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Dislocation-position fluctuations in solid 4He as collective
variables in a quantum crystal
Maurice de Koning 1,2✉ and Wei Cai3✉

Quantum behavior at mesoscopic length scales is of significant interest, both from a fundamental-physics standpoint, as well as in
the context of technological advances. In this light, the description of collective variables comprising large numbers of atoms, but
nevertheless displaying non-classical behavior, is a fundamental problem. Here, we show that an effective-Hamiltonian approach
for such variables, as has been applied to describe the quantum behavior of coupled qubit/oscillator systems, can also be very
useful in understanding intrinsic behavior of quantum materials. We consider lattice dislocations – naturally occurring mesoscopic
line defects in crystals – in the prototypical bosonic quantum crystal, solid 4He. For this purpose, we map fully atomistic quantum
simulations onto effective one-dimensional Hamiltonians in which the collective dislocation-position variables are represented as
interacting, massive quantum particles. The results provide quantitative understanding of several experimental observations in
solid 4He.
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INTRODUCTION
The discovery of quantum effects on macroscopic scales a century
ago, such as superconductivity in Hg and superfluidity in liquid
4He, are among the most dramatic phenomena observed in the
history of physics, leading to an enormous leap in our under-
standing of the fundamental behavior of condensed matter.
Today, the development of quantum technologies still maintains a
strong focus on systems in which large groups of atoms
collectively display quantum behavior. A recent illustration
concerns the observation of entanglement of pairs of engineered
micrometer-sized vibrating ‘drum’ membranes, containing trillions
of atoms each1,2. In this case, the macroscopic position and
momentum coordinates of the membranes, which are collective
variables of their individual atomic degrees of freedom, manifest
quantum behavior. There are many other examples of such effects
in manufactured micro-scale systems3–12, which, in addition to
technological interests, also allow exploring the intersection
between the quantum and classical worlds.
Aside from quantum effects in large manufactured objects,

there has also been a growing interest in intrinsic mesoscopic
objects in condensed matter systems, such as lattice disloca-
tions13–29 – the line defects that carry plastic deformation in
crystalline solids30,31. Although these ‘strings’ have an atomic-scale
thickness, their linear dimension may span micrometers, extend-
ing into the mesoscale realm. Just as in the case of the vibrating
drum-membrane systems mentioned above, the large-scale
characteristics of dislocations, such as their position, are collective
variables involving large numbers of atoms which may also
display non-classical behavior. While several stu-
dies16,17,19,20,25,28,32–34 have considered various quantum aspects
of dislocation behavior, much less attention has been given to
these collective variables themselves, for instance in terms of an
effective Hamiltonian constructed from these coordinates12.
Indeed, such effective Hamiltonians have proved to be very useful
in the context of micro-oscillator systems, for instance in

describing the coupling between a qubit and a micromechanical
oscillator3,12. Here, we explore a similar collective-variable
approach, but now in the context of naturally occurring mesoscale
crystalline defects displaying quantum behavior. The findings
corroborate that such an approach can unlock insight that is very
difficult to obtain otherwise, representing a promising methodol-
ogy for understanding quantum behavior of mesoscale objects in
general.
As an illustration of this approach we consider the plastic

deformation behavior of hexagonal close-packed (hcp) 4He – the
prototypical example of a quantum crystal, for which quantum
fluctuations dominate over thermal agitation21,23,24. We consider
the characteristics of basal-plane dislocations, which are known to
be responsible for the dominant basal-slip mode of hcp 4He26,35.
Specifically, we develop an effective quantum description for the
position of a perfect basal-plane edge dislocation, which has both
the Burgers vector as well as the dislocation line direction
contained in the basal plane. In structural terms, these particular
dislocation species can lower their elastic energy by dissociating
into two Shockley partial dislocations30,31, i.e., with Burgers vectors
smaller than a primitive lattice vector, separated by a ribbon of
stacking fault (SF) with a width determined by the shear modulus
and the SF energy. While not all dislocation types display such
dissociation into partials, we focus on this particular type of
dislocation because of its role in the basal slip deformation mode
in hcp 4He26,35.
Because of its dissociated character, the dislocation location is

actually described in terms of two position variables, one for each
of the two partials. To develop the effective description of this
system, we extract the collective position variables of both partials
by analyzing the atomic coordinates from fully atomistic path-
integral Monte Carlo (PIMC) simulations (Methods), and map the
results onto effective one-dimensional Hamiltonians describing
the interaction between massive quantum particles. Not only is
such a mapping from a quantum description based on individual

1Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, UNICAMP, 13083-859 Campinas, São Paulo, Brazil. 2Center for Computing in Engineering & Sciences,
Universidade Estadual de Campinas, UNICAMP, 13083-861 Campinas, São Paulo, Brazil. 3Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-4040,
USA. ✉email: dekoning@unicamp.br; caiwei@stanford.edu

www.nature.com/npjquantmats

Published in partnership with Nanjing University

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-022-00533-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-022-00533-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-022-00533-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-022-00533-8&domain=pdf
http://orcid.org/0000-0002-0035-4170
http://orcid.org/0000-0002-0035-4170
http://orcid.org/0000-0002-0035-4170
http://orcid.org/0000-0002-0035-4170
http://orcid.org/0000-0002-0035-4170
https://doi.org/10.1038/s41535-022-00533-8
mailto:dekoning@unicamp.br
mailto:caiwei@stanford.edu
www.nature.com/npjquantmats


atoms to one that focuses on collective ’particles’ (i.e., partial
dislocation positions) a necessary step in the development of a
mesoscale model of quantum plasticity, it also provides key
insight into the quantum nature of the individual dislocations
themselves by allowing their description in terms wave functions
and corresponding energy eigenvalues. Carrying out this protocol
for both pure 4He as well as in the presence of 3He isotopic
impurities, we obtain quantitative insight that is very difficult to
extract directly from a fully atomistic description. First, we find that
the effective mass of the dislocation-position collective ’particles’
is much smaller than classical estimates, rendering the quantum
dislocation core to be highly mobile, which is consistent with the
experimental observations of giant plasticity23,26,36,37. This finding
suggests a composite dislocation structure consisting of a light
quantum core surrounded by a heavier classical strain field.
Furthermore, the low mass results in a high zero-point energy of
the vibrational mode for the separation between the two partials,
effectively freezing it into the ground state at the temperatures
studied here. Finally, also consistent with experimental find-
ings26,38,39, the presence of 3He impurities induces a dislocation
pinning effect that can be closely described in terms of a
confining potential. However, instead of current insight, our
results indicate that a single impurity is insufficient to hamper
dislocation motion, requiring agglomerates containing several 3He
impurities.

RESULTS AND DISCUSSION
Atomistic results for pure hcp 4He
All atomistic results are based on a 6048-atom computational cell
at a molar volume of 21 cm3, well into the stability region of the
hcp phase at a pressure of ~ 30 bar23. The computational cell
contains a single perfect basal-plane edge dislocation with
Burgers vector b ¼ 1

3 ½1210�, dissociated into two Shockley partial
dislocations30,31 with Burgers vector bp ¼ 1

3 h1100i separated by a
SF. Figure 1 a) shows a typical snapshot of the atomic centroid
positions (see below) of the dislocation configuration during a
PIMC simulation. These basal-plane dislocations are responsible
for plastic deformation in the hcp phase of 4He26,35. The atoms on
the top and bottom surfaces are fixed at perfect crystal positions,
preserving the translational symmetry in the direction of

dislocation motion and eliminating any spurious image forces
on the perfect dislocation40. Furthermore, since previous stu-
dies28,41, including calculations based on the worm algorithm for
permutation sampling41, have shown that the role of quantum
exchanges for this dislocation type is small, permutation sampling
is disabled in the PIMC calculations.
We first consider pure 4He. To determine the partial positions

