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Transport measurement of fractional charges in topological
models
Shu-guang Cheng1, Yijia Wu 2,3, Hua Jiang 3,4✉, Qing-Feng Sun2,5 and X. C. Xie2,3,6

The static topological fractional charge (TFC) in condensed matter systems is related to the band topology and thus has potential
applications in topological quantum computation. However, the experimental measurement of these TFCs in electronic systems is
quite challenging. We propose an electronic transport measurement scheme in which both the charge amount and the spatial
distribution of the TFC can be extracted from the differential conductance through a quantum dot coupled to the topological
system being measured. For one-dimensional Su–Schrieffer–Heeger (SSH) model, both the e/2 charge of the TFC and its distribution
can be verified. As for the disorder effect, it is shown that the Anderson disorder, which breaks certain symmetry related to the TFC,
is significant in higher-dimensional systems while having little effect on the one-dimensional SSH chain. Nonetheless, our
measurement scheme can still work well for specific higher-order topological insulator materials, for instance, the 2e/3 TFC in the
breathing kagome model could be confirmed even in the presence of disorder effect. These conclusions about spatial dimension
and disorder effect are quite universal, which also applies to other topological systems such as topological classic wave system.
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INTRODUCTION
The fractional charge, widely existing in a variety of topological
systems, directly relates to the non-trivial topology of electronic
states and is of great significance in the field of condensed matter
physics1–9. There are mainly two categories of fractional charge:
the moving type and the static type. The former kind acts as
charge carrier in the fractional quantum Hall (FQH) states1–4. And
the later one, can be found as topological edge states in many
topological materials, such as one-dimensional systems with the
Jackiw-Rebbi mechanism5–9, topological crystalline insulators with
disclination10, and higher-order topological insulators11–17.
Remarkably, both the moving18–21 and the static fractional
charges22–26 follow the quantum statistics beyond the Boson/
Fermion statistics and can be employed for topological quantum
computation.
Back in 1997, the moving fractional charge in the FQH state was

experimentally verified via the transport measurement of shot
noise27,28. The detection of the static topological fractional charge
(TFC), in contrast, is quite challenging in condensed matter
systems. The direct measurement of TFC via scanning tunneling
spectroscopy is hindered by the experimental resolution29. In
addition to that, earlier theories have proposed an approach to
detect the Jackiw-Rebbi zero mode through its π-period
Aharanov–Bohm oscillation22,30. Although the presence of the
zero mode could be certificated, the charge amount of the static
TFC cannot be determined in such a proposal. In another earlier
theoretical work31, a proposal is raised based on an effective
model where the TFC trapped by the magnetic domains can be
detected via the Coulomb blockade. Such a simplified scheme, in
which the entire electronic structure as well as the disorder effect
are excluded, has not been confirmed in a more realistic lattice
model. Another drawback of this scheme is that the spatial

distribution of the TFC cannot be obtained. It is worth noting that
although the experimental measurement of TFC has recently been
reported in classical wave systems29,32–34, the elusive disorder
effect remains to be further investigated. Significantly, the TFC
state here is occupied only when an input with certain frequency
is provided. The absence of Fermi surface hinders the verification
of the quantum statistics of the TFC in classical wave systems.
In recent years, remarkable progresses for the experimental

realization of Su–Schrieffer–Heeger (SSH) model in condensed
matter systems have been made by engineering graphene
nanoribbons35–38. By precisely decorating the graphene nanor-
ibbon edge profiles, both the topologically trivial and non-trivial
states are manifested through scanning tunneling spectroscopy.
Owing to these progress, the enthusiasm for the discrimination
and measurement of TFC in topological materials has been highly
raised.
In this theoretic work, the static TFC in topological systems is

