T ;HÞ and calculate Cm T ;H ¼ 0ð Þ ¼ �T∂2F=∂T2

with the fitting parameters α ≈ 0.14 and a ≈ 0.88 obtained from
the low-energy scale INS results (see Supplementary Notes and
Supplementary Fig. 10 for details). As can be seen in the figure, the
calculated Cm reasonably well reproduces the plateau feature
above TN. This result implies that most of the entropy is given by
the critically fluctuating local moments in this regime.
Besides the plateau feature, the strong-coupling local quantum

criticality also predicts a scaling behavior of the specific heat Cm
(also see Supplementary Notes). Now the energy scale separated
from QCP corresponds to TN(H) = TNð0Þ 1� H=HCð Þνz , inverse of
the quantum coherence time at an H-field. The critical exponent νz
involves the critical exponent ν of the correlation length and the

dynamic critical exponent z. In the local quantum criticality, ν→ 0
(local) and z→∞ yield a finite νz. To determine the exponent νz,
we measured the specific heat Cm at various magnetic fields
below the critical field HC ≈ 6T, where TN(HC) is supposed to
become zero. Figure 8b shows TN vs. δh= 1− H/HC and the best
fit is obtained with νz ≈ 0.125. Using this value, we examine the
scaling behavior of Cm=Tð Þδhνz as a function of T/TN(H). As can be
seen in the inset, all Cm=Tð Þδhνz at different H-fields merge into a
universal scaling curve, indicating that the effective spatial
dimension, in which critical fluctuations dominate the entropy-
carrying, is extremely local. This result confirms that the low-
temperature specific heat above TN is governed by the strong-
coupling local quantum criticality.

DISCUSSION
In this study, have shown the crossover behavior of α-RuCl3 from
the high-energy weak-coupling critical region to the low-energy
strong-coupling critical region above TN as described in Fig. 1. We
identified a Wilson–Fisher–Yukawa FP which governs the universal
physics in the high-energy region. It is essentially the same physics
as that of the pure Kitaev model. Although the zigzag Ising AFM
fluctuations are introduced in the present effective field-theory
description, they just contribute short-ranged effective interac-
tions to both matter fluctuations, itinerant MFs and localized Z2-
flux excitations, in the high-temperature quantum-critical regime.
In this respect, it is not surprising to have a reasonable agreement
between the experiment and the pure Kitaev theory, and the
essential ingredients in our field-theory description are almost the
same as those of the simulation from the pure Kitaev
model19,20,29,30. Here, we want to emphasize that the present
study on the Kitaev-AFM model determines the explicit formula
for the scaling function, Eq. (24), which cannot be obtained from
previous numerical studies.
The more interesting discovery lies in the low-energy, strong-

coupling region. We demonstrated experimentally and theoreti-
cally that the spin dynamics follow the heavy-fermion-type strong-
coupling physics at low energies. We could show that this
emergent strong-coupling local quantum criticality at low
energies appears from the weakly coupled rather conventional
quantum criticality at high energies. This weak-coupling
(Wilson–Fisher type) to strong-coupling (locally critical heavy-
fermion type) quantum criticality crossover revealed in α-RuCl3 has
not been expected before. The local quantum criticality is cross-
checked both theoretically and experimentally; self-consistent
analysis based on the DMFT description and the magnetic-specific

Fig. 7 ac-magnetic susceptibility at nonzero applied magnetic field. a Temperature-magnetic field contour plot of the real part of the ac-
magnetic susceptibility χ0acðT ;HÞ for applied magnetic field along a axis of the honeycomb lattice, as depicted in the inset of (b). The black
circles indicate the phase boundaries between zigzag AFM1 (ZZ1), zigzag AFM2 (ZZ2), and polarized ferromagnet (PF). b χ0acðTÞ measured at
various fields near the phase boundary between the ZZ2 and PF, displayed in log–log plot. χ0ac measured at HC= 7.2 T shows power-law
behavior, representing the criticality, and this field value is indicated with the blue arrow in (a). The black solid line is a linear guide to the eyes.
c A scaled plot of the ac-magnetic susceptibility, plotted as χ0acT