from the atomistic simulations we analyze the atomic displace-
ment profile across the slip plane (Supplementary Note 1), with
the resulting x-position being a collective variable of the atomic
positions of the two planes adjacent to the glide plane. Figure 2 a)
shows the atomistic PIMC evolution of the collective x-coordinates
at T= 0.267 K determined from the atomic path centroids, which
are the ‘centers of mass’ of the closed paths, as depicted in Fig. 1
b). The centroids are the most classical-like position variables in
the path-integral formulation42,43, filtering out most of the
quantum uncertainty. The pair of partials is extremely mobile,
even in absence of external stresses, essentially behaving as free
particles moving along the x-axis. Even so, due to the elastic
interactions (Supplementary Note 7), the motion of both partials is
strongly correlated, with the SF width30,31 showing fluctuations of
only ~1 b around the mean value L0, as shown in Fig. 2 b). We will
return to this issue momentarily. To fully characterize these
collective variables we need to go beyond their centroids and
quantify their intrinsic quantum fluctuations. In the path-integral
formalism these are related to the spatial extent of the closed
paths44. Therefore, the quantum fluctuations in the dislocation
position variables are given by the variation among the M path
replicas. In principle, these could be determined by using the
same displacement analysis employed for the centroids in Fig. 2 a)
to the individual time slices. In practice, however, due to the large
zero-point fluctuations, it is unfeasible to even discern the crystal
structure for individual times slices, let alone recognize disloca-
tions (Supplementary Note 2). Therefore, we first apply Fourier
smoothing (Supplementarry Note 2) to the raw atomic paths
before using the displacement-analysis. It is important to note
that, even though path-smoothing underestimates the true
magnitude of the QM fluctuations, it does not restrict the
mapping between the atomistic and effective models as long as
the same smoothing protocol is applied to both descriptions. The
corresponding atomistic histogram for the distribution of the

Fig. 1 Simulation cell geometry and centroid definition. a Side and top view of simulation cell, with y-axis along the c-axis and x-axis along
the ½1210� direction. Cell dimensions in the x, y and z directions are 117.4, 86.2 (including 17.4 Å of vacuum) and 25.4 Å, respectively. Colors of
atoms are assigned according to the Common Neighbor Analysis approach56. Atoms depicted in red are in hcp surroundings, whereas atoms
displayed in green are in an fcc environment and comprise the SF area separating the partials. White atoms indicate atoms in defective
regions, either near partial dislocation cores or at free surfaces. Orange lines indicate partial cores. b Schematic representation of a closed
atomic path in PIMC calculations, with black circles corresponding to system replicas for an example with M= 5. Central red circle depicts path
‘center of mass’ or centroid.
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Fourier-smoothed time-slice fluctuations in the dislocation posi-
tion with respect to its centroid is shown in Fig. 2 c). It is found to
be identical for both partials, consistent with the fact that both are
of the same type. More importantly, however, the smoothed QM
fluctuations are larger than the Burgers vector b, such that the
partials are delocalized over distances greater than that of the
lattice spacing a, indicating that the lattice resistance to their
motion is negligible. This is consistent with Fig. 2 a), prior
simulations28 and experimental observations26.

Effective Hamiltonian for dislocation position coordinates
Next, we develop a quantitative QM description for the collective
dislocation position variables. Similar to the approach used in
micro-mechanical oscillators12, we map the atomistic results onto
an effective one-dimensional quantum problem of two interacting
massive ‘particles’ whose positions correspond to the collective
variables describing the dislocation locations in the atomistic
description.
For pure 4He we employ an effective one-dimensional

Hamiltonian of the form

Hpure ¼ p21
2m

þ p22
2m

þ 1
2
ke x2 � x1 � L0ð Þ2; (1)

where the subscripts 1 and 2 refer to the particles associated with
the left and right partials, respectively. These particles represent
dislocation segments of length 25.4 Å, corresponding to four
repeat distances along their line direction. Since both partials are
of the same type, their masses m are set to be equal. Furthermore,
the interaction between both partials is purely elastic, consisting
of contributions from the periodic images along the x-axis, as well
as from surface images. It can be shown (Supplementary Note 7)
that these can be well approximated by an effective harmonic
interaction with spring constant ke and equilibrium separation L0,
which is determined by the shear modulus, the SF energy and
periodic images of the dislocations.
The mass m and the spring constant ke in this model should be

chosen such that the corresponding 1D results match the
atomistic data as closely as possible. For this purpose, we carry
out PIMC simulations for the Hamiltonian of Eq. (1)