obtained through the electronic transport of a quantum dot (QD)
coupled to the topological system. For the SSH model, both the
e/2 TFC and its spatial distribution is obtained from transport
results. The disorder effect, which is widely presented in
topological systems supporting TFC but has not been thoroughly
studied yet, is also intensively investigated in this work. The
Anderson disorder breaking certain symmetry related to the TFC
generally has significant effect on the TFC. However, such effect is
greatly suppressed in one-dimensional system that for disordered
SSH chain, the TFC amount measured is still in good agreement
with the clean result. For certain higher-order topological
materials, e.g. some armchair-edged breathing kagome material,
the well-localized TFC possessing 2e/3 charge could also be
confirmed by our transport scheme even under disorder.
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RESULTS
Model
Our transport system measuring TFC is shown in Fig. 1a that a QD
(the red ball) with two energy levels is connected to two
separated terminals (the grey ones). The QD can be moved to
the vicinity of the target atom of the topological system (e.g. a SSH
chain shown by blue balls) and weakly bonds to it, leading to a
Coulomb interaction39–42. In this way, the charge possessed by the
target atom can be extracted from the shift of the differential
conductance resonance peak43–45. Then the amount and spatial
distribution of the TFC possessed by the topological edge states
can be extracted by measuring all the atoms involved.
There are two basic rules for this TFC measurement scheme: (i)

Any topological edge state carries an integer number of electrons.
(ii) A trivial insulator is charge neutral when the Fermi energy lies
inside the gap. The first rule enables us to determine the Coulomb
interaction strength, while the second rule enables us to count the
charge by comparing the charge difference between a trivial
insulator and its non-trivial counterpart. Remarkably, in the
presence of disorder, whether the second rule is still valid
depends on the symmetry of the disorder term and the dimension
of the topological material.
We first apply our method to the SSH chain composed of an

odd number of sites, in which the TFC is presented only in one
end of the chain (non-trivial end), while another end of this chain
(trivial end) behaves like a trivial insulator. In this way, the
measurement and the charge difference comparison can be
conducted in a single device. The total Hamiltonian of the system
is in the form of:

H ¼ HQD þ HSSH þ Hc; (1)

where the two-level QD (with level index i) is connected to the source
and drain (with index α= L, R) as HQD ¼ P

kαεkαC
y
kαCkα þ

P
iεia

y
i ai þP

kα;i tkðCy
kαai þ h:c:Þ with Cy

kα and ayi the creation operators
in terminals and QD, respectively. Here εi is the i-th energy level
for the QD and tk is the coupling between terminals and the QD.

HSSH ¼ P
nðt1by2n�1b2n þ t2b

y
2nþ1b2n þ h:c:Þ describes the SSH chain

and t1/2 is the alternative coupling between nearest sites. The
coupling term reads Hc ¼

P
i ½Uayi aibysbs þ tcðayi bs þ bysaiÞ� with U

the Coulomb interaction strength, and tc the direct tunneling
between the QD and the target site (denoted by index s) of the
SSH chain.
In the calculation, the on-site energy of the QD and its Coulomb

interaction to the target site constitute the unperturbed
Hamiltonian H0 (3 × 3 matrix in the basis of {a1, a2, bs}). The rest
part of H [see Eq. (1)] is regarded as perturbations (see Methods
section). In this way, the differential conductance of the system is
obtained from the Green’s function46,47

GðEFÞ ¼ e2

h
Tr½ΓrLGrΓrRðGrÞy�: (2)

Here ΓrL=R is the symmetric line-width function of the terminals and
Gr is the retarded Green’s function. The unperturbed retarded
Green’s function for the n-th level in QDs from H0 reads: grnðEÞ ¼
1=ðE � εn � Uhnsi þ iηÞ with η a positive infinitesimal and 〈ns〉
the total electron number below the Fermi level. Gr is numerically
obtained from the Dyson equation for gr and they share similar
features. When the QD is weakly coupled to the topological system,
the resonance peaks of the GðEFÞ shift from εi to εi+ U〈ns〉 due to
the Coulomb blockade48,49. The weak coupling assumption is quite
reasonable since the direct tunneling tc exponentially decays with
the distance while the Coulomb interaction U is inversely
proportional to the distance. In practice, U is a priorly unknown
parameter which should also be extracted from the measurement.

