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Charge order in the kagome lattice Holstein model: a hybrid
Monte Carlo study
Owen Bradley 1✉, Benjamin Cohen-Stead1,2,3, Steven Johnston2,3, Kipton Barros4 and Richard T. Scalettar1

The Holstein model is a paradigmatic description of the electron-phonon interaction, in which electrons couple to local
dispersionless phonon modes, independent of momentum. The model has been shown to host a variety of ordered ground states
such as charge density wave (CDW) order and superconductivity on several geometries, including the square, honeycomb, and Lieb
lattices. In this work, we study CDW formation in the Holstein model on the kagome lattice, using a recently developed hybrid
Monte Carlo simulation method. We present evidence for
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CDW order at an average electron filling of 〈n〉= 2/3 per site,

with an ordering wavevector at the K-points of the Brillouin zone. We estimate a phase transition occurring at Tc ≈ t/18, where t is
the nearest-neighbor hopping parameter. Our simulations find no signature of CDW order at other electron fillings or ordering
momenta for temperatures T ≥ t/20.
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INTRODUCTION
The interaction between electrons in a solid and the vibrations of
its nuclei (phonons) can induce a variety of ordered phases1–6.
This electron-phonon coupling modifies the effective mass of
itinerant electrons, and the resulting dressed quasiparticles
(polarons) can pair and condense into a superconducting (SC)
phase or form a periodic modulation of electron density, i.e., CDW
order. At low temperatures, these various phases can compete or
potentially coexist. Over the past several decades, studies of
model Hamiltonians describing electron-phonon coupling have
attempted to capture the interplay between their emergent
ordered phases. In particular, the Holstein model7 has been
subject to much numerical and analytical study because it
incorporates a simplified electron-phonon interaction into a
straightforward tight-binding Hamiltonian, yet exhibits a variety
of competing ordered ground states.
A key feature of the Holstein model is an on-site momentum-

independent electron-phonon coupling, which leads to an
effective electron-electron attraction. Phonons are modeled as
quantum harmonic oscillators of fixed frequency ω0 situated on
each site of a lattice, with their motion independent of their
neighbors. At low temperatures and at particular electron filling
fractions, numerical studies have revealed the emergence of CDW
order on square8–22, triangular23, cubic24, and honeycomb
lattices25,26, with the transition temperature being sensitive to
lattice geometry and dimensionality. A recent study of the Lieb
lattice has also established the existence of CDW order in the
Holstein model in a flat band system27.
In recent years, kagome lattices have attracted attention as a

host of exotic phases owing to their high degree of geometrical
frustration, and the presence of a flat band. The spin-1/2 kagome
lattice Heisenberg antiferromagnet (KHAF) with nearest-neighbor
interactions lacks any magnetic ordering, but the exact nature of
the ground state been subject to much debate, with several
candidates such as the Dirac spin-liquid, Z2 spin-liquid, and
valence bond crystal proposed28–31. A recent study of the KHAF in

the presence of spin-lattice coupling has shown that introducing
Einstein phonons on each site can induce a magnetically ordered
phase32. For example, a
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ordered phase with a 1/3-

magnetization plateau emerges in weak magnetic field, breaking a
Z3 symmetry, with the transition belonging to the 3-state Potts
model universality class. The ordering wavevector for this phase
lies at the K-points, i.e., corners, of the hexagonally-shaped
Brillouin zone.
The ground state properties of the half-filled kagome lattice

Hubbard model are also debated. Dynamical mean field theory
(DMFT) and determinant quantum Monte Carlo (DQMC) studies
have identified a metal-insulator transition (MIT) in the range Uc/
t ~ 7–933–35, while variational cluster approximation (VCA) calcula-
tions estimate Uc/t ~ 4–536. Recent density-matrix renormalization
group (DMRG) calculations find a MIT at Uc/t ~ 5.4, along with
strong spin-density wave fluctuations in the translational symme-
try breaking insulating phase, signaled by an enhancement in the
spin structure factor at the K-points of the Brillouin zone37. CDW
formation on the kagome lattice has also been observed in the
extended Hubbard model. At an average electron density per site
of 〈n〉= 2/3 or 4/3, or at the van Hove filling 〈n〉= 5/6, several
types of order have been observed38–41, including CDW, spin-
density wave, and bond ordered wave states. In particular, at large
V/U (where V is the nearest-neighbor repulsion), a CDW phase with
a
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supercell has been proposed for 〈n〉= 2/3 and 5/6,

which has been termed CDW-III in previous studies40,41. In the
attractive Hubbard model, recent results42 indicate short-ranged
charge correlations at 〈n〉= 2/3 satisfying the triangle rule.
Recent experiments on kagome metals such as AV3Sb5 (A= K,

