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Orbital degree of freedom induced multiple sets of second-
order topological states in two-dimensional breathing
Kagome crystals
Hui Zhou 1,2, Hang Liu 1,3, Hongyan Ji4, Xuanyi Li1,2, Sheng Meng 1,2,3✉ and Jia-Tao Sun 4✉

The lattice geometry induced second-order topological corner states in breathing Kagome lattice have attracted enormous
research interests, while the realistic breathing Kagome materials identified as second-order topological insulators are still lacking.
Here, we report by first-principles calculations the second-order topological states emerging in two-dimensional d-orbital breathing
Kagome crystals, i.e., monolayer niobium/tantalum chalcogenide halides M3QX7 (M= Nb, Ta; Q= S, Se, Te; X= Cl, Br, I). We find that
the orbital degree of freedom of d orbitals can give rise to multiple sets of corner states. Combining fraction corner anomaly, orbital
components and real space distribution of the corner states, we can also identify the topology of these corner states. Our work not
only extends the lattice geometry induced second-order topological states to realistic materials, but also builds a clear and
complete picture on their multiple sets of second-order topological states.
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INTRODUCTION
The interplay between lattice geometry and topology at the
quantum level can give rise to rich physical properties1–10. A
prototypical example is the two-dimensional (2D) Kagome lattice
that is composed of corner-sharing triangles. Owing to the
unusual lattice geometry, electron wavefunctions in Kagome
lattice can be phase destructive to form topological flat bands by
interference and can experience a nontrivial Berry phase to form
Dirac cones at each valley, as shown in Fig. 1a. Such topological
bands have been observed by angle-resolved photoemission
spectroscopy in several Kagome materials, including Fe3Sn21,2,
FeSn3, CoSn4,5 and YMn6Sn66. When turning the pair of corner-
sharing triangles to different sizes (i.e. forming a breathing
Kagome lattice), the Dirac cones will be gapped to produce an
insulating state, as shown in Fig. 1b. Intriguingly, Ezawa found that
the lattice geometry of breathing Kagome lattice can give rise to
topological states located at the corner of the nontrivial triangular
nanodisk, which is the hallmark of 2D higher-order topological
insulators (TIs)11.
The exploration of higher-order TIs is at the forefront of

condensed matter physics11–30. Unlike the d-dimensional TIs that
host (d − 1) dimensional topological boundary states31–33, the
higher-order TIs manifest robust boundary states with higher
codimension11–17. Specially, the 2D higher-order TIs that have
gapless modes at the (d−2) dimensional boundary (corner states),
but whose (d − 1) dimensional boundary states (edge states) are
gapped are also called 2D second-order topological insulators
(SOTIs). The 2D SOTIs can realize Majorana zero mode by
constructing a SOTI/superconductor heterostructure where
neither special pairing nor magnetic field is required34,35. The
lattice geometry induced second-order topological states in
breathing Kagome lattice also attracted enormous research
interests. So far, a series of artificial breathing Kagome materials
have been constructed to realize the second-order topological

states, such as acoustic systems36,37, photonic crystals38,39 and the
artificially engineered molecular islands on Cu(111) surface40.
However, the realistic breathing Kagome materials identified as
SOTIs are still lacking.
There are two main reasons that limit the research of second-

order topology in realistic breathing Kagome materials. The first
one is the challenge to find an ideal breathing Kagome material.
The ideal breathing Kagome material is expected to have a stable
2D form (the breathing Kagome materials intensively studied
recently (NH4)2[C7H14N][V7O6F18]41 and Li2In1-xScxMo3O8