Measurement of e/2 charge in SSH models
For a QD consisting of two energy levels ε1, ε2, when both these
two levels are below the fractionally-charged subgap zero mode
of the SSH chain as ε1 < ε2 < 0 [Fig. 1b], the corresponding
conductance peaks are separated by d1= ε2− ε1. Alternatively, by
tuning the gate voltage Vg, these two levels can be elevated to ε01
and ε02 that ε01 < 0 and ε02 > 0 [Fig. 1b]. Since ε01 ¼ ε1 þ eVg and

Fig. 1 The schematic setup and related measurement features of TFC in SSH model. a Schematic plot of the transport device measuring the
TFC in the SSH chain. b, c Band structure for non-trivial/trivial SSH model and the QD levels. The number of electron of the zero mode nt in b is
the same as the increased portion of the bulk states' number of electron in c, as denoted by the orange areas. d–i Fermi level dependence of
the conductance curves for d trivial end of the SSH chain with t1= 0.6t, and t2= 0.37t; and e–i non-trivial end of the same SSH chain with
t1= 0.37t, and t2= 0.6t. The parameters are drawn from a practical experiment where the SSH chain is built from the graphene naoribbon37

and t= 1eV is used as the energy unit. Other parameters are U= 0.05t, tk= 0.1t, tc= 0.01t.

S.-g. Cheng et al.

2

npj Quantum Materials (2023)    30 Published in partnership with Nanjing University

1
2
3
4
5
6
7
8
9
0
()
:,;



ε02 ¼ ε2 þ eVg þ Unt , where nt denotes the amount of charge of
the zero mode at the site being measured, now the conductance
peaks are separated as d2 ¼ ε02 � ε01 ¼ d1 þ Unt . Thus, at this
specific site, d2− d1= Unt, which measures the product of U and
nt. Owing to the integer charge rule mentioned earlier (∑nt= 1),
when all the sites that the TFC resides in are considered, we have
∑(d2− d1)= U ∑ nt= U and consequently, the value of U is
measured.
Figure 1e–i display the G � EF relations for all the odd sites at

the non-trivial end of the SSH chain for both (i) ε1, ε2 < 0; and (ii)
ε01 < 0, ε02 > 0. The conductance peak shifts for even sites are trivial
as d1= d2 (see Supplementary Fig. 3). Figure 2a summarizes the
site n dependence of Δdn= d2− d1 extracted from Fig. 1e–i. For
odd sites, Δdn decreases as the target site moves from the end to
the bulk, and for all the even sites, Δdn= 0. Summing them up
gives U0= ∑Δdn= 0.052t, which is quite close to the input value
of U= 0.05t and demonstrates that the priorly unknown
parameter U0 can be obtained from the transport measurement.
The small difference between U0 and U may come from three
issues. (i) Small but non-zero direct tunnelings (tc= 0.01t,
compared with tk= 0.1t) shifting the G peak position; (ii) Peak’s
position of G is obtained via numerical treatment other than
exact analytical derivation; and iii) G is obtained by iteration with
a finite but accepatable accuracy.
To figure out the amount and the distribution of the TFC, we

need to measure the trivial end of the same SSH chain while
keeping Vg unchanged. Compared with the non-trivial end, the
bulk states’ charge amount in the trivial end is increased by nt
[see Fig. 1c]. The conductance peaks now locate at εt1 and εt2,
where εt1 ¼ ε01 � U0Qn=e and Qn is the TFC at site n. Therefore, Qn

can be extracted from the conductance peak shift as Qn ¼
ðε01 � εt1Þe=U0 since U0 has been obtained previously. Note that
Qn is independent of U. Thus, the obtained Qn is still correct
even if there is a screening effect which only renormalizes the
value of U.
Figure 2c displays the spatial distribution of Qn and its

summation ∑nQn. Such a summation is truncated when Δdn
decays into a sufficiently small value. For odd sites, Qn decreases
as the target site moves from the end to the bulk of the SSH
chain and for even sites, Qn is nearly zero. These are in good
agreement with the analytical result: Qn ¼ ðe=2Þðt1=t2Þn�1½1�
ðt1=t2Þ2� for the odd site, and Qn= 0 for the even site50,51. For
the present SSH chain model with parameters adopted from
experiment37, 10 sites are sufficient for the truncation in
summation. In Fig. 2b ∑nQn approaches e/2, confirming the 1/
2 charge quantization of the TFC in the clean SSH model. Figure
2c, d displays the TFC obtained from the above scheme for