Rb, Cs) also motivate an understanding of CDW formation on this
geometry43–55. In these systems, charge ordering has been
observed at the M-points, corresponding to lattice distortions
that form a star-of-David or inverse star-of-David CDW pattern.
This ordering wavevector coincides with saddle points in the band
structure and van Hove singularities where electronic correlations
are enhanced. Theoretical studies of these materials56–64,
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including first-principles density functional theory and mean field
calculations, have corroborated these findings, where CDW
ordering at the M-points has been observed near the van Hove
filling.
Finally, kagome lattices have also been achieved in ultracold

atom experiments65 where they have been used to examine Bose-
Einstein condensation of 87Rb66, and Rydberg atoms with large
entanglement entropy and topological order67.
Although the Holstein coupling provides a paradigmatic model

of the electron-phonon interaction, the properties of the Holstein
model on the kagome lattice are not yet understood, and the
possible existence of CDW order remains hitherto unexplored. In
this work, we study the kagome lattice Holstein model using a
scalable algorithm based upon hybrid Monte Carlo (HMC)
sampling68, and measure the charge correlations as a function
of temperature, electron density, phonon frequency, and electron-
phonon coupling. We present evidence for CDW order appearing
at an average electron density per site of 〈n〉= 2/3, with an
ordering wavevector at the K-points of the Brillouin zone, yielding
a
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supercell. Away from this filling, we find no signatures

of CDW order at any ordering momenta for temperatures T ≥ t/20.

RESULTS
Kagome lattice Holstein model
The Holstein model describes electrons coupled to local
dispersionless phonon modes in a lattice through an on-site
electron-phonon interaction7. Its Hamiltonian is

Ĥ ¼ �t
P
hi;ji;σ

ĉyiσ ĉjσ þ h:c:
� �

� μ
P
iσ

n̂iσ � 1
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0
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P
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X̂
2
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P
iσ
n̂iσX̂ i;

(1)

where ĉyiσðĉiσÞ are creation (destruction) operators for an electron
at site i with spin σ= {↑↓}, n̂iσ ¼ ĉyiσ ĉiσ is the electron number
operator, and μ is the chemical potential, which controls the
overall filling fraction. The first term describes itinerant electrons
hopping between nearest-neighbor sites of the lattice, with a fixed
hopping parameter t= 1 setting the energy scale. In the non-
interacting limit, the electronic bandwidth is W= 6 for the
kagome lattice. On each site i are local oscillators of fixed
frequency ω0, with X̂ i and P̂i the corresponding phonon position
and momentum operators, respectively, with the phonon mass
normalized to M= 1. The local electron density n̂iσ is coupled to
the displacement X̂ i through an on-site electron-phonon interac-
tion λ, which we report here in terms of a dimensionless
parameter λD ¼ λ2=ω2

0 W .
The kagome lattice vectors a1= (1, 0) and a2 ¼ ð12 ;
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shown in Fig. 1a, with corresponding reciprocal lattice vectors
b1 ¼ ð2π;� 2πffiffi

3
p Þ and b2 ¼ ð0; 4πffiffi

3
p Þ, where we have set the lattice

constant a= 1. There are three sites per unit cell with basis vectors
uA= (0, 0), uB ¼ ð12 ; 0Þ, and uC¼ 1

4;
ffiffi
3

p
4

� �
, forming a network of corner

sharing triangles with three sublattices, as shown in Fig. 1a. Each
site i may instead be indexed by unit cell and the sublattice
{A, B, C}, such that e.g., ni,α denotes the electron density at the site
belonging to sublattice α within the unit cell at position i. In this
work, we study finite-size lattices with periodic boundary
conditions, with linear dimension L (up to L= 15), N= L2 unit
cells, and Ns= 3N total sites. Note that discrete momentum values
are given by k ¼ m1