42 do not
conform to this condition due to their strong inter-plane
interactions). Meanwhile, the low-energy bands should be
dominated by the breathing Kagome atoms for the convenience
of detecting the properties that originate from the breathing
Kagome atoms. The second one is the difficulty of building a
complete picture on the second-order topology of realistic
breathing Kagome material (breathing Kagome lattice + orbital +
non-Kagome atoms). The orbital degree of freedom in realistic
breathing Kagome materials will complicate the situation greatly.
Besides, the effect of the non-Kagome atoms is ambiguous.
Moreover, since realistic breathing Kagome materials do not
necessarily support (generalized) chiral symmetry, their corner
states may hide in the bulk or edge bands. How to demonstrate
the existence of the hidden corner states is still an open question.
Here, we find a series of ideal 2D d-orbital breathing Kagome

crystals, i.e., monolayer (ML) M3QX7 (M= Nb, Ta; Q= S, Se, Te;
X= Cl, Br, I). The three-dimensional crystals of these materials
have been synthesized before43–46 and can be feasibly cleaved to
ML (2D form) by the mechanical exfoliation technique since their
inter-layer coupling is van der Waals force. Meanwhile, the low
energy bands are dominated by the breathing Kagome atoms (M
atoms). In this work, we take ML Nb3TeCl7 as a representative
example to study its second-order topology from the bulk, edge
and corner aspects, respectively. ML Nb3TeCl7 features six d-orbital
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global bulk gaps consecutive in energy due to the inversion
symmetry breaking. We find three of the six gaps possess nonzero
bulk polarization, where two of them own Wannier center at the
small triangle center and the third one at hexagon center,
indicating there will be two sets of nontrivial corner states and one
set of trivial corner states for triangle nanodisk stacked by big
triangles (Configuration 1). The calculation of edge spectrums
shows that the pairs of gapped edge bands only emerge on the
edge of Configuration 1. Meanwhile, these edge bands are
symmetric about the ~0.88 eV energy level, indicating the
existence of approximate (generalized) chiral symmetry in this
system, which will collect the corner states near by the ~0.88 eV.
To show the second-order topology directly, we calculate the
energy spectrum of the triangular nanodisk of Configuration 1. We
find two sets of corner states emerge in the energy gap around
0.88 eV. The corner state sets are nondegenerate due to the crystal
field effect imposed by the non-Kagome atoms. The corner states
in a single set are nondegenerate due to the finite-size effect. To
demonstrate the existence of the third set of corner states and
establish the correspondence between the number of bulk gap
with nonzero polarization and the set number of corner states, we
count the state number in corner spectrum and find the third set
of corner states concealed in the upper bulk and edge bands.

RESULTS
Lattice structure and bulk band structure
As shown in Fig. 1c, the 2D d-orbital breathing Kagome crystal
Nb3TeCl7 possess a layered structure where the breathing
Kagome atoms (Nb atoms) are sandwiched between chalcogen
(Te atoms) or halogen atoms (Cl atoms), while each Nb atom is
encompassed by one Te atom and five Cl atoms to form
NbTeCl5 octahedron. As shown in Fig. 1d, the breathing
Kagome lattice is composed of corner-sharing triangles A and
B, which are of different sizes, i.e., triangle A (the small triangle)
and triangle B (the big triangle). By calculating the bulk band
structure [Fig. 1e] and projected density of states (PDOS)

[Supplementary Fig. 1], we find that the fifteen low-energy
bands in energy region −1.5 eV ~ 3.8 eV are dominated by Nb
4d orbitals, indicating the d-orbital character of the breathing
Kagome lattice. From Fig. 1e, we can see that there are six d-
orbital global bulk gaps, as indicated by Gap #1 ~ #6. Form the
symmetry aspect, we point out that such global bulk gaps are
induced by the inversion symmetry breaking [see detailed
discussion in Supplementary Note II]. Noting the d-orbital
character of the breathing Kagome crystal, to study its second-
order topology, all the d-orbital global bulk gaps should be
taken into consideration. To identify the topology of the six
global bulk gaps, we will calculate the bulk polarization
(Wannier center) of them below.