another set of parameters t1= 0.2t and t2= 0.6t (see Supple-
mentary Fig. 3). In such a case, U0= 0.052t [Fig. 2c] can be
drawn from the transport data. The measurement scheme also
shows that the TFC now becomes more localized at the end of
the SSH chain, while the TFC amount is still close to e/2 [Fig. 2d].
All these are in perfect match with the analytical results50,51.
Such transport measurement scheme is also adopted for
obtaining the spatial distribution and verifying the e/2 amount
of the TFC carried by the topological corner state of the
quadrupole insulator11,12, where the latter is regarded as the
two-dimensional analogy of the SSH chain (see Supplementary
Note 6).
Though the measurement scheme above is based on a

comparison between trivial and non-trivial SSH chain, it also
works for the SSH chain with only non-trivial end states. This is
because the electron density distribution in the sites far away
from the end of the SSH chain is the same for both non-trivial
and trivial SSH chain. Hence the sites far away from the bulk of
the non-trivial SSH chain can be treated as a trivial SSH chain end
because of the translational invariance. So far, there being just
only a single value of U is required in our proposal. For another
SSH-type model in which each site supports two orbitals so that
there are two different U’s52, the current version of our
measurement scheme will not work well. Nevertheless, when
the separation between the QD and the target atom is large
compared to the lattice constant of the SSH chain, our treatment
is a good approximation and the amount of TFC can still be
obtained (see Supplementary Note 5).

The influence of disorder effects
Disorder effect including bond disorder and Anderson disorder is
widely presented in practical experiments, which may induce
charge fluctuation and thus hinder the identification of the
genuine fractional charge. The bond disorder, for instance, in the
form of

P
iwiðbyi biþ1 þ h:c:Þ in the SSH model where wi is

uniformly distributed as wi∈ [−W/2,W/2] and W is the disorder
strength53, preserves the chiral symmetry obeyed by the clean
SSH model. Hence the charge neutral rule for the trivial insulator
remains valid, and the fluctuation only comes from the
redistribution of the TFC in the non-trivial state. As shown in
Fig. 3b, under bond disorder, although the distribution of the TFC
deviates from the clean SSH model, the TFC amount still
approaches e/2.
In contrast, the Anderson disorder

P
iwib

y
i bi

54 in the SSH model
breaks the chiral symmetry so that the charge neutral rule is only
satisfied in an average manner. The TFC fluctuation is now
ascribed to the redistribution of the electron density of both the

Fig. 2 The TFC and its distribution in the SSH chain. a, c The shift of the conductance peaks' separation Δdn= d2− d1 [drawn from Fig. 1e–i]
and its summation ∑nΔdn. b, d The TFC distribution Qn and its summation ∑nQn.
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bulk states (in the trivial and non-trivial SSH chain) and the
topological edge state (in the non-trivial SSH chain). The transport
data confirms that the position of the conductance peaks in each
site of the trivial SSH chain also fluctuates under Anderson
disorder (see Supplementary Fig. 3), which is in stark contrast to
the bond disorder condition. As a result, though the amount of
the TFC is approximately e/2, both the TFC distribution Qn and its
summation ∑nQn shows significant fluctuation [Fig. 3d] even for
the sites far away from the end of the SSH chain.
A question then arises that whether the fluctuation of the

total TFC becomes more significant if more sites are taken into
consideration. This issue is essential because in higher-
dimensional systems, the site number involved for the
topological edge state is proportional to the power of the
localization length of the edge state. For the one-dimensional
SSH chain, the standard deviation of the TFC at each site
σn ≡ σ(Qn) and the standard deviation of the total TFC inside the
area concerned σn

Σ � σðPi2&QiÞ is investigated ["□” indicates
the area concerned, shown by the red rectangles in Fig. 3g].
Significantly, both σn and σnΣ are in the same order for the one-
dimensional SSH chain [Fig. 3e]. As a comparison, as shown in
Fig. 3f, g, for an Anderson-disordered two-dimensional quadru-
pole insulator11,12 whose band gap and disorder strength are
both the same as the one-dimensional SSH chain, although σn is
nearly independent of n [n refers the index of the grey dots in
Fig. 3g], σn

Σ quickly increases in the fashion proportional to
ffiffiffi
n

p
.