L b1 þ m2
L b2 where mi is an integer and

0 ≤mi < L.
There are multiple ways to break the sublattice symmetry of the

kagome lattice. It is, therefore, important to construct an order
parameter that will detect charge ordering independent of the
charge distribution within the unit cell. For example, at a filling
fraction of 1/3, electrons may localize by doubly occupying only
one site per unit cell, breaking a Z3 symmetry. We, therefore,
define an order parameter ρcdw that with perfect CDW order takes
on one of three values ei2πð

s
3Þ, where s= {0, 1, 2} corresponds to

which way this symmetry is broken. The order parameter ρcdw
should also be zero in the completely disordered state, where for
any unit cell i we have hn̂i;Ai ¼ hn̂i;Bi ¼ hn̂i;Ci. Hence we define

ρcdw ¼ nc
2N

X
i

e�iðq�iÞ hn̂i;Ai þ ei
2π
3 hn̂i;Bi þ ei

4π
3 hn̂i;Ci

� �
(2)

where i is a unit cell index, N is the total number of unit cells, q is
the ordering wavevector, and nc is a normalization constant
included to fix ∣ρcdw∣= 1 in the case of perfect CDW order. A
structure factor that scales with system size can then be defined as
ScdwðqÞ / Nhjρ̂cdwj2i, where again a proportionality constant can
be included to fix Scdw(q)= N for the case of perfect CDW order.
For any pair of sites in the kagome lattice, we denote their

density-density correlation in position space by

cα;νðrÞ ¼ 1
N

X
i

hn̂iþr;αn̂i;νi; (3)

where α and ν label the sublattice {A, B, C} of the two sites, and r is
the displacement vector between their unit cells. The Fourier
transform of cα,ν(r) gives a generic charge structure factor

Sα;νðqÞ ¼
X
r

eiq�rcα;νðrÞ; (4)

which provides information about the nature of an emergent CDW
phase, where q is a discrete momentum value within the first
Brillouin zone. For an ideal CDW pattern with ordering wavevector
q, Sα,α(q) will reach a maximal value proportional to the number of
sites, while for α ≠ ν the structure factor will vanish.
In the following section, we show evidence of CDW ordering on

the kagome lattice where electrons localize on only one site per
unit cell but alternates cyclically between the {A, B, C} sublattices
from one unit cell to the next. To study the onset of this phase, we

Fig. 1 Kagome lattice and band structure. a Geometry of the kagome lattice for L= 6, with lattice vectors a1= (1, 0) and a2 ¼ ð12 ;
ffiffi
3

p
2 Þ. Colors

denote the three triangular sublattices. b Left: The tight-binding electronic band structure for the kagome lattice showing the three distinct
bands. Dashed lines indicate the Fermi energy at specific electron densities. Right: The non-interacting density of states D(E) for the kagome
lattice. A delta function at E= 2t is due to the flat band.
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set nc= 1 in Eq. (2) and define a charge structure factor

ScdwðqÞ ¼ 3Nhjρ̂cdwj2i
¼ 3

4

P
α

Sα;αðqÞ � 1
2

P
ν≠α

Sα;νðqÞ
� �

:
(5)

Additional details are given in Supplementary Discussion. Note
that we employ a μ-tuning algorithm69 to determine the chemical
potential for any desired target density.

Measurements of charge order
For the kagome lattice, the non-interacting tight-binding electro-
nic structure with t > 0 has three separate bands, including one
flat band at the highest energy (E= 2t). The lower bands touch at
two inequivalent Dirac points in the Brillouin zone, which we
denote K ¼ ð2π3 ; 2πffiffi

3
p Þ and K 0 ¼ ð4π3 ; 0Þ. The lower band is comple-

tely occupied at an average electron density per site of 〈n〉= 2/3
(i.e., an overall filling fraction of f= 1/3), while the upper band is
fully occupied at 〈n〉= 4/3 (f= 2/3). There are also saddle points in
the band structure at the point M ¼ ðπ; πffiffi