Bulk polarization (Wannier center)
The bulk polarization (Wannier center) can be calculated by the
Wilson-loop method47–50. The gauge-invariant Wilson loop is
defined as a path ordered product of the exponential of Berry
connections51,52. The b1-directed (b1 and b2 are the reciprocal
lattice vectors) Wilson loop is a path ordered product of Fi
computed along the b1 direction from (k1, k2) to (k1+ 1, k2)
following the form:

W k2ð Þ ¼ W k1þ1;k2ð Þ k1;k2ð Þ ¼ lim
N!1

FN�1FN�2 � � � F1F0: (1)

The matrix element of Fi is obtained by
Fi½ �mn¼ um iþ1

N ; k2
� �jun i

N ; k2
� �� �

, where um and un are the occupied
Bloch wavefunctions. The k1 and k2 direction are parallel to the b1
and b2 respectively, respectively. Define a Hamiltonian HW k2ð Þ via

W k2ð Þ � ei2πHW k2ð Þ (2)

Fig. 1 Bulk topology of ML Nb3TeCl7. a, b TB bulk band structures of the conventional Kagome lattice and breathing Kagome lattice,
respectively. c Atomic structure of ML Nb3TeCl7. The Nb atoms, Te atoms and Cl atoms are represented by gray, yellow and red spheres,
respectively. d The unit cell of ML Nb3TeCl7 is indicated by the black rhombus. The Nb atoms form a breathing Kagome lattice indicated by
gray bonds. The small triangle (triangle A) and big triangle (triangle B) are indicated by red and blue colors, respectively. e Calculated bulk
band structure of ML Nb3TeCl7. The Fermi energy is shifted to zero Energy. f Calculated p1 k2ð Þ; p2 k1ð Þ½ � for Gap #1. Inset: schematic illustration
of the position of the Wannier center p1; p2ð Þ ¼ 1

3 ;
2
3

� �
. g Calculated p1 k2ð Þ; p2 k1ð Þ½ � for Gap #5. Inset: schematic illustration of the position of

the Wannier center p1; p2ð Þ ¼ 2
3 ;

1
3

� �
.
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and calculate the eigenvalues of HW k2ð Þ, referred to as νi k2ð Þf g.
Then the eigenvalues of HW k2ð Þ over the occupied bands are

p1 k2ð Þ ¼
XNocc

i¼1
vi k2ð Þ: (3)

The associated Wannier center is

p1 ¼ 1
N

X
k2

p1 k2ð Þ: (4)

Similarly, the Wannier center p2 can be obtained from b2-
directed Wilson loop. The p1 p2ð Þ shows the fractional coordinate
of the Wannier center along lattice vector a1 a2ð Þ. The Wannier
centers p1; p2ð Þ for Gap #1 ~ #6 are calculated as 1

3 ;
2
3

� �
, 0; 0ð Þ,

1
3 ;

2
3

� �
, 0; 0ð Þ, 2

3 ;
1
3

� �
and 0; 0ð Þ, respectively. The p1 k2ð Þ; p2 k1ð Þ½ � for

Gap #1 and Gap #5 and the corresponding Wannier center
schematically drawn in the insets are shown in Fig. 1f, g. The
Wannier center p1; p2ð Þ ¼ 1

3 ;
2
3

� �
resides at the small triangle

center [the inset of Fig. 1f], while the Wannier center p1; p2ð Þ ¼
2
3 ;

1
3

� �
resides at the hexagon center [the inset of Fig. 1g], which

does not exist in s-orbital breathing Kagome lattice. In s-orbital
breathing Kagome lattice, the Wannier center is located at one
kind of triangle center36.
For the Configuration 1, the Wannier center at small triangle

center corresponds to Wyckoff position c, while the Wannier
center at the hexagon center corresponds to Wyckoff position b,
as shown in Fig. 2b, c. The Wannier center at Wyckoff position c
gives rise to 1/3 fractional edge charge, but 0 fractional corner
charge. The Wannier center at Wyckoff position b gives rise to 2/3
fractional edge charge and 1/3 fractional corner charge. According
to the definition of fractional corner anomaly (FCA)53:

ϕ ¼ ρ� σ1 þ σ2ð Þmod1; (5)

where σ1 and σ2 are the edge-localized fractional mode density
and ρ is the corner-localized fractional mode density, we obtain
that the FCA of Wannier center at Wyckoff position c equals to 1/3
(nontrivial), while the FCA of Wannier center at Wyckoff position b
equals to 0 (trivial). Therefore, for Configuration 1, the two bulk
gaps with Wannier center at small triangle center will give rise to
two sets of nontrivial corner states, while the bulk gap with
Wannier center at hexagon center will give rise to one set of trivial
corner states. Such trivial corner states are explained by the
decoration of topological edges54.
We also calculate the bulk polarization with the original point at

small triangle center and find the bulk polarization of all the gaps
is zero. Therefore, for Configuration 2, as shown in Fig. 2d, the
Wannier center of all the gaps is located at Wyckoff position a and
such Wyckoff position will give rise to neither fractional edge
charge nor fractional corner charge.