Such fluctuation behavior is certainly detrimental to the TFC
measurement.
In case of Anderson disorder, the fluctuations of Qn in adjacent

sites are correlated so that the fluctuation of the total TFC σnΣ

inside the area concerned is only determined by the charge
fluctuation at the boundaries. For one-dimensional model like SSH
chain, such a boundary is a single site, while for higher-
dimensional systems like quadrupole insulator, the number of
sites at the boundary increases with the area being concerned.
Consequently, σn

Σ does not increase with n for one-dimensional
topological system, while it quickly increases with n for higher-
dimensional system. In other words, for higher-dimensional
topological materials supporting TFC, the disorder-induced
fluctuation of the TFC is reduced for a better-localized topological
edge state. The results of dimension and disorder effects on TFC
measurement are universal. They hold true not only for
topological electronic systems, but also for topological classic
wave systems. For classic wave systems, the TFC is measured via
integrating the local density of states32–34. Though the experi-
ments have shown specific spatial crystal symmetries related to
the TFC are broken by the inevitable disorder effect, the TFC could
still be observed since the topological corner states here are well
localized.

Measurement of 2e/3 charge in breathing kagome lattice
Recently, a TFC of 2e/3 is reported in breathing kagome
lattice14–17, though such material is two-dimensional, the topolo-
gical corner states therein can be well localized (e.g. monolayer
MoS216,17), so that our transport measurement scheme is still
applicable. It is worth noting that in addition to the topological
corner state, the zigzag-edged breathing kagome lattice also
possesses a metallic one-dimensional edge state, hence the TFC
here can not be detected by our scheme. Therefore, we first turn

Fig. 3 Features of TFC under disorders. a–d The TFC distribution in the disordered SSH model as a, b bond disorder with W= 0.2t;
c, d Anderson disorder with W= 0.2t. All other parameters are the same as those in Fig. 1. e, f Standard deviation of the TFC σn at site n, and
standard deviation of the total TFC inside the area concerned σnΣ under Anderson disorder for e SSH chain, and f quadrupole insulator. These
two models are sketched in g, where the red rectangles indicate the area being concerned. Both these two models have the same band gap
(~0.4t), sample length and disorder strength W= 0.5t. In e, f, the standard deviations are drawn from 104 disordered configurations.
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to investigate the armchair-edged breathing kagome lattice
whose one-dimensional edge state is insulating.
Figure 4a shows a corner of a triangular armchair-edged

breathing kagome lattice that the three supercells near the corner
being mainly concerned are highlighted by colored disks. Figure
4b exhibits the conductance curves obtained from our measure-
ment scheme for the representative 15 of the 27 sites inside these
three supercells. The conductance peak shifts Δdn are listed in Fig.
4c, and the TFC Qn as well as its summation are shown in Fig. 4d.
The Qn obtained is in good agreement with the numerical result
Qnum
n from the diagonalization treatment55. It is shown that the

TFC is mainly distributed in the corner sites [see inset of Fig. 4c]. At
the edge, for example, sites 1, 2, and 8 in the pale red supercell
contributes nearly zero net charge after summation. Finally, a
quantized 2e/3 TFC is obtained as expected.
As a comparison [see Fig. 4e], we also show that our transport

measurement scheme fails to determine the TFC in the zigzag-
edged breathing kagome lattice14, because the “charge neutral”
rule, one of the two basic rules of our measurement scheme, is
broken by its metallic one-dimensional topological edge state17

(see Supplementary Fig. 7). Finally, it is worth noting that the spin
degeneracy has been ignored from the beginning. When the spin
doubling is also taken into consideration, for instance, for the
quadrupole insulator, one may be confused by the “integer” TFC
of 2(e/2)29. In contrast, the 2e/3 TFC is always fractional even after
considering the spin doubling, which serves as an additional
advantage for the breathing kagome materials.