3
p Þ, which produce

singularities in the density of states and sit at the Fermi level for
average electron densities of 〈n〉= 1/2 (f= 1/4) and 〈n〉= 5/6
(f= 5/12). Fig. 1b plots the non-interacting band structure and
density of states for the kagome lattice, illustrating these features.
To begin, we study the variation of local quantities as a function

of electron density, at fixed ω0 and λD. We set ω0/t= 0.1 to
facilitate CDW ordering in the Holstein model, as bipolarons
should localize more readily in the limit ω0/t→ 0 due to reduced
quantum fluctuations. We also fix a moderate value of the
electron-phonon coupling λD= 0.4. We will discuss the rationale
for this choice of parameters shortly.
In Fig. 2a, we show the average electron density per site 〈n〉 as a

function of chemical potential μ for an L= 12 lattice, as the inverse
temperature is varied from β= 2–14. We observe the formation of
a plateau at 〈n〉= 2/3 as the temperature is lowered, signaling the
opening of a gap. No signatures of CDW ordering is observed at
fillings away from 〈n〉= 2/3 for these parameters. We also

calculate the average electron kinetic energy as a function of
electron density as shown in Fig. 2b. We observe a sharp change
at 〈n〉= 2/3, where the magnitude of the electron kinetic energy
becomes maximal. This is a signature of a CDW phase transition,
since a configuration of doubly-occupied sites surrounded by
empty nearest-neighbor sites maximizes the number of bonds
along which electron hopping is permitted (and corresponds to an
average electron density per site 〈n〉= 2/3 on the kagome lattice).
Note that since the kagome lattice is not bipartite, particle-hole
symmetry is not present and thus both the kinetic energy and
average filling are not symmetric about half-filling.
To further study the opening of a CDW gap as the temperature

is lowered, we calculate the momentum integrated spectral
function A(ω), which is related to the imaginary time dependent
Green’s function through the integral equation

Gðk; τÞ ¼ hĉðk; τÞĉyðk; τÞi ¼
Z

dωAðk;ωÞ e�ωτ

1þ e�βω
; (6)

which we invert using the maximum entropy method to obtain
A(ω)70. In Fig. 3, we show the momentum integrated spectral
function for an L= 15 lattice (Ns= 775) for a range of
temperatures down to β= 24, again fixing ω0= 0.1, λD= 0.4,
and an average electron density per site of 〈n〉= 2/3. We observe
three peaks in the spectral function corresponding to the three-
band structure. As the temperature is lowered, A(ω) reaches zero
and a finite gap begins to open at β≳ 18, as shown in the bottom
panel, indicating a transition to an insulating CDW phase.
At an average electron density per site of 〈n〉= 2/3, the lower

energy band is completely filled and touches the upper band at

Fig. 2 Electron density and kinetic energy. a Average electron
density per site 〈n〉 as a function of the tuned chemical potential μ,
for an L= 12 lattice with ω0= 0.1 and λD= 0.4 fixed. Results are
shown for β= 2, 8, and 14, with a dashed line indicating the filling
〈n〉= 2/3. b Electron kinetic energy as a function of the electron
density 〈n〉, for the same set of parameters. Error bars correspond to
the standard deviation of the measured mean.

Fig. 3 Spectral function. Top: Momentum integrated spectral
function A(ω) shown for a range of inverse temperatures from
β= 2 to β= 24, at filling fraction 〈n〉= 2/3 (with ω0= 0.1, λD= 0.4).
The linear lattice dimension is L= 15 i.e., Ns= 775. Bottom: a close-
up view of the finite gap opening for β≳ 18 where A(ω)= 0.
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the Dirac points K and K 0. To study the onset of CDW order at this
filling, we, therefore, calculate the charge structure factor Scdw
[Eq. (5)] evaluated at q= K, as a function of phonon frequency,
electron-phonon coupling, and temperature.
In Fig. 4, we show the variation of Scdw(K) as the phonon

frequency ω0 is increased from 0.1 to 1.0. In the antiadiabatic limit
(ω0→∞), deformation of the lattice is weakened as sites respond
more quickly to electron hopping and bipolarons do not readily
localize, inhibiting the formation of a stable CDW pattern22. In
addition, quantum fluctuations are enhanced at large ω0, further
suppressing CDW order23. For ω0≳ 0.4 we observe no significant
growth in Scdw(K) as the temperature is lowered from β= 2 to
β= 20. However, for ω0≲ 0.3, the structure factor begins to
increase in magnitude as the temperature is reduced, growing
more rapidly with β as ω0→ 0. We therefore fix ω0= 0.1, and vary
the dimensionless electron-phonon coupling λD, in order to
determine the region in which CDW order at 〈n〉= 2/3 is most
enhanced and subsequently estimate Tc for these parameters.
At small values of λD, we find no enhancement in Scdw(K) from