Edge spectrum
To see the edge topology clearly, we consider these two typical
edges. As schematically shown in Fig. 3a, the edge of Configura-
tion 1 is named as type-I edge, while the edge of Configuration 2
is named as type-II edge. We then calculate the edge spectrum of
these two edges. As shown in Fig. 3b, in energy region 0–1.6 eV,
type-I edge hosts two pairs of gapped edge bands (massive Dirac
fermion), i.e., edge band 1up (2up) and 1down (2down), which are
absent for type-II edge [Fig. 3c]. The pairing of the edge bands is
found out by comparing their orbital components [Fig. 3d], since
the paired edge bands have the same orbital components.
Meanwhile, the band structures projected to the Nb 1st, 2nd and
3rd layer [the Nb 1st, 2nd and 3rd layer is indicated in Fig. 3a] show
that these paired edge bands are mainly contributed by outmost-
layer Nb atoms of type-I edge [Fig. 3d–f]. Due to the alternative
bond lengths of outmost-layer Nb atoms, the paired edge bands
can be described by one-dimensional (1D) Su-Schrieffer-Heeger
(SSH) models. Since 1D SSH model describing a real material
always has a Z2 topological invariant, mirror-related type-I edges
belong to different Z2 classifications. Therefore, the intersection of
two mirror-related type-I edges corresponds to a domain wall for
the edge theory, which harbors a localized corner state55–57. The
edge bands are symmetric about the ~0.88 eV energy level
[Fig. 3b, d], indicating the approximate (generalized) chiral
symmetry in this system. Then the corner states will be collected
near by the ~0.88 eV. In addition, the edge bands indicated by the
white arrows in Fig. 3b, c are identified to be first-order helical
edge states under the introduction of spin-orbit coupling (SOC)
and have no connection with the second-order topology
[Supplementary Note V].

Corner spectrum
To identify the second-order topology of ML Nb3TeCl7 directly, we
calculate the energy spectrum of a triangle nanodisk of
Configuration 1, as shown in Fig. 4a. The three type-I edges are
associated by the mirror symmetry, as shown in Fig. 4b, c. The size
of the nanodisk is L ¼ 8. The L is the number of the Nb triangle on
each nanodisk edge. Remarkably, one observes two sets of states
with three states in each set in the ~0.88 eV energy gap. As clearly
shown in Fig. 4b, c, each set of states are well localized at the three
corners, indicating they are two sets of corner states. The two sets
of corner states are referred to as CS-I and CS-II, respectively
[Fig. 4a–c]. We note that CS-I and CS-II are not degenerate where
CS-II is located at higher energy level than CS-I [Fig. 4a]. To
understand the main mechanism, we focus on the environment of
Nb 4d orbitals, i.e., the effect of the non-Kagome atoms. Since
each Nb atom is encompassed by one Te atom and five Cl atoms
to form NbTeCl5 octahedron, the Nb 4d orbitals will be split to
two high-energy eg orbitals (dz2, dx2y2) and three low-energy

Fig. 2 Wyckoff position of ML Nb3TeCl7. a The black hexagons represent unit cell with C3 symmetry. The English letters a, b and c inside the
unit cell indicate the maximal Wyckoff positions. b, c The Wannier center at position c and b for Configuration 1, which is stacked by big
triangles. d The Wannier center at position a for Configuration 2, which is stacked by small triangles.
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Fig. 3 Edge topology of ML Nb3TeCl7. a Schematic drawing of type-I and type-II edge. Type-I edge is the edge of Configuration 1, while type-
II edge is the edge of Configuration 2. The Nb 1st, 2nd and 3rd layer of type-I edge is indicated by numbers. b, c The type-I and type-II edge
spectrums, respectively. The two pairs of edge bands for type-I edge are indicated by “1up”, “1down” and “2up”, “2down”. The edge bands that turn
to first-order helical edge states under SOC are indicated by white arrows. d–f Band structures projected to the Nb 1st layer, 2nd layer and 3rd
layer, respectively. The contribution of five 4d orbitals is indicated by different colors.