α with α= 0.14 as a function of μB(H− HC)/kBT.
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heat measurement, respectively. The scaling behavior at low
temperatures above TN indicates that the critical fluctuations
dominating the entropy-carrying are extremely local. Unfortu-
nately, we could not explicitly derive the crossover regime since it
requires a non-perturbative theoretical approach, which is quite
complicated and too difficult. Instead, we verified the existence of
the heavy-fermion-like strong-coupling FP in a self-consistent way
based on the DMFT. Again, we point out that this strong-coupling
phenomenon has never been either observed or discussed in the
research of α-RuCl3.
In α-RuCl3, it is well known that the symmetric Γ-term is as large

as the Kitaev term, and there have been many studies on the
effect on the Kitaev spin liquid phase41–47. Our model contains the
Kitaev term coupled with Ising fluctuations but lacks the Γ-term.
However, the antiferromagnetic zigzag order and the correspond-
ing Ising spin excitation result from possible interplays among the
Γ-term, the Kitaev interaction term, and the Heisenberg exchange
term in the microscopic lattice model perspectives. In this respect,
the role of the Γ-term in the ground state and its collective
excitation has been taken into account rather “effectively.” On the
other hand, there can be additional interactions between Ising
spin fluctuations in the effective field theory induced by the Γ-
term. Recalling that four-fermion local interaction in the two-
dimensional Dirac theory, possibly allowed by the Γ-term, are RG
irrelevant for quantum criticality, we speculate that the Γ-term
does not affect much the critical behavior of Ising spin
fluctuations. The Γ-term has a form

HΓ ¼ Γx
X

x�bonds

ðSyj Szk þ Szj S
y
kÞ þ Γy

X
y�bond

ðSzj Sxk þ Sxj S
z
kÞ þ Γz

X
z�bond

ðSxj Syk þ Syj S
x
kÞ;

(31)

which couples the spin z-component (Ising) to the x-, y-
component. Thus, the Γ-term shows the spin exchange coupling
between the gapless critical degrees of freedom (Ising spin
excitations along the z-direction) and the gapped spin excitations
of the x-, y-direction. In this respect, it is natural to expect that the
Γ-term is irrelevant to the Ising quantum criticality. In addition, for
the high-energy weak-coupling region, the previous experiment20

shows that the pure Kitaev model without the Γ-term well explains
the behavior above the temperature 50 K. Therefore, as far as
quantum criticality is concerned, the Γ-term does not affect
physics much. For anisotropy in the Γ-term, i.e., different coupling
strengths for different bonds, it is usually irrelevant to the
criticality due to the symmetry of Dirac fermions.
Previously, we pointed out that the high-energy quantum-

critical scaling behavior can be explained by two kinds of

emergent Majorana fermions48. In particular, the Z2 flux excita-
tions are coupled with the itinerant fermions, and these effective
interactions are responsible for the weak-coupling high-energy
quantum-critical scaling behavior in the high-frequency INS data.
The relevance of these many-body interactions in the spin-spin
correlation function has also been discussed for the pure Kitaev
model49. Actually, we confirmed similar high-energy quantum-
critical scaling behavior in the quantum Monte Carlo simulation
for the pure Kitaev model19,20,29,30.
It is an essential question whether or not the pure Kitaev

physics gives rise to the strong-coupling low-energy quantum-
critical scaling behavior in the low-frequency INS data. Since the
Z2 flux excitations coupled with the itinerant fermions are
localized at low energies, one may expect strong-coupling
behavior in that energy scale. Here we emphasize that role of
the quantum-critical Ising-type AFM fluctuations is essential in the
appearance of the local quantum criticality. The existence of such
quantum-critical spin fluctuations results in long-range singular
interactions between the Z2 flux and itinerant fermion excitations
along the time direction. However, the strong-coupling quantum
criticality is not possible in the pure Kitaev model since the
effective many-body interactions are short-ranged and non-
singular to become irrelevant at low energies due to the formation
of the Z2 flux gap. Indeed, we confirmed that the low-frequency
INS data significantly deviates from the simulation results for the
pure Kitaev model at low energies20.
Note that the existence itself of two FPs is not surprising. For