(Supplementary Notes 3 and 4), discretizing the paths describing
particles 1 and 2 using the same number of beads and imaginary-
time step as those used in the atomistic simulations at the same
temperature T= 0.267 K. Using these paths we compute the
centroid distance of the variable x2− x1 and the time-slice
fluctuations in x1 and x2 as a function of both ke and m. As
discussed above, the time-slice deviations in x1 and x2 that are
compared to the atomistic results are those obtained after
applying the same path-smoothing protocol employed in the
fully atomistic model. The values that best reproduce the atomistic
data are found to be m= 0.292 m0, with m0 the mass of a single
4He atom and ke= 1.6 × 10−2 K Å−2. The corresponding 1D-model
statistics is in excellent agreement with the atomistic results, as
shown in Fig. 2b) and c). The value m= 0.292m0 obtained for
dislocation segments with lengths over 6b is extremely small,
being more than three times lower than that of a single 4He atom.
Indeed, it is ~ 5 times smaller than the corresponding classical
effective-mass value mcl≃ 1.4 m0 (Supplementary Note 8). This
difference suggests that both mass values correspond to different
physical processes. As the small magnitude of m in the effective
model gives rise to large quantum fluctuations in the core
position, m can be interpreted as being the effective mass of the
quantum dislocation core. The classical mass mcl, on the other
hand, results from the increase in the energy of a dislocation
moving at a constant velocity relative to its rest state30. In the
classical theory, this energy appears in the form of kinetic and
elastic strain energy of all atoms in the crystal; hence mcl can be
interpreted as the effective mass of the strain field of the
dislocation. In this view, these findings suggest a composite
dislocation structure in which a quantum core with an extremely
low mass m is surrounded by a classical strain field with a larger
mass mcl. Concerning the stiffness constant, the optimized value
for ke agrees closely with the value kisoe ¼ 1.4 × 10−2 K Å−2

predicted by isotropic elasticity theory (Supplementary Note 7),
which lends further support to the consistency between the
effective 1D model and the atomistic simulations.
A fundamental consequence of the mapping approach is that it

allows to describe the dislocation system within the standard
quantum picture of wave functions and energy eigenvalues for
the collective variables. This is possible because the effective
Hamiltonian only involves few degrees of freedom so that explicit
diagonalization is possible. Moreover, it is significant since it
provides information that cannot be readily extracted from
atomistic path-integral simulations.
A first example concerns the energy levels of the interacting

system described by Eq. (1). It can be decomposed into a non-
interacting system containing a free particle and a harmonic
oscillator with spring constant 2ke, both with the same mass m
(Supplementary Note 3). Whereas the former describes the
unhampered motion of the perfect edge dislocation as a whole,
the latter accounts for the coupling between both partials. For the
optimized values of ke and m, the separation between the energy
levels of this coupling is ΔE ¼ _ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4_2ke=m

q
¼ 1.152 K,

meaning, that at 0.269 K, the coupled partial dislocation system
is frozen in its ground-state level at E0= 0.576 K.

Atomistic results for 3He pinning effect
We now turn to the role of 3He impurities, which represents
another example in which the wave function approach provides
key insight. Although chemically identical to the 4He isotope, due
to its lighter mass and corresponding larger zero-point fluctua-
tions, these impurities are known to act as pinning centers that
hamper dislocation motion by binding to their
cores27,30,31,38,39,45–48. This binding effect, at the root of the
concept of the Cottrell atmosphere and the associated phenom-
ena of solute drag and precipitation hardening in dislocation
theory30,31,49,50, is due to volumetric strains in the tensile region

Fig. 2 Partial-dislocation centroid positions and fluctuations and
time-slice fluctuations without impurities. a Centroid x-positions of
both partials along PIMC run in pure 4He system at T= 0.267 K, in
units of the perfect Burgers vector b= 3.667 Å. b Histogram of
fluctuations in partial separation obtained from centroids in a).
c Histogram of atomistic time-slice-deviations with respect to
centroid for partials using Fourier-smoothed paths (see Supplemen-
tary Note 2). Red lines in b) and c) represent results for effective 1D
model in Eq. (1).

