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Infinite critical boson non-Fermi liquid
Xiao-Tian Zhang 1,2 and Gang Chen1,2✉

We study a distinct type of non-Fermi liquid where there exists an infinite number of critical bosonic modes instead of finite
number of bosonic modes for the conventional ones. We consider itinerant magnets with both conduction electrons and
fluctuating magnetic moments in three dimensions. With Dzyaloshinskii–Moriya interaction, the moments fluctuate near a boson
surface in the reciprocal space at low energies when the system approaches an ordering transition. The infinite number of critical
modes on the boson surface strongly scatter the gapless electrons on the Fermi surface and convert the metallic sector into a non-
Fermi liquid. We explain the physical properties of this non-Fermi liquid. On the ordered side, a conventional non-Fermi liquid
emerges due to the scattering by the gapless Goldstone mode from the spontaneous breaking of the global rotational symmetry.
We discuss the general structure of the phase diagram in the vicinity of the quantum phase transition and clarify various crossover
behaviors.
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INTRODUCTION
Landau Fermi liquid theory is the major milestone of modern
condensed matter physics, and illustrates the triumph of physical
intuition1. The short-range repulsive interaction between the fermions
was argued to be irrelevant as one approaches the low energy
towards the Fermi surface. The singular long-range interactions,
however, are not well coped in the framework of Fermi liquid theory
and signifies the possibility of non-Fermi liquid (NFL) metals2,3. These
singular interactions can come from (partially screened) long-range
Coulomb interaction, the fluctuations of the gapless bosonic modes at
the criticality, the Goldstone boson from the continuous symmetry
breaking4, and the U(1) gauge boson5,6. The established theories
describing NFL metals, particularly the experimentally relevant ones,
are known as Hertz–Millis–Moriya theory3,7–10. This theory involves the
coupling between gapless fermions near the Fermi surface and the
critical bosons. If the number of the gapless fermions is finite such as
Dirac fermion, Weyl fermion and the quadratic band touching, a
controlled calculation with the perturbative renormalization group
can be performed. In contrast, when the fermion sector is a Fermi
surface, the physics become complex and this topic is under an active
investigation in recent years.
So far there are two types of Fermi surface criticality associated

NFLs5. The first involves an ordering at a finite wavevector, e.g., an
antiferromagnetic (AFM) order11–15 or spin density wave16. The
ordering wavevector connects a few “hotspots” on the Fermi
surface, and the theoretical analysis focuses on the coupling
between the hotspot fermions and the critical bosons. The second
involves the critical bosons at the zero wavevector. This captures,
for instance, the Ising-nematic criticality17–21, spinon-gauge cou-
pling in the spinon Fermi surface U(1) spin liquid6, ferromagnetic
(FM) criticality22,23. It was observed that the bosons that are
tangential to the Fermi surface scatter the fermions strongly at low
energies. Thus, the theoretical analysis of this Ising-nematic
criticality is further reduced to the so-called patch theory where
the tangential critical boson scatters the fermions from one patch
or two patches. Various analytic techniques were developed. The
early random phase approximation type of large-N expansion was
questioned as this scheme of taming quantum fluctuations and

organizing the Feynman diagrams misses the contribution from
the processes involving the fermions on the Fermi surface6,20,24–26.
The remedy was made by the double expansion that combines the
large-N expansion and the ϵ-expansion27,28. Another remedy
introduces the dimensional and co-dimensional regularization to
the Fermi surface, and develops a systematic framework to
regulate the quantum fluctuations14,21,29–31. It is hoped that the
physical cases are located in the regimes where these develop-
ment can be applied. Inspired by these developments, we turn our
attention to another type of Fermi surface criticality and NFL.
Compared to the efforts in the literature, here we are more inclined
to exploring the mechanism and phenomenology of the NFLs.
In this paper, we study the system with the Fermi surface coupled