example, suppose a scalar field theory with an effective ϕ4-type
interaction, regarded to be an effective field theory for a
transverse-field Ising lattice model50. This field theory is well
known to show its RG flow from a non-interacting Gaussian FP at
the high-energy UV regime to an interacting Wilson–Fisher one at
the low-energy IR regime51. In quantum chromodynamics, there is
an RG flow from an (“almost” non-interacting) asymptotically free
theory to a strong-coupling confinement phase51. Here, we have
an RG flow between the weak-coupling Wilson–Fisher-type
“conventional” UV FP and the strong-coupling heavy-fermion-
type unconventional or local IR FP. A remarkable point is that we
reveal the nature of the IR FP in this Kitaev-type material α-RuCl3.
In particular, this IR FP is strongly correlated to be locally quantum
critical. The emergence of this heavy-fermion-type strong-
coupling FP in this material is completely unexpected.
One may criticize that the heavy-fermion system shows a similar

weak-coupling to strong-coupling quantum criticality crossover
near the heavy-fermion magnetic QCP. Indeed, some crossover
behaviors have been observed in thermodynamics and transport

Fig. 8 Scaling behavior of the magnetic-specific heat of α-RuCl3. a Magnetic-specific heat (magnetic contribution) Cm obtained at the zero
magnetic field and theoretical model calculations. b Log–log plot of the Néel temperature TN under magnetic fields H as a function of
δh= 1− H/HC (H//a) with the critical field Hc ≈ 6T. The blue-filled circles denote TN(H) extracted from the AFM peak position in Cm(H, T). The red
dashed line is given by scaling function for TN∝ δhνz, where ν is the critical exponent of the correlation length and z is the dynamical critical
exponent. A universal scaling behavior of Cm is presented in the inset, where the scaling function data Cm

T

� �
δhνz for different H-fields merge

into a single universal curve above TN(H) with νz ≈ 0.125 in the log–log plot as a function of T/TN(H).
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measurements52. However, these crossover behaviors were not
clearly understood both experimentally and theoretically. For
example, there is a crossover behavior in the specific heat of
YbRh2Si2 near a magnetic field-tuned QCP52. One may claim that
the high-temperature region would be governed by the
Hertz–Moriya-Millis theory, a standard weak-coupling theory for
heavy-fermion quantum criticality53. Meanwhile, there is no
consensus for the low-temperature anomalous behavior, not
understood as far as we know. In addition, there is a classical
paper on INS measurements for CeCu(6-x)Aux34, in which the low-
energy spin dynamics was described in a momentum-
independent local form with ω/T scaling. The origin of this
functional form was proposed based on a DMFT framework, but
the high-energy spin dynamics were not clarified in the study, and
it has not yet been understood how the spin dynamics evolve
from UV to IR.
Analogous to the crossover between the weak-coupling

Hertz–Moriya–Millis quantum criticality and the strong-coupling
local quantum criticality in heavy-fermion systems, we verified a
similar quantum criticality crossover behavior in α-RuCl3 not only
theoretically but also experimentally. Our study verifies the
quantum criticality crossover behavior in α-RuCl3. A similar
crossover was suggested in the heavy-fermion system, but its
mechanism has not been understood in our opinion.
If one could simulate the Kitaev–Heisenberg lattice model18 and