β= 2 to β= 20 i.e., for λD≲ 0.3 there is no sign of CDW order in
this temperature range, as shown in Fig. 5. This may be due to the
critical temperature becoming exponentially suppressed as λD→
0. However, another possibility is a finite λD is necessary for CDW
formation, as is the case in the honeycomb lattice Holstein model
at half-filling25, which similarly has Dirac cones and a vanishing

density of states at the Fermi surface. As λD increases, the effective
electron-electron attraction is enhanced, and we observe an
increase in the charge structure factor as pairs of electrons arrange
themselves into a periodic CDW. As the temperature is reduced,
we find that there is a maximum in Scdw(K) at approximately
λD ≈ 0.4. At larger λD, the CDW structure factor is smaller, and
eventually no significant growth is observed as the temperature is
lowered from β= 2 to β= 20. This behavior might originate from
the higher effective bipolaron mass at large λD, which will hinder
their arrangement into an ordered CDW phase, as the energy
barrier associated with moving from site to site is proportional to
λD, thus promoting self-trapping. Consequently, Tc rapidly
decreases as λD becomes much larger than its optimal value. We
note that similar behavior has been observed in the honeycomb,
square, and Lieb lattice Holstein models25,27.
The momentum dependence of Scdw(q) is shown in Fig. 6,

where the charge structure factor at 〈n〉= 2/3 is evaluated over
the first Brillouin zone for an L= 12 lattice. An enhancement in the
structure factor is observed at the Dirac points as the temperature
is lowered, corresponding to the onset of an ordered CDW phase,
with the magnitude of Scdw increasing rapidly around β≳ 17. For
all other momentum values, including at the M and Γ-points, we
find no enhancement in charge correlations with inverse
temperature β, at this filling.
A real-space depiction of the CDW correlations at 〈n〉= 2/3 is

shown in Fig. 7, which plots density-density correlations
hn̂ðrÞn̂ð0Þi over an L= 12 lattice with periodic boundary condi-
tions. Here r= 0 is the position of a fixed reference site belonging
to the A sublattice. Hence Fig. 7 depicts cα,ν(r) with the origin fixed
at this reference site. The CDW pattern is characterized by the
localization of electron pairs on only one site per unit cell, which
belongs to either the A, B, or C sublattice, alternating cyclically
between these from one unit cell to the next (in both the a1 and
a2 directions). The fact that K and K0 are the ordering wavevectors
for this pattern can be understood as follows. In terms of the
reciprocal lattice vectors, we have K ¼ 1

3 ðb1 � b2Þ and
K0 ¼ 1

3 ð2b1 þ b2Þ. If the doubly-occupied sites are separated by
a displacement r= n1a1+ n2a2, then the Fourier transform of the
density-density correlation function will have peaks at K or K0 if
K ⋅ r= 2mπ or K0 � r ¼ 2mπ, where m 2 Z. This is satisfied if ðn1 �
n2Þmod 3 ¼ 0 (for K) or ð2n1 þ n2Þmod 3 ¼ 0 (for K0), which are
equivalent conditions. In other words, moving along either the a1
or a2 directions, density-density correlations will repeat with a
periodicity of three unit cells, i.e., for each unit cell, the site on
which the electron pairs localize will alternate cyclically between
the {A, B, C} sublattices. For any given unit cell, the onset of this
type of CDW order therefore breaks a Z3 symmetry, and the phase
transition should belong to the 3-state Potts model universality
class.