to the critical bosons on a continuously degenerate manifold, i.e., a
boson surface in three-dimensional space(3D) as shown in Fig. 1.
The critical phase of bosons in one dimension is the Luttinger
liquid32. Focusing on the stability of such highly degenerate critical
phase in higher dimensions has been investigated in the context of
Bose metal33–38, and recent studies declared that weakly interacting
dilute bosonic systems with continuously degenerate minima in the
low-energy bosonic excitations are stable in d= 2, 3 and thereby
pointed to the concept of Bose Luttinger liquid39,40. Experimentally,
the relevance of critical boson surface has been implied by the
neutron scattering in MnSi41,42 where a nearly uniform intensity is
measured on a sphere. Motivated by these developments, the
investigation on the critical boson surface has received some
attentions43–45. Here, we are neither dealing with nor relying on the
stable phase of critical boson surfaces, instead we aim to improve
our understanding of the critical boson surface-induced quantum
criticality and its impact when it is coupled with gapless fermions.
We consider the 3D itinerant magnets that comprise two

distinct types of degrees of freedom: (i) conduction electrons, (ii)
local magnetic moments. In the absence of inversion symmetry,
there exists a Dzyaloshinskii–Moriya interaction between the local
moments that is responsible for the generation of infinite critical
bosons on a spherical surface at the phase transition. The critical
boson surface is coupled to the fermions on the Fermi surface at
low energies through a Yukawa-type interaction. Microscopically,
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this Yukawa coupling arises from the Hund’s or Kondo-like
coupling between the conduction electron and the local
moments. As illustrated in Fig. 1a, each fermion is coupled to a
ring of fermions on the Fermi surface, and the fermions on this
ring are further coupled to many other rings of fermions. Thus,
infinite number of gapless fermions are scattered by the infinite
number of critical bosons, which makes the whole Fermi surface
critical. This fermion–boson-coupled model is fundamentally
different from the AFM criticality or the Ising-nematic criticality
where only a finite number of critical bosons are involved. Thus,
neither the hotspot treatment for the AFM criticality nor the
conventional patch theory is applicable. We establish the basic
properties and the global phase diagram of the system, and adopt
the self-consistent renormalization theory10 to address the
properties near the criticality. We show that, due to the novel
type of fermion–boson coupling, the system becomes a NFL metal
with distinct power law behaviors in the vicinity of the transition.
We analyze the fermion and the boson properties as well as the
related crossovers at the criticality and in the ordered regime.

RESULTS
Model
The full model for the itinerant magnets contains three parts, the
conducting electrons, the local moments, and the coupling
between them, which is then described by a fermion–boson-
coupled Lagrangian

L½f y; f ; ϕ!� ¼ P
l;α

f ylαð∂τ � μÞf lα �
P
ll0;α

tll0 f
y
lαf l0α

þ g
P
l;αβ

f ylα σ
!

αβf lβ � ϕ!l þ LB½ϕ!�:
(1)

The first line of Eq. (1) dictates an electron model where f†(f) is the
fermion creation (annihilation) operator. The itinerant electrons
hop on a 3D lattice denoted by the site index l. The electron spin
couples to a magnetic moment field ϕ

!
l with a Kondo-like Yukawa

coupling. Here, the bosonic field ϕ
!

l is a three-component vector
defined on site l; σ!αβ is the Pauli matrix vector with α, β being the
spin indices. The magnetic fluctuation near the phase transition
admits a standard Ginzburg–Landau expansion up to Oðϕ4Þ with

LB½ϕ!� ¼
X
l

1
2
ϕ
!

l � ðr � J∇2Þϕ!l þ
u
4

ϕ
!2

l

� �2

þ D
2
ϕ
!

l � ð∇ ´ ϕ
!

lÞ;

(2)

The first two terms of LB½ϕ!� represent a standard ϕ4-theory with an
order parameter ϕ

!
for the magnetic moment and r is the boson

mass. The last term is an anti-symmetric Dzyaloshinskii–Moriya (DM)
interaction, which fundamentally alters the critical phenomenon and
leads to a rich phase diagram in Fig. 2.
To tackle with the bosonic fluctuation, a saddle point solution of

ϕ
!

is required, on top of which the lowest order expansion counts
for the fluctuations. As shown in Fig. 3, we follow the Hertz
approach by integrating out the gapless fermions. This gives rise
to the Landau damping that dominates the low-energy boson
dynamics. The effective action for the bosonic sector is written as,

SB ¼ 1
2

P
q;iωl

Πμνðq; iωlÞϕμðq; iωlÞϕνð�q;�iωlÞ

þ u
4

R
dτ

R
d3r½ϕ!2ðr; τÞ�

2

;