M. de Koning and W. Cai

3

Published in partnership with Nanjing University npj Quantum Materials (2022)   119 



around a dislocation core with an edge component, which provide
increased room for the 3He impurity in the core as compared to a
regular lattice site and gives rise to a reduction of zero-point
energy. To study this effect, we substitute a number of 4He atoms
by the 3He isotope. Given that the binding energy is expected to
be very low, with experimental estimates in the range 0.3-0.7 K
( ~ 10−5 eV)26,38,39, we insert two adjacent rows of four 3He atoms
on the tensile side of the dislocation to enhance the magnitude of
the pinning effect, as shown in the inset in Fig. 3 a). Indeed,
atomistic simulations carried out using only a single row of 3He
impurities were found not to hamper the dislocation in any
respect, indicating that, in this case, the binding effect is not
sufficiently strong to pin the dislocation.
In the presence of the 3He cluster, the right partial is clearly

immobilized at T= 0.267 K, as shown by its centroid dislocation
position, shown by the blue line, obtained from fully atomistic
PIMC calculations in Fig. 3 a). It remains localized at the position of
the impurity rows, indicated by the horizontal dashed line, unable
to move away from them. While the left partial, shown as the red
line, is not explicitly pinned, its mobility is also restricted due to its
strong coupling to the trapped right partial, effectively pinning the
edge dislocation as a whole. However, as shown in Fig. 3 b), when
the temperature is raised to T= 1.067 K, the dislocation is able to
break free and unpin from the rows of 3He impurities, consistent
with the low binding energies observed in experiment.

Effective Hamiltonian for 3He pinning effect
To quantify the pinning effect, we adopt the same approach
utilized for the pure 4He case, specifying an effective 1D model
that seeks to reproduce the atomistic results. In the presence of
the pinning centers, the effective Hamiltonian is augmented by a
confining potential Vpin(x2), such that H ¼ Hpure þ Vpinðx2Þ, where
Hpure is the optimized Hamiltonian for the pure case. We choose
Vpin to be a shifted and truncated harmonic potential with force
constant ki and energy shift U0 positioned at the impurity-row
center x0, i.e., VpinðxÞ ¼ min 1

2 kiðx � x0Þ2 � U0; 0
h i

, as shown
schematically by the red line in Fig. 4 a). Whereas ki controls the

magnitude of the dislocation-position fluctuations when it is
trapped, the depth U0 determines how easy/difficult it is for the
partial to break free from the pinning center. By first comparing
PIMC simulations for this model (Supplementary Notes 5 and 6) to
the atomistic PIMC simulations for T= 0.267 K, when the
dislocation is effectively pinned, we find that ki= 4.25 × 10−2 K
Å−2 provides a good description of the pinning strength, with
both the dislocation-centroid as well as the time-slice fluctuations
closely reproducing the atomistic data for both the left and right
partials, as shown in Fig. 4 b)-e).
For given values of ke, m and ki, the value of U0 now determines

whether or not the effective 1D system has at least one localized
energy level that corresponds to a trapped dislocation state. To
match its value to the atomistic results, the well should be
sufficiently deep for the dislocation to be strongly pinned at
T= 0.267 K, but shallow enough for it to be able to readily escape
for T= 1.067 K, as depicted in Fig. 3 a) and b). While it is difficult to
obtain a precise value for U0, mostly due to the limited availability
of atomistic data to estimate escape probabilities, we find
U0= 1.25 K to give consistent results when considering PIMC
runs of 8 × 104 independent samples for the effective 1D system at
both temperatures. This is shown in Fig. 4 f), which displays the
evolution of the path centroids for the corresponding effective
model at T= 1.067 K. Similar to the atomistic results of Fig. 3b), the
right partial experiences a pinning effect, but it is able to escape
during the considered simulation interval, alternating between
trapped and untrapped states. Of course, due to the finite width of
the trapping potential, the right-partial position still fluctuates
when it is trapped.
Having defined the values for the four model parameters it is