calculate the spin-spin correlation function in a brute force way,
we believe that the low-energy strong-coupling quantum-critical
physics can be verified theoretically. It remains as an interesting
future research. In this respect, an interesting message given by
the present study is that the Kitaev–Heisenberg lattice model
(with a gamma term) would show the weak-coupling to strong-
coupling quantum criticality crossover behavior from UV to IR. To
confirm the locally quantum-critical scaling function at low
energies more transparently, we have to show momentum
independence of the low-energy spin spectrum. In other words,
we have to investigate the scaling plot at other transfer
momentum points in our neutron scattering measurements. In
addition, we can calculate both longitudinal and transverse
thermal conductivities based on this locally quantum-critical
scaling function for the spin spectrum. Resorting to the DMFT
framework with this local spin spectrum, we calculate the self-
energy of the itinerant fractionalized fermion excitations, which
gives the temperature dependence of their scattering rate. Here,
the main point is that localization of Z2 gauge fluxes causes that of
Ising antiferromagnetic fluctuations, both of which are coupled to
the delocalized fractional excitations. As a result, we suspect that
both thermal transport coefficients would show effectively a metal
(UV) to insulator (IR) crossover behavior due to the localization
physics. We expect that this physics may be reflected in a H/T
scaling function for the thermal conductivities.
We believe that our discovery of the crossover behavior from

deconfined weak-coupling “non-local” quantum criticality to
deconfined strong-coupling “local” quantum criticality in α-RuCl3
opens an intriguing research field of critical quantum spin liquids,
which results from the interplay between the spontaneous
symmetry breaking and the topological ordering. In particular,
thermal transport properties in α-RuCl3 would reveal transport
phenomena distinguishable from existing ones, giving rise to a
unique universal scaling law of the transport properties due to the
fade-out of well-defined fractionalized excitations in spite of the
topological ordering. In this aspect, α-RuCl3 provides an ideal
platform to explore a unique universality class, where the
universal scaling laws govern the thermodynamic, spectroscopic,
and transport properties.

METHODS
Experimental details
Single crystalline α-RuCl3 samples were prepared using the
vacuum sublimation method as described in ref. 20. The crystal
orientation was determined by using the X-ray Laue. The ac-
magnetic susceptibility and specific heat of α-RuCl3 were
measured by using the conventional AC Measurement System II
(ACMS II) and calorimeter equipped at a commercial Quantum
Design Physical Property Measurement System (PPMS-Dynacool),
respectively. The ac-magnetic susceptibility was measured at
500 Hz with an oscillating field of 10 Oe.
The zero-field INS measurements were performed by using

MERLIN and LET time-of-flight spectrometers at the ISIS spallation
neutron source in Rutherford Appleton Laboratory, UK. 165 pieces
of α-RuCl3 single crystals with the total mass ~5.5 g were co-
aligned on an aluminum plate with the (0, K, L) scattering plane.
The samples were placed under a liquid helium flow-type cryostat
with a temperature control ranging from 2 to 290 K. In the MELRIN
experiments, we used a chopper frequency of 300 Hz, which
provides Ei= 12meV, 22meV, and 50meV of incident neutron
energies with FWHM (full width at the half maximum) energy
resolutions of 0.34 meV, 0.75 meV, and 2.23 meV at elastic
scattering, respectively. The measurements were performed for
the sample rotation from− 52° to 52° with 4° step referring to 0°
at ki//c*. The LET experiments were performed at Ei= 10 meV with
the energy resolution of 0.36 meV (FWHM) for the elastic
scattering, and the sample rotation from− 30° to 30° with 5° step
relative to ki//c*. The background signals were separately obtained
by using an identical aluminum sample holder both in the MERLIN
and LET experiments for the background correction. INS data were
normalized and converted to the unit for the neutron scattering
function by using the incoherent neutron scattering intensity of a
standard reference vanadium sample.
The data presented in Figs. 5 and 6 were obtained by

integration over [0, 0, L]= [− 2.5, 2.5], [0, K, 0]= [− 0.17, 0.17],
and [H,− 0.5H, 0]= [− 0.17, 0.17]. The magnetic form factor
contribution from the L-component in the integrated data was
corrected by dividing with the Ru3+ magnetic form factor at each
data point20, and the scaled data were compared with the
theoretical model calculations for S(Γ,ω). All the data were
analyzed by using HORACE software distributed by ISIS54.

DATA AVAILABILITY
Data are available from the corresponding author upon reasonable request.
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