(3)

where μ, ν, λ label the vector components of ϕ
!
, and we have

converted the 3D lattice index to a continuous, real space
coordinate r. The fermionic bubble is illustrated in Fig. 3 and the
renormalized boson polarization takes the form

Πμνðq; iωlÞ ¼ f ðq; iωlÞδμν � iDϵμνλ qλ;

f ðq; iωlÞ ¼ r þ Jq2 þ jωl j
Γq
;

(4)

where ωl ¼ 2πlβ�1ðl 2 ZÞ is the Matsubara frequency for the
bosons, and the ∣ωl∣/Γq is the Landau damping term. In general,
the function Γq takes a form Γq= Γq with q= ∣q∣.

Critical boson surface
The DM interaction complicates the low-energy theories by
introducing the vector index into the bosonic sector. The
dispersion of the bosonic modes is modified compared to the
D= 0 case. Diagonalizing the bare quadratic bosonic part at
ωl= 0, we obtain three branches of bosonic modes with

Fig. 1 The coupling between Fermi surface and critical boson
surface. a The blue sphere is the Fermi surface of the conduction
electrons. The orange surface represents the critical boson surface.
kF is the Fermi momentum, and q0 is the radius of the boson surface.
The Yukawa coupling connects fermions with a ring of fermion
modes on the Fermi surface. b The critical boson sphere.
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Fig. 2 The global phase diagram. The left corner is a helimagnet
and a Goldstone-NFL where the NFL is induced by the gapless
Goldstone boson. The right corner is a paramagnet and Fermi liquid
metal. The central region is the quantum critical regime where a
distinct NFL with infinite critical bosons on the boson surface is
realized. As the temperature rises to the point where the thermal
fluctuation submerges the boson surface, the system experiences a
crossover to a FM criticality-like NFL behavior. The solid (dashed) line
refers to the phase transition (thermal crossover).
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Fig. 3 Renormalized bubble diagrams. a The fermion bubble
induced boson dynamics. b The renormalized fermion propagator
from the renormalized boson correlator. The light and bold curly line
represent the bare and renormalized boson correlators, respectively.
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dispersions given by

EnðqÞ ¼ r þ Jq2 þ nDq; n ¼ �1; 0;þ1: (5)

The lowest branch E−1(q) is of particular interest, which reaches its
minima on a spherical surface in the momentum space q= q0≡ D/
(2J). Approaching the criticality at rc= D2/(4J), the lowest mode
E−1(q) becomes gapless at the surface q= q0. Thus, the boson
modes on the entire sphere q= q0 become critical simultaneously,
which is then dubbed “critical boson surface”. The finite radius of
the sphere is guaranteed by the DM interaction. The function
Γq ≈ Γq0, and Γ is a constant due to the finite density of states on
the Fermi surface.
For a pure classical boson system, the large phase space

provided by the critical boson surface always results in a
fluctuation-driven first-order transition46. The low-energy
dynamics of the fermion-boson coupled system is not determined
by the critical boson surface alone; rather the boson receives
renormalization from the particle-hole excitation around Fermi
surface. A previous work by Schmalian and Turlakov47 shed light
on the nature of the quantum phase transition in the presence of
the critical boson surface for a fermion-boson coupled system. The
effective low-energy theory of the critical bosons are obtained by
projecting onto the n=− 1 mode in Eq. (5), which turns out to be
a ϕ4-theory with multiple quartic interaction constants. In certain
parameter regimes, the transition can be a second-order transition
in the university class d= 3, z= 2, and a mean-field theory of this
second-order transition has been developed48. In the following,
we regard that our system undergoes a second-order quantum
transition and treat the critical fluctuation around the quantum
critical point perturbatively. This physical scenario is realized
within a crossover regime ξGi≫ ξ≫ ξDM

47,49. Here ξDM � q�1
0 is

the length scale of DM interaction. When the correlation length
ξ≫ ξDM, the fluctuation of the bosons is dominated by the critical
boson surface. The opposite limit ξ≪ ξDM dictates a high-
temperature regime in the phase diagram of Fig. 2. In addition,
we regard that the fluctuations are weakly interacting according
to the Ginzburg criteria ξ≫ ξGi, and will carry out the self-
consistent renormalization study next.