again useful to resort to the standard quantum description based
on wave functions and energy levels of the collective variables. We
determine the energy eigenstates Ψn(x1, x2) and eigenvalues En by
numerically solving the stationary Schrödinger eigenvalue pro-
blem using a finite-difference method (Supplementary Note 9).
Both the ground state and the first excited states at the energy
levels E0= -0.143 K and E1= 0.411 K are localized at the pinning
well. As shown in Fig. 4 a) for the ground state, this localization is
established by the peaked nature of the probability-density
distributions for the x2 coordinate, Φn(x2)≡ ∫dx1∣Ψn(x1, x2)∣2. The
second excited state, however, is entirely delocalized, with Φ2(x2)
displaying a free-particle-like probability density profile. Indeed, its
energy eigenvalue E2= 0.576 K essentially matches that of the
ground state of the pure 4He system in which the entire
dislocation can move freely.
Based on these results we now estimate the binding strength of

the impurity rows from the energy spectrum of the effective 1D
model. As the second excited state is the lowest energy state in
which the probability density is mostly outside the well, we
estimate the binding energy as Eb= E2− E0≃ 0.72 K. This result is
consistent with available experimental data, in which Eb has been
estimated to range between 0.3 and 0.7 K. In addition to the
consistency for the binding energetics, the present results suggest
that the experimentally observed pinning effect may not be due
to isolated 3He atoms but rather requires clusters containing
multiple impurities.
In summary, we have characterized the quantum behavior of

collective variables describing the positions of two straight
Shockley partial dislocations in hcp 4He. By matching atomistic
PIMC simulations to effective models in which they are modeled
as interacting quantum particles in a 1D space, we obtain
fundamental insight into properties of the dislocation cores. In
particular, in absence of 3He impurities, the unhampered motion
of these dislocations, even in absence of external stresses, can be
linked to extremely low effective masses which give rise to large
intrinsic quantum fluctuations in the position variables. In the
presence of 3He impurities, the 1D mapping provides insight into
their role in dislocation pinning. In addition to obtaining a binding
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Fig. 3 Partial-dislocation centroids positions with impurities for
T= 0.267 K and T= 1.067 K. a Atomistic centroid dislocation
positions in the presence of 2 rows of 3He impurities at T= 0.267 K.
Horizontal dashed line indicates center position of the two impurity
rows. Insets display centroid snapshots of two atomic planes, above
and below the glide plane respectively. Meaning of red, green and
white colors is the same as in Fig. 1. Blue spheres depict centroids of
3He impurities. b) Same as in a), but at T= 1.067 K.
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energy that is consistent with experimental estimates, the results
indicate that the pinning effect may not be due to isolated 3He
atoms but rather requires clusters of impurities. Beyond the
specific insight into dislocation properties in 4He, which could not
have been inferred from an entirely atomistic description, the
results highlight the potential of effective models involving
collective variables in elucidating the quantum behavior of
mesoscale objects, in particular with regard to the possibility of
describing them in terms of wave functions and energy
eigenvalues. Indeed, in the specific context of understanding the
physics of solid He, the effective Hamiltonian approach should
also be useful to comprehend the dislocation behavior of the
body-centered cubic (bcc) phase of solid 3He. In this case, it is the
4He atoms that act as isotopic impurities and are able to hamper
dislocation motion51. In addition to the fact that dislocations in
bcc lattice behave very differently from those in hcp structures,
the fermionic nature of the 3He host crystal as well as the smaller
zero-point vibrations of the 4He impurities pose an interesting
challenge.

METHODS
Atomistic PIMC simulations
The path-integral Monte Carlo method52 is a numerical imple-
mentation of Feynman’s imaginary-time path-integral formulation
of quantum statistical mechanics42,43,53, which transforms the
quantum problem into an equivalent classical one in which each
atom is described by a closed path along the imaginary-time axis.
In the PIMC approach these paths are discretized in terms of M

imaginary-time slices, giving rise to ‘polymer’ chains consisting of
M system replicas connected by harmonic springs, as shown
schematically in Supplementary Figure 1. The properties of the
quantum system are then obtained by statistical sampling of these
polymer-chain conformations. In the analysis of the results, the so-
called path centroids, visualized in Supplementary Figure 1, are
often useful since they filter out much of the quantum
uncertainty44. All atomistic calculations in this work have been
carried out using the implementation provided by the PIMC++
code54 using a pair action based on the Aziz-potential55 with a
cutoff of 8 Å and a path discretization in terms of M= 150 time
slices and an imaginary time step τ= β/M, with β≡ 1/kBT the
inverse temperature. Path sampling is carried out within the
isothermal-isostress ensemble28 at zero imposed stress, sampling
only shear deformations in the basal plane and using the bisection
algorithm for path updates52. Since bosonic exchange effects have
been found to be negligible for these basal-plane dislocation
cores in hcp 4He in previous studies28,41, permutation sampling is
disabled.