Fig. 4 Corner states of ML Nb3TeCl7. a Energy spectrum of the triangular nanodisk of Configuration 1 (L ¼ 8) of ML Nb3TeCl7. Energy levels
are plotted in ascending order. Two sets of corner states are indicated by blue solid circles. The inset: enlarged drawing of CS-I and CS-II. The
three corner states of CS-I are labeled as φ1 , φ2 and φ3, respectively. b, c The calculated local density of states of CS-I and CS-II, respectively. The
three equivalent mirrors Mx are indicated by red dashed lines. d Schematic drawing of crystal field splitting of Nb 4d orbitals in NbTeCl5
octahedron. The inset shows the NbTeCl5 octahedron. The angle between rotated (Nb-Te direction) and previous (out of plane direction) z-
direction is β. e The solid (dotted) line shows the energy splitting ΔEsplit (absolute value of ΔEsplit) as a function of nanodisk size L. The inset
shows the effective model to interpret the finite-size effect. The inter-corner effective hopping is t.
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t2g orbitals (dxy, dyz, dxz) by the crystal field effect [Fig. 3d]. Noting
that the NbTeCl5 octahedron is inclined, to obtain the correct eg
and t2g orbital components, the previous d orbitals should be
rotated by using the equation:

Yl;m rð Þ ¼
Xl

m0¼�l
D lð Þ
m;m0 R α; β; γð Þð Þ�Yl;m0 r0ð Þ; (6)

where r ¼ Rr0 and D lð Þ
m0;m α; β; γð Þ ¼ e�im

0αd lð Þ
m0;m βð Þe�imγ . Yl;m rð Þ is

the spherical harmonics; D lð Þ
m0;m α; β; γð Þ is the Wigner-D functions;

d lð Þ
m0;m βð Þ is the Wigner-d functions and β is the angle between

rotated (Nb-Te direction) and previous (out of plane direction)
z-direction [indicated in Fig. 4(d)]. Here, l ¼ 2 and α ¼ � π

4,
β ¼ 0:213π, γ ¼ π

4. The rotated orbital components are shown in
Table 1. We find that the CS-II (36.7% eg, 63.3% t2g) owns more eg
orbital components and less t2g orbital components than CS-I
(28.6% eg, 71.4% t2g). Thereby the crystal field effect makes CS-II
located at higher energy position than CS-I.
We also note that the corner states in a single set are also not

degenerate. CS-I splits into one nondegenerate state φ1 and two
degenerate states φ2 and φ3 [termed as (1+2)], as shown in the
inset of Fig. 4a. To show the origin of the splitting, the energy
splitting ΔEsplit of CS-I (defined as the energy level of the
nondegenerate state minus the degenerate states) depending
on the nanodisk size L is calculated, as shown in Fig. 4e. The
absolute value of ΔEsplit decays exponentially with increasing L,

indicating that the splitting originates from the finite-size effect.
The finite-size effect can be interpreted by an effective model
where three isolated corner states interact with each other, as
schematically shown in the inset of Fig. 4e. The Hamiltonian Hp of
this effective model takes the form:

Hp ¼ �
0 t t

t 0 t

t t 0

0
B@

1
CA; (7)

where t is the inter-corner effective hopping. The eigenvalues of
Hp are E1 ¼ �2t and E2;3 ¼ t and corresponding eigenvectors can

be φ1p ¼ 1ffiffi
3
p

1
1
1

0
@

1
A, φ2p ¼ 1ffiffi

6
p

2
�1
�1

0
@

1
A and φ3p ¼ 1ffiffi

2
p

0
1
�1

0
@

1
A,

respectively. In the model results, corner states split into (1+ 2).
Meanwhile, the local density distribution of φ1p, φ2p and φ3p is
consistent with our first-principles calculations [Supplementary
Fig. 4]. Hence the finite-size effect is well interpreted by the
effective model. Through the model, we know that ΔEsplit ¼ �3t.
Then the oscillation of ΔEsplit [Fig. 4e] originates from the sign
change of the effective hopping t. The result that ΔEsplit of CS-II is
smaller than CS-I [inset of Fig. 4a] can also be explained. It is
because that the more localized CS-II [Fig. 4b, c] ought to host
smaller effective hopping t than CS-I.
The three bulk gaps with nonzero polarization indicate that

there are three sets of corner states. The third one is not observed
in the energy gap around 0.88 eV [Fig. 4a]. To demonstrate the
existence of the third set of corner states and establish the
correspondence between the number of bulk gap with nonzero
polarization and the set number of corner states, we propose a
method to determine which bulk or edge bands the third set of
corner states hide in. As shown in Fig. 5a, for the phase with zero
bulk polarization, there are Lþ 1ð ÞL=2 states in each bulk band.
Therefore, as shown in Fig. 5b, for Nb3TeCl7 nanodisk of
Configuration 2 L ¼ 8ð Þ, there are 36 states between green arrows
(one bulk band), 72 states between purple arrows (two bulk
bands). As shown in Fig. 5c, for the phase with nonzero bulk
polarization, there are ðL� 1ÞðL� 2Þ=2 states in each bulk band,

Fig. 5 Demonstrating the existence of the hidden corner states of ML Nb3TeCl7. a Schematic showing the state number of a L-size nanodisk
with zero bulk polarization. b Counting the state number of the Nb3TeCl7 nanodisk of Configuration 2 L ¼ 8ð Þ. There are 36 states between
green arrows and 72 states between purple arrows. c Schematic showing the state number of a L-size nanodisk with nonzero bulk
polarization. d Counting the state number of theNb3TeCl7 nanodisk of Configuration 1 L ¼ 8ð Þ. There are 21 states between yellow arrows,
42 states between green arrows and 87 states between purple arrows.

Table 1. The previous (P) and rotated (R) orbital components of CS-I
and CS-II.

dz2 dxz dyz dx2-y2 dxy

CS-I P (%) 71.8 4.8 4.8 9.3 9.3

CS-I R (%) 17.2 30.0 30.0 11.4 11.4

CS-II P (%) 24.8 10.5 10.5 27.1 27.1

CS-II R (%) 14.8 20.7 20.7 21.9 21.9
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3ðL� 1Þ states in each edge band and 3 states in each set of
corner states. Therefore, as shown in Fig. 5d, for Nb3TeCl7
nanodisk of Configuration 1 L ¼ 8ð Þ, there are 21 states between
the yellow arrows (one edge band), 42 states between the green
arrows (one bulk band and one edge band). Noting that the edge
states that turn to first-order helical edge states under SOC are
attributed to the bulk bands, it is supposed to be 84 states
between the purple arrows (two bulk bands and two edge bands).
However, there are 87 (84+ 3) states between the purple arrows,
indicating there is a set of corner states hidden between the
purple arrows. Therefore, the third set of corner states is found
concealed in the upper bulk and edge bands. This method can
also be examined by the situation in Ta3SBr7 and Nb3SI7
[Supplementary Fig. 7]. For Ta3SBr7 where three sets of corner
states emerge in the energy gap, the calculated state number
between the purple arrows is 84; for Nb3SI7 where only one set of
corner states emerges in the energy gap, the calculated state
number between the purple arrows is 90 (84+ 3 × 2).
Since the trivial corner states originate as decoration of the