Self-consistent renormalization theory
Although the patch and the hotspot theories are inadequate for
our fermion–boson-coupled model, a phenomenological techni-
que, dubbed the self-consistent renormalization (SCR) theory10,50,
captures the key features of the fermion–boson coupling and
provides the evidence for the behaviors near the criticality. The
spirit of the SCR approach is to find the most appropriate
quadratic action that encodes the effective renormalized non-
linear interactions. This approach works well with d= 3, z= 2 and
quantitatively produces the experimental results in many itinerant
magnets of various dimensions2 and works for continuous and
nearly continuous transitions8,9. We here make an attempt to
implement the SCR calculation for our fermion–boson-coupled
model and hope to gain some understanding about the physical
properties of the model. Moreover, since the SCR approach has
never been applied to itinerant magnets with degenerate low-
energy critical modes, our attempt would add one physical
example to the SCR theory.
To search for the best action in the SCR approach, one relies on

Feynman’s variational method to optimize the free energy.
Following the procedure by Moriya10, we consider a trial quadratic
action with the following form

~SB½~r� ¼ 1
2

P
q;iωl

~r þ Jq2 þ jωl j
Γq

� �
δμν � iDϵμνλqλ

h i
´ ϕμðq; iωlÞϕνð�q;�iωlÞ;

(6)

where we replace r with a variational parameter ~r that is to be
determined. The boson correlator is given as a hermitian matrix

Mμν (see Supplementary Note 6 for derivations),

hϕμðq; iωlÞϕνðq0; iωl0 Þi~SB
’ Mμνðq; iωlÞδq;�q0δiωl ;�iωl0 (7)

where h� � �i~SB
refers to the statistical average against ~SB. This

correlation conceives the information of the critical boson surface,
and serves as a key ingredient for the mechanism of the proposed
NFL that can be detected by the neutron scattering experiment. At
the criticality, the powder-averaged neutron scattering spectrum is
given as TrMðq;ωÞ � ðω=Γq0Þ=½J2ðq� q0Þ4 þ ðω=Γq0Þ2�. Around
the critical boson surface ∣q∣= q0, the spectrum displays a divergent
behavior. In the real space, the boson surface momentum q0
provides a characteristic length scale 1/q0, which endows the
correlation function with a spatial modulation in all directions, and
the correlator from the elastic neutron scattering is given by an
envelop function on top of the usual power law decaying in the
long-distance limit as

P
μhϕμðrÞϕμð0Þi~SB

� sinðq0jrjÞ=jrj2.
The variational free energy for the bosonic sector is

Fð~rÞ � ~Fð~rÞ þ 1
β hSB � ~SBi~SB

¼ ~Fð~rÞ þ 1
2β ðr �~rÞ Tr

P
q;iωl

Mðq; iωlÞ
" #

þ u
4β2V

´ Tr
P
q;iωl

Mðq; iωlÞ
" #2

þ 2 Tr
P
q;iωl

Mðq; iωlÞ
" #2( )

;

(8)

where ~Fð~rÞ is the free energy corresponding to the trial quadratic
action ~SB, and V is the system volume. The variational parameter ~r
is determined from the saddle point equation ∂~rFð~rÞ ¼ 0. After the
cumbersome calculation detailed in Supplementary Note 1, the
optimization procedure results in the following self-consistent
equation for the parameter ~r,

~r � r ¼ uc
βV

X
n¼± 1;0

X
q;iωl

1
jωlj=Γq þ EnðqÞ ; (9)

where EnðqÞ ¼ EnðqÞjr!~r and c is a constant prefactor. We further
set δ � ~r � rc and δ0≡ r− rc. Here, δ measures the distance from
the quantum critical point δc= 0 and is related to the correlation
length ξ(T) that is expected to diverge at the criticality at low
temperatures with δ(T)= ξ−2(T). From the above self-consistent
equation, we find that the quantum fluctuation at finite
temperatures is encoded in the function δ(T) that scales as (see
Supplementary Note 2 for derivations)

δðTÞ � Tα; α ¼ 4
5
: (10)

It is illuminating to compare with the behaviors for the 3D FM
(AFM) criticality where the dynamic exponent z= 3(z= 2) and the
SCR calculation yields α= 4/3(α= 3/2). In fact, the same expo-
nents were obtained from a simple scaling counting using Millis’s
renormalization α= (d+ z− 2)/z2. For both FM and AFM criticality,
α > 1. In contrast, α < 1 in Eq. (10) indicates much stronger
fluctuations due to the extensive phase space provided by the
critical boson surface.