PIMC Simulations Of Effective 1D model For Pure 4He
For the effective 1D Hamiltonian of the pure 4He system given by

Hpure ¼ p21
2m

þ p22
2m

þ 1
2
ke x2 � x1 � L0ð Þ2; (2)

it is useful to employ the normal-mode coordinate transformation

~x1 � 1ffiffiffi
2

p x1 þ x2ð Þ; (3)

-5 0 5

-1

-0.5

0

0.5

1

En
er

gy
 (K

) 

-100 -50 0 50 100

a)

Pr
ob

ab
ili

ty
 d

en
si

ty
-4 -2 0 2 64-6

Centroid fluctuations (b)
-4 -2 0 2 4

Time-slice fluctuations (b)

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0

0.2

0.4

0.6

b)

c)

Right partial Right partial

Left partial

d)

Left partiale)

x 
co

or
di

na
te

 (b
)

MC sample (x 10  )4
2 4 6 80

10

20

30

f )

Fig. 4 Eigenstates for effective 1D model with pinning potential and corresponding PIMC results. a Ground-state and second excited-state
probability densities for x2 (green lines) for truncated and shifted harmonic potential (red line) with ki= 4.25 × 10−2 K Å−2 and U0= 1.25 K.
Horizontal dashed lines depict energy levels of states. Histograms in b and c describe fluctuations in atomistic dislocation centroid positions
of the right (pinned) and left partial dislocations, respectively, as obtained from Fourier-smoothed atomistic paths for T= 0.267 K. Histograms
in d and e depict statistics of atomistic dislocation time-slice deviations with respect to centroids for right and left partials, respectively,
T= 0.267 K. Red lines in b–e correspond to statistics obtained from 8 × 104 independent paths for the effective 1D model. f Centroid positions
for variables x1 (red line) and x2 (blue line) from PIMC simulation for shifted and truncated pinning potential at T= 1.067 K.

M. de Koning and W. Cai

5

Published in partnership with Nanjing University npj Quantum Materials (2022)   119 



and

~x2 � 1ffiffiffi
2

p x2 � x1ð Þ: (4)

The transformed Hamiltonian then becomes

Hpure ¼
~p21
2m

þ ~p22
2m

þ 1
2
ð2 keÞ ~x2 � L0ð Þ2; (5)

decoupling the problem of two interacting particles into one of
non-interacting particles, namely a free particle and a harmonic
oscillator with a force constant that is twice the value for the
interacting problem, both with the mass m. In this way, the
interacting particle system is most effectively treated by
independently simulating the free particle and harmonic oscillator
systems. Since the density matrices for both the free-particle case
and the harmonic oscillator are known analytically, the PIMC
calculations can be carried out using the Lévy construction, which
is a rejection-free path sampling algorithm in which successive
path samples are statistically independent. In this way, paths for ~x1
and ~x2 are sampled independently, as detailed in the Supple-
mentary Note 3, after which the position variables for the
interacting particles are obtained using the inverse normal-
mode transformation

x1 ¼ 1ffiffiffi
2

p ~x1 � ~x2ð Þ; (6)

and

x2 ¼ 1ffiffiffi
2

p ~x1 þ ~x2ð Þ: (7)

PIMC Simulations Of Effective 1D model with 3He Impurities
In the presence of 3He impurities the effective 1D Hamiltonian is
given by

H ¼ p21
2m

þ p22
2m

þ 1
2
ke x2 � x1 � L0ð Þ2 þ Vpinðx2Þ; (8)

with

VpinðxÞ ¼ min
1
2
kiðx � x0Þ2 � U0; 0

� �
: (9)

In this case, due to the truncated character of Vpin, the problem
cannot be decoupled into two independent non-interacting
problems. Accordingly, a PIMC simulation of this system requires
explicit simultaneous treatment of x1 and x2. Here we achieve this
using a basic Markov chain path-sampling algorithm (Supplemen-
tary Note 6).
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