edge states, they should have similar orbital components as the
edge states and be less localized than the topological corner
states. Here, CS-I has the approximately the same orbital
components as edge band 1up and 1down and be less localized
than CS-II. Through the orbital components and real space
distribution, we can identify CS-I as the trivial corner states. One
can also observe that the two sets of topological corner states (CS-
II and CS-III) have similar real space distribution [Supplementary
Fig. 10-2]. In these breathing Kagome crystals, the topological
corner states are protected by the C3 and mirror symmetry. The
effect of mirror symmetry is to pin the corner states to the corners.
Breaking mirror symmetry, the corner states will move to generic
points on the side. As long as the C3 symmetry is present, the
corner states are stable yet not pinned to corners in the absence
of mirror symmetries. To annihilate the corner states, the only way
is large C3 symmetry breaking either in the bulk or on the
boundary.

DISCUSSION
To summarize, we find a series of ideal 2D d-orbital breathing
Kagome crystals, i.e., M3QX7 (M=Nb, Ta; Q= S, Se, Te; X= Cl, Br, I)
and identify their second-order topology from the bulk (Wannier
center), edge (pairs of gapped edge bands), and corner (localized
corner states) aspects by first-principles calculations. Our work not
only extends the lattice geometry induced second-order topological
states to realistic materials, but also builds a clear and complete
physical picture on the multiple sets of topological corner states in
realistic breathing Kagome materials with d-orbital character. The d
orbital degree of freedom gives rise to three sets of corner states in
these systems. These corner state sets are collected nearby the
same energy level by approximate (generalized) chiral symmetry.
Meanwhile, the corner state sets consisting of different d-orbital
components are nondegenerate due to the crystal field effect
imposed by the non-Kagome atoms. The corner states in a single set
split to [1+ 2] due to the finite-size effect. To demonstrate the
existence of the hidden corner states and establish the correspon-
dence between the number of bulk gap with nonzero polarization
and the set number of corner states, we propose a method to
determine the bulk or edge bands that these corner states hide in.
Combining FCA, orbital components and real space distribution of
the corner states, we also identify the topology of these corner
states. Moreover, the coexistence of corner states (this work) and
topological flat bands10 in 2D d-orbital breathing Kagome crystals
make them potential candidates to investigate the correlation
between second-order topology, first-order Z2 topology and
possible superconductivity, which awaits future validation.
Finally, we want to discuss the experimental implementation of

the topological corner states in these breathing Kagome crystals.

The feasible detection of the corner states is essentially important,
since the experimental signature that unambiguously identifies
such states in realistic materials is still lacking. These breathing
Kagome crystals are stable and readily available43–46. Meanwhile,
the predicted energy gap reaches 0.350 eV in Ta3SBr7 [Supple-
mentary Fig. 7a], which is much larger than 0.1 eV in graphdiyne22,
facilitating the experimental detection of corner states by utilizing
local measurement techniques. A significant application of the
corner states is to realize Majorana zero mode34. Although the
three sets of corner states are not located at Fermi level, they can
be selectively modulated to the Fermi level by appropriate local
potentials53.

METHODS
Calculation method
The first-principles calculations based on density functional
theory are performed with Vienna ab initio simulation pack-
age58,59. The projector-augmented wave pseudopotential60 and
Perdew–Burke–Ernzerhof exchange-correlation functional61 are
used. The energy cutoff of plane-wave basis is set as 350 eV and
the vacuum space is set to be larger than 15 Å. The first Brillouin
zone is sampled according to the Γ-centered scheme. We use a k
mesh of 6 ´ 6 ´ 1 for structural optimization and 12 ´ 12 ´ 1
for the self-consistent calculations. The positions of the atoms
are optimized until the convergence of the force on each atom is
less than 0.01 eV/Å. The convergence condition of electronic
self-consistent loop is 10�5 eV. In order to study the topological
properties of ML M3QX7 (M= Nb, Ta; Q= S, Se, Te; X= Cl, Br, I),
we firstly construct the Hamiltonian in Wannier basis by using
Wannier90 package62–64. The dz2, dxz, dyz, dx2-y2 and dxy
orbitals of each M atom are chosen as projection orbitals.
Moreover, the corresponding edge spectrum are obtained from
the Hamiltonian by using iterative Green’s function method65–67.
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