NFL behavior from critical boson surface
Unlike the FM or AFM criticalities where the low-energy
fluctuations are at discrete momenta, the low-energy fluctuations
near a finite boson surface strongly scatter the itinerant electrons
and reduce the lifetime of electron quasiparticles. We use the
renormalized boson correlator and the Feymann diagram in Fig. 3
to calculate the self-energy of the conduction electron,

Σðk; iϵnÞ ’ g2

βV

X
q;iωl

G0ðk þ q; iϵn þ iωlÞ Tr ½Mðq; iωlÞ�; (11)
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where ϵn � ð2nþ 1Þπ=βðn 2 ZÞ is the fermion Matsubara fre-
quency, and G0ðk; iϵnÞ ¼ ðiϵn � ξkÞ�1 is a bare Green’s function of
the electrons with a dispersion ξk≡ k2/(2m)− ϵF. By performing an
analytic continuation iϵn→ ω+ iη, we obtain the T-dependence
for the retarded self-energy in the static limit ω= 0 with ∣k∣= kF
located on the Fermi surface (see Supplementary Note 4 for
derivations),

ImΣRðk;ω ¼ 0; TÞ � T3δ�2 � T3�2α: (12)

We note the T-dependence here has multiple sources that might
render a simple scaling ~ω/T inappropriate. We can see this by
evaluating the ω-dependence of the self-energy in the zero
temperature limit is evaluated in Supplementary Note 5, which
yields ImΣRðk;ω; T ¼ 0Þ � ffiffiffiffi

ω
p

. This result is consistent with
literature47.
The imaginary part of the self-energy in Eq. (12) determines the

scattering rate for the forward scattering process provided the
exchanged boson momentum is small q0≪ kF. The electronic
resistivity (or the inverse transport lifetime) is obtained from the
scattering rate by multiplying an angular factor ð1� cos θÞ, where
θ≃ q0/kF≪ 1 is the small forward scattering angle. The narrow
scattering angle suppress the resistivity by � ðq0=kFÞ2, and more
importantly, the T-dependence is inherited from Eq. (12) as,

ρðTÞ � q20
2k2F

ImΣRðk;ω ¼ 0; TÞ � T7=5: (13)

This peculiar power law T-dependence indicates a distinct NFL
behavior owing to the scattering of the electrons by the extensive
critical fluctuations on the boson surface. The accuracy of this
study is limited by the phenomenological method we used,
namely, we only considered small-angle forward scattering.
Whereas the large-angle scattering processes enabled by multiple
scatterings on the Fermi surface are neglected. Moreover, the SCR
method represents a way to bypass the significant challenge that
it is extremely difficult to cook up a low-energy effective theory.

Crossover to FM-NFL at high-T
We have discussed the NFL behavior arised from the strong
fluctuations near the boson surface at low-T which is quoted as an
infinite critical boson NFL. When the temperature is further
increased to be larger than a characteristic energy associated with
the boson sphere radius q0, i.e., T � Γq0 , the fluctuation is no
longer dominated by the boson modes near the critical surface. In
fact, the structure of the critical boson surface is no longer
discernible at high temperatures. The boson sphere can be
regarded as a point object in the reciprocal space, resembling the
case of the FM criticality. In this high-temperature regime above
the criticality, the temperature dependence of the variational
parameter crossovers to scale as δ(T) ~ T4/3, which coincides with
the case of the NFL from the FM fluctuations in 3D. The calculation
is shown in Supplementary Note 3. Thus, the system undergoes a
crossover between two distinct types of NFLs (see Fig. 2), and the
crossover temperature can be approximately set by the difference
of the boson energies at the center and at the surface of the
boson sphere,

Tc � E�1ðq ¼ 0Þ � E�1ðq0Þ � O D2

4J

� �
: (14)