Estimation of Tc for CDW phase
For an approximate estimate of the critical temperature we can
examine when the correlations become long-ranged on a finite-
size lattice. As shown in Fig. 7, at β= 16 the charge order is
emerging, but it is not quite long-ranged. At β= 20 however, we
see the periodic density correlations persist over the whole lattice.
This suggests Tc should lie at an intermediate temperature
between these two values; however, for a more accurate estimate,
we must study the onset of charge order for several different
lattice sizes.
In Fig. 8, we show the variation of the charge structure factor

Scdw(K) with inverse temperature β, for lattices with linear
dimension L= 6, 9, 12 and 15, for a range of temperatures down
to β= 24. At high temperatures, Scdw(K) is relatively small and
independent of lattice size. However, as the temperature is
reduced, Scdw(K) grows and becomes dependent on the lattice
size for β≳ 18. This signals that correlations are becoming long-

Fig. 4 Charge structure factor vs. phonon frequency. Charge
structure factor Scdw(K) as a function of phonon frequency, for a
range of temperatures from β= 2 to β= 20. Results are shown for an
L= 6 lattice at 〈n〉= 2/3, λD= 0.4. Error bars correspond to the
standard deviation of the measured mean.

Fig. 5 Charge structure factor vs. λD. Charge structure factor
Scdw(K) as a function of the dimensionless electron-phonon coupling
λD, for a range of temperatures from β= 2 to β= 20. Results are
shown for an L= 6 lattice at 〈n〉= 2/3, ω0= 0.1. Error bars
correspond to the standard deviation of the measured mean.
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ranged and thus sensitive to system size on a finite lattice, and
suggests a critical temperature of βc ≈ 18. A more accurate
determination of Tc can be made by studying the correlation ratio

Rc ¼ 1� Scdwðqþ dqÞ
ScdwðqÞ ; (7)

where the ordering wavevector q= K here, and ∣dq∣ is the spacing
between discrete momentum values for a lattice of linear
dimension L. For the kagome lattice we average over the six
nearest neighbors of the K-point in momentum space to obtain
S(K+ dq). The correlation ratio Rc is defined such that in the CDW
phase, Rc→ 1 as L→∞, (since Scdw(q) will diverge with L if there is
long-range order), while Rc→ 0 if there is no long-range order.
When plotted for different lattice sizes, the crossing of Rc curves
gives an estimate of the critical point. In Fig. 9, we plot Rc for
lattices with L= 6, 9, 12, and 15, for the same parameters as in
Fig. 8 (〈n〉= 2/3, ω0= 0.1, λD= 0.4). There is a crossing at βc ≈ 18,
which is consistent with our previous estimates of βc obtained
from observing the opening of a finite gap in A(ω), the onset of
long-ranged density-density correlations, and the temperature at
which Scdw becomes dependent on lattice size.
Thus far, we have studied the emergence of CDW order on the

kagome lattice at a fixed electron density of 〈n〉= 2/3 per site. This
choice was motivated by the observation of a CDW gap at 〈n〉= 2/
3 and a sharp change in electron kinetic energy during sweeps of
μ and 〈n〉, and the fact that this filling corresponds to a completely
filled lower band, which meets the middle band at the Dirac
points K and K 0. However, we also considered fillings of 〈n〉= 1/2
and 〈n〉= 5/6, i.e., densities at which the saddle points in the non-
interacting band structure (at the M-points) and their van Hove
singularities are at the Fermi energy. We also consider 〈n〉= 4/3,
which corresponds to completely filled lower and middle bands,
with a quadratic touching at the Γ-point between the flat and
middle bands (see Fig. 1). In all of these cases, we find no evidence
for the formation of a CDW. For example, there are no anomalous
features in components of the total energy, or any indications of a
plateau in the 〈n〉 vs. μ plots near these fillings, as shown in Fig. 2.
Moreover, as the temperature is lowered (β increases) the charge
structure factor Scdw(q) does not grow significantly and remains
relatively small in magnitude, as shown in Fig. 10 for several high-
symmetry points q in the Brillouin zone [Γ= (0, 0), K ¼ ð2π3 ; 2πffiffi

3
p Þ,

and M ¼ ðπ; πffiffi
3

p Þ]. We fix ω0= 0.1 here to avoid suppression of any
potential CDW order, which occurs in the antiadiabatic limit. These
results thus suggest an absence of any charge ordering at these
fillings, at least for inverse temperatures β < 20. In other words, our
results show no evidence for other varieties of CDW order in the
kagome lattice Holstein model other than at the K-points at
〈n〉= 2/3.