DISCUSSION
We have presented the measurement scheme as well as the
suitable materials. Now we turn to discuss feasible platforms

supporting the measurement circuit, as well as the possible
materials supporting TFC. In some pioneering experimental works,
a superconducting quantum interference device on a tip (SOT) is
used to study the spatial distribution of topological states and
heat generation56–58. The SOT, serving as an mobile nanocircuit,
moves precisely in a controlled manner that the separation
between the tip and the sample can keep constant. Modified tips
with a single molecule or specific clusters in scanning tunnelling
microscopy were achieved in past years59,60. By attaching the SOT
with a QD (a molecule or a cluster), it forms a moveable QD and it
does not need to work below the superconducting critical
temperature. Such a proposed measurement apparatus can be
used in a graphene-nanoribbon-based SSH model to study the
fractional charge36,37. Alternatively, in experiment a series of QDs
has been fabricated in two-dimensional electron gas61. It can also
be used for building suitable samples supporting TFC by tuning
the gate voltages properly (see Supplementary Note 8).
In summary, a transport measurement scheme is proposed to

measure the amount and the spatial distribution of TFC in
topological materials. Through such a scheme, the e/2 amount of
the TFC in the SSH model as well as its spatial distribution has been
verified. The bond disorder preserving chiral symmetry will only
slightly modify the spatial profile of the TFC. It implies that seeking a
material in which the symmetry related to the TFC is quite robust will
facilitate the experimental identification of the quantized TFC. In the
presence of Anderson disorder breaking chiral symmetry, the
fluctuation of the TFC amount is largely suppressed in one-
dimensional systems. Meanwhile, for Anderson-disordered higher-
dimensional topological materials such as breathing kagome lattice,
the amount and the distribution of the TFC can still be obtained for
the well-localized topological corner states. It indicates that in specific
condensed matter materials, the difficulty of experimentally

Fig. 4 TFC in breathing kagome models. a Schematic plot of the armchair-edged breathing kagome lattice that the red (blue) bond indicates
hopping amplitude t1 (t2). The sites are numbered in each individual supercell as highlighted by colored disks. b The conductance curves in
each site for both the trivial (t1= t, t2= 0.3t) and the non-trivial (t1= 0.3t, t2= t) cases. c The conductance peak shift Δdn drawn from b. Inset:
the TFC is mainly distributed at the two sites marked by the red balls. d The TFC distribution Qn and ∑nQn drawn from c, where the colored
numbers in the horizontal axis refer to the site indices in a. e The same TFC distribution for zigzag-edged breathing kagome model. Other
parameters are U= 0.1t, tk= 0.1t, and tc= 0.01t.
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distinguishing the genuine fractional charge and the disorder-
induced fluctuation can be circumvented.

METHODS
The solving of the retarded Green’s function
The retarded Green’s function Gr(EF) needs to be solved by
iteration for non-zero U62

GrðEÞ ¼ E �
ε1 þ Uns 0 0

0 ε2 þ Uns 0

0 0 Uðn1 þ n2Þ

0
B@

1
CA� Σr

2
64

3
75
�1

(3)

with Σr the retarded self-energy and the matrix Gr(E) is in the basis
{a1, a2, bs}. The particle numbers n1,2,s in equation (3) refers to
electron number in the QD level ε1, ε2 and in the target site s,
respectively. They are obtained through solving the
integral equation self-consistently by iteration, e.g.
ns ¼ � 1

π

R EF
�1 Im½Gr

ð3;3ÞðEÞ�dE.

Numerical solution for TFC
In Figs. 3e, f and 4c, TFC is obtained via the tight-binding models
of finite-size samples. Solving the eigen-equations HΨi= EiΨi, the
total charge Qn ¼ e

P
i2occjΨiðnÞj2 is obtained by summing up the

states below the Fermi level of site n. The net charge is obtained
by Qn ¼ Q0 �Qn with Q0 the charge of the nucleus. In a clean
trivial insulating system, Qn= 0 for all sites due to the charge
neutral condition.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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