NFL in the helimagnetic ordered phase
When r < rc, the system develops a magnetic order by sponta-
neously selecting the ordering wavevector from the degenerate
boson surface [see Supplementary Note 7 for more discussions]. In
the left corner of the phase diagram in Fig. 2, a helical order with
an ordering wavevector at q1 ¼ q0n̂ is picked up where n̂ is the

propagating direction of the helimagnet. The original model in Eq.
(1) is invariant under a combined rotation with respect to the real
space and the internal space of the magnetic orders. The
helimagnet spontaneously breaks this continuous symmetry and
thus generates gapless Goldstone modes. In the helimagnetic
phase, a small fluctuation above the helical order parameter
couples to the itinerant electrons with

� g
Z

d3r f yαðrÞ σ!αβf βðrÞ � δϕ!ðrÞ; (15)

where δϕ
!ðrÞ ¼ ϕ0½�φðrÞ sin q0z;φðrÞ cos q0z; θðrÞ� with θ(r) and

φ(r) describing the polar and the azimuthal phase fluctuations
against the helical order hϕ!ðrÞi ¼ ϕ0½cosðq0zÞx̂ þ sinðq0zÞŷ� with
n̂ ¼ ẑ. These phase fluctuations give rise to gapless Goldstone
modes51. The Yukawa coupling, g, remains finite in the low-energy
limit. This is due to the fact that the generator for the continuous
symmetry involves the orbital angular momentum and thus does
not commute with the translation operator, i.e., the total
momentum. Applying the general criteria in ref. 4, we see that
the Goldstone mode converts the fermion sector into a NFL which
is dubbed “Goldstone-NFL”. The NFL behavior in the helimagnetic
phase, e.g., the electronic resistivity, has been discussed52,53.

DISCUSSION
In summary, we have studied a distinct type of NFL in the 3D
itinerant magnets that are not captured by the conventional patch
and hotspot theories. The infinite critical boson modes on the
boson sphere connect all momentum points on the Fermi surface
for the itinerant electrons, leading to unconventional conse-
quences for both local moments and itinerant electrons. The SCR
approach adopted in our study is a phenomenological method
that has been proven to be successful in explaining the FM and
the AFM fermion criticalities10. For the continuously degenerate
boson surface criticality, the SCR approach incorporates the large
scattering phase space between fermions and bosons where the
renormalized fermionic and bosonic correlations are taken into
consideration sequentially.
On the more experimental side, several further investigations

with material-based simulations can be expected. In reality, the
boson sector would experience a cubic anisotropy in the
interaction that would favor the wavevectors along either 001 or
111 directions and thus lift the degeneracy of the boson surface.
This cubic anisotropy could set another crossover energy scale for
the problem. The effect of external fields such as the pressure and
magnetic field is anticipated due to its relevance to the
experiments on MnSi41,42. An anomalous NFL transport behavior
is observed in a widespread region of the phase diagram spanned
by pressure and magnetic field. The experimental relevance of the
infinite critical boson NFL to physical systems like MnSi may be
addressed in a specific study with a more realistic consideration. In
general, the role of a finite uniform magnetic field is two-folded.
First, it leads to the procession of the spin order parameter, which
competes with the Landau damping dynamics caused by the
fermion. Second, this external field introduces anisotropy for the
quantum critical points, which may effectively reduce the
fluctuating dimension of the boson sector. Intuitively, the 2D
counterpart of the present problem can be readily considered
where a Fermi circle is coupled to a 1D critical boson contour. This
critical boson contour can appear, for instance, on the interface of
magnetic heterostructure54 or in 2D-frustrated magnets55. Parti-
cular interest lies in the situation where the radius of the boson
contour can be commensurate or incommensurate to the Fermi
circle. For the commensurate cases, only finite Fermi points are
connected by the boson contour. The crossover/transition to
incommensurate cases bridges the infinite critical boson NFL with
the conventional one described by the hotspot theory. Moreover,
one can consider the fermion–boson-coupled system in mixed
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dimensions, namely, the dimension of the Fermi surface is
incompatible with critical boson modes. One intuitive example
can be found in the 3D fractional quantum Hall system56. Soft
gauge bosons in 3D bulk can couple with the chiral Fermi level of
the partons on the 2D surface56, which may trigger a NFL
instability on the surface. Beyond the scope of condensed matter
physics, this general framework may apply to the meson–neutron
coupling in neutron stars where the meson condensation forms a
degenerate boson surface57.

DATA AVAILABILITY
The possible data that support the findings of this study are available from the
corresponding author (G.C.) upon request.
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