DISCUSSION
We performed hybrid Monte Carlo simulations of the Holstein model
on the kagome lattice on systems of up to Ns= 775 sites, and
studied the onset of CDW order while varying the electron filling,
phonon frequency, electron-phonon coupling, and temperature. Our
HMC algorithm allows us to simulate larger system sizes and access
lower, more realistic phonon frequencies than in previous DMQC
studies of the Holstein model. We observe evidence of CDW order at
an average electron density of 〈n〉= 2/3 per site (i.e., an overall filling
fraction of f= 1/3), signaled by the opening of a gap in A(ω) at the
Fermi surface, long-ranged density-density correlations, and
the extensive scaling of the charge structure factor Scdw(K) below
the critical temperature. From our analysis of the correlation ration Rc,
we estimate a CDW transition at Tc≈ t/18=W/108, where W is the
non-interacting electronic bandwidth.
This value of Tc is notably lower than the CDW transition

temperatures found in the Holstein model on alternative
geometries, e.g., at λD= 0.4, Tc ≈ t/6 on the honeycomb and Lieb
lattices, while Tc ≈ t/4 on the square lattice25,27. Moreover, the
CDW order appears only for a narrow range of electron-phonon
coupling strengths in the kagome lattice, peaked at λD ≈ 0.4 (for
ω0/t= 0.1). In contrast, previous Holstein model studies on square,
honeycomb, and Lieb lattices have found CDW transitions across a
broad range λD ∈ [0.25, 1]22,25,27. On bipartite geometries with
equal numbers of A and B sites, such as the square and
honeycomb lattices, CDW formation in the Holstein model occurs
at half-filling i.e., 〈n〉= 1. However, on the Lieb lattice, for which
NA ≠ NB, when CDW order forms the density shifts away from half-
filled to either 〈n〉= 2/3 or 〈n〉= 4/3, corresponding to completely
filled lower and flat bands, respectively27. Although the kagome
lattice similarly exhibits a three-band structure, the geometry is
frustrated, unlike the Lieb case, and we find that charge order
emerges only at 〈n〉= 2/3 for temperatures T ≥ t/20 with an
ordering wavevector at the K-points and a

ffiffiffi
3

p
´

ffiffiffi
3

p
supercell. Our

simulations did not reveal CDW order at other ordering momenta
or electron densities, including at the van Hove filling.
The CDW order we find is analogous to the

ffiffiffi
3

p
´

ffiffiffi
3

p
long-range

magnetic order observed in the kagome lattice Heisenberg
antiferromagnet, when it is coupled to local site-phonon modes32.
The same CDW phase has also been proposed as the ground state
in certain regimes of the extended Hubbard model40,41, i.e., at
fillings of 〈n〉= 2/3 and 〈n〉= 5/6 for large V/U, where U is the on-
site Hubbard term and V is the nearest-neighbor repulsion, and
has been termed CDW-III in these studies.
It should be noted that the CDW order we observe does not

correspond to the star-of-David or inverse star-of-David patterns
observed recently in kagome metals such as AV3Sb5 (A= K, Rb,
Cs), which exhibit ordering at the M-points. A recent work41

showed that such a CDW ordering is observed in the kagome

Fig. 6 Charge structure factor in momentum space. Charge structure factor Scdw(q) shown across the Brillouin zone of the kagome lattice
with L= 12, shown for β= 14, 17 and 20. The locations of high-symmetry points in momentum space at K ¼ ð2π=3; 2π= ffiffiffi

3
p Þ, K 0 ¼ ð4π=3; 0Þ,

M ¼ ðπ; π= ffiffiffi
3

p Þ, and Γ= (0, 0) are indicated.
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Fig. 7 Real space density-density correlations. Real space density-density correlations hn̂ð0Þn̂ðrÞi, where n̂ð0Þ denotes the electron density at
a reference site located at the origin (gray region). For each site at position r, the color of its Voronoi cell indicates the magnitude of hn̂ð0Þn̂ðrÞi.
Results are shown for an L= 12 lattice with periodic boundary conditions, for β= 16 (left) and β= 20 (right) at filling 〈n〉= 2/3 (with λD= 0.4
and ω= 0.1).

Fig. 8 Charge structure factor vs. inverse temperature. Charge
structure factor Scdw(K) as a function of inverse temperature β, for
lattice sizes L= 6, 9, 12 and 15, at filling 〈n〉= 2/3. A lattice size
dependence in the order parameter emerges at β≳ 18, indicating
the onset of CDW order. Here, we fix λD= 0.4 and ω0= 0.1. Error bars
correspond to the standard deviation of the measured mean.

Fig. 9 Correlation ratio crossing. Correlation ratio Rc as a function
of β, showing a crossing at βc ≈ 18. Data is shown for lattice sizes
L= 6, 9, 12 and 15, for the same parameters as in Fig. 8.

Fig. 10 Scdw(q) at 〈n〉= 1/2, 5/6, and 4/3. Charge structure factor
Scdw(q) as a function of inverse temperature β at several fixed
electron densities: (a) 〈n〉= 1/2, (b) 〈n〉= 5/6, and (c) 〈n〉= 4/3, for an
L= 6 lattice. Data is shown for λD= 0.25 (solid line) and λD= 0.40
(dashed line) for several momenta q: Γ= (0, 0), K ¼ ð2π3 ; 2πffiffi

3
p Þ, and

M ¼ ðπ; πffiffi
3

p Þ. The phonon frequency is fixed at ω0= 0.1. Error bars
correspond to the standard deviation of the measured mean.
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lattice Hubbard model when a Su–Schrieffer–Heeger electron-
phonon coupling is introduced. Here, the electron-phonon
coupling modulates the electron hopping term, and is concep-
tually distinct from Holstein model, in which electrons and
phonons interact on a single site, rather than on the bonds of
the lattice.

METHODS
Hybrid Monte Carlo simulation
Previous finite temperature studies of the Holstein model have
typically employed DQMC71,72. In this method, the inverse
temperature β= LtΔτ is discretized along an imaginary time axis
with Lt intervals of length Δτ, and the partition function is
expressed as Z ¼ Tr e�βĤ ¼ Tr e�ΔτĤe�ΔτĤ ¼ e�ΔτĤ . Since Eq. (1) is
quadratic in fermionic operators, these can be traced out, giving
an expression for Z in terms of the product of two identical matrix
determinants detMðxi;τÞ, which are functions of the space and
time-dependent phonon displacement field only. Monte Carlo
sampling using local updates to the phonon field {xi,τ} is
performed and physical quantities can be measured through the
fermion Green’s function Gij ¼ hcyi cji ¼ ½M�1�ij . Although there is
no sign problem73 for the Holstein model, these studies have been
limited for two main reasons. First, the computational cost of
DQMC scales as N3

s Lt, where Ns is the total number of lattice sites,
prohibiting the study of large system sizes. Secondly, the
restriction to local updates results in long autocorrelation times
at small phonon frequencies. This aspect has limited simulations
to phonon frequencies of ω0≳ t, which is unrealistic for most real
materials, and is far from the regime where CDW order in the
Holstein model is typically the strongest (ω0≪ t).
Significant efficiency gains are possible by using a dynamical

sampling procedure that updates the entire phonon field at each
time-step74,75. In this work, we use a recently developed collection
of techniques to perform finite temperature simulations on
extremely large clusters68. Our HMC-based approach achieves a
near-linear scaling with system size74,76,77, allowing us to study
lattices of up to Ns= 775 sites at temperatures as low as T= t/24.
Our algorithm efficiently updates the phonon field simultaneously,
allowing study of a realistic phonon frequency ω0/t= 0.1.
Near-linear scaling is achieved by rewriting each matrix

determinant detM as a multi-dimensional Gaussian integral
involving auxiliary fields Φσ that will also be sampled. Here, the
partition function becomes

Z � 2πð ÞNsLt

Z
DΦ"DΦ#Dx e�Sðx;ΦσÞ; (8)

where the total action is

Sðx;ΦσÞ ¼ SBðxÞ þ SFðx;ΦσÞ (9)

with the fermionic (F) and bosonic (B) contributions

SF x;Φσð Þ ¼ 1
2

X
σ

ΦT
σ MTM
� ��1

Φσ (10)

SBðxÞ ¼ Δτ

2

X
i;τ

ω2
0x

2
i;τ þ

xi;τþ1 � xi;τ
Δτ

� �2
	 


: (11)

A Gibbs sampling procedure is then adopted where Φσ and x are
alternately updated. The auxiliary field Φσ may be directly sampled.
Using HMC, global updates to the phonon fields x can be performed
by introducing a conjugate momentum p and evolving a fictitious
Hamiltonian dynamics using a symplectic integrator68.
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