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Symmetry-enforced nodal chain phonons
Jiaojiao Zhu1, Weikang Wu 1,2✉, Jianzhou Zhao 1,3✉, Hao Chen4, Lifa Zhang4 and Shengyuan A. Yang 1

Topological phonons in crystalline materials have been attracting great interest. Most cases studied so far are direct generalizations
of the topological states from electronic systems. Here, we reveal a class of topological phonons - the symmetry-enforced nodal-
chain phonons, which manifest the characteristic of phononic systems. We show that in five space groups with D2d little co-group at
a non-time-reversal-invariant-momentum point, the phononic nodal chain is guaranteed to exist owing to the vector basis
symmetry of phonons, which is a character distinct from electronic and other systems. In other words, this symmetry enforcement
feature of the proposed nodal chain is limited to phononic systems. Interestingly, the chains in these five space groups exhibit two
different patterns: for tetragonal systems, they are one-dimensional along the fourfold axis; for cubic systems, they form a three-
dimensional network structure. Based on first-principles calculations, we identify K2O as a realistic material hosting the proposed
nodal-chain phonons. We show that the effect of LO-TO splitting helps to expose the nodal-chain phonons in a large frequency
window. In addition, the nodal chains may lead to drumhead surface phonon modes on multiple surfaces of a sample.
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INTRODUCTION
Topological quasiparticles, emerged around band degeneracy
points in condensed matters, have been attracting tremendous
research interest in the past decade. The field was initiated with a
focus on electronic systems. Pioneering examples include
electrons around Weyl1–4 and Dirac4–8 points in the band
structures, which resemble Weyl and Dirac fermions and thereby
can simulate fascinating effects from high energy physics9–11.
Moreover, condensed matter systems respect the space group
(SG) symmetry, which is a much smaller subgroup of the Poincaré
symmetry. The reduced constraints permit a rich variety of
emergent quasiparticles beyond the Weyl/Dirac paradigm12–15.
For instance, band degeneracies may form higher-dimensional
manifolds in the momentum space, leading to nodal-line7,16–25

and even nodal-surface26–29 electrons, with topological boundary
modes and effects.
It was later realized that this research can be naturally extended

to bosonic and even classical systems. Particularly, there is a surge
of interest recently in exploring quasiparticles in phonons30–36,
which describe the atomic lattice vibrations in solids. This is also
motivated by the advance in experimental techniques which can
now probe the full THz phonon spectrum with meV-resolution37–
39. A number of materials with Weyl, Dirac, and nodal-line
phonons have been predicted40–47, and some have been
successfully verified in experiment43,48. As direct extensions of
corresponding concepts from electronic systems, except for the
particles statistics, most of these phonons share essentially the
same features as their electronic counterparts.
In this work, we try to find topological phonons with a character

limited to phononic systems. Specifically, we present such an
example - the symmetry-enforced nodal-chain phonons.
A nodal chain is composed of multiple nodal rings touching at

isolated points and is extended in momentum space (e.g., see Fig.
1). The concept was initially studied also in electronic systems,

where the electronic nodal chains usually require complicated
non-symmorphic crystal symmetries to be robust against spin-
orbit coupling (SOC)49,50. Nodal chains with symmorphic symme-
tries were also discussed51–54, but they are typically destroyed by
SOC, and more importantly, they are not symmetry enforced,
meaning that their presence in the spectrum depends on the
system details and is not guaranteed.
In this work, we find a class of nodal-chain phonons that are

enforced by symmorphic symmetries. We show that in five SGs,
such phonons are enforced by the D2d little co-group and its
vector representation at a non-time-reversal-invariant-momentum
(non-TRIM) point O. The key point is: Unlike electrons and other
systems, where the basis at lattice sites can take different
symmetries (e.g., s, p, d, etc.), for phonons, the lattice displacement
at each site is a vector. For the five SGs, modes with the vector
representation at O are guaranteed to exist due to the real-space
vector basis symmetry. Therefore, the nodal chain is guaranteed to
exist in these space groups. In addition, the vulnerability under
SOC is not an issue here, since phonons are intrinsically spinless. In
this sense, the proposed symmetry-enforced nodal chain indeed
manifests characters for phononic systems. Interestingly, depend-
ing on the SG, there are two different nodal-chain patterns, as
shown in Fig. 1. Guided by the symmetry condition, we propose
that K2O, an existing material, is a candidate with almost ideal
nodal chain phonons. We show that the LO-TO splitting55 helps to
expose the phononic nodal chain in K2O as the only band
degeneracy in a large frequency window, facilitating the experi-
mental detection. In addition, due to the spacetime inversion
symmetry PT , each ring in the chain enjoys additional protection
by the π Berry phase56, which also leads to the protected
drumhead surface phonon modes8,17 on multiple surfaces of a
sample.
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RESULTS
Symmetry condition
First, we propose a formation mechanism for the phononic nodal
chain. We show that the D2d group with its vector representation
at a non-TRIM point of the Brillouin zone (BZ) enforces the
existence of a chain. The D2d group contains two mutually
orthogonal mirrors, which we may denote as Mx and My, and a
fourfold roto-reflection S4z, which connects the two mirrors.
Assume that D2d is the little co-group (or its subgroup) at a non-
TRIM point O in the BZ, and the qz axis through O corresponds to
the S4z axis, as shown in Fig. 2a.
Consider the modes at O which correspond to the two-

dimensional vector irreducible representation E of D2d. These
modes transform as vectors lying in the plane normal to the S4z
axis. They form twofold degenerate pairs at O (each pair
corresponding to the E representation). Let us consider one such

degenerate pair. Since [Mx, My]= 0, the two states can be chosen
as simultaneous eigenstates of the two mirrors, and they must
have opposite Mx as well as My eigenvalues. If we denote one state
as mx ;my

�
�

�

with mx/y∈ {+1, −1} the mirror eigenvalues, then the
other state must be mx ;my

�
�

�

, where mi � �mi . In the subspace of
this pair, the symmetry operations satisfy the following relations

fMx ;S4zg ¼ 0; fMy ;S4zg ¼ 0: (1)

Here, the script symbols denote the symmetry operators
represented in the subspace.
When moving along the qz axis away from O, the degenerate

pair will generally split. However, the symmetries Mx and My are
preserved on the qz axis. Consider the spectrum of the two
branches on the qz axis. First, it must be symmetric with respect to
O, since the spectrum at point (0, 0, qz) is connected to that at (0,
0, −qz) by S4z. Second, due to Eq. (1), the two states connected by
S4z at (0, 0, ±qz) with the same energy must have opposite mx and
my values. This is schematically illustrated in Fig. 2b, showing that
the two branches with opposite mi (i= x, y) cross each other at O.
Now, consider an arbitrary path ℓ in the Mx plane, which

connects a point R, say at (0, 0, π/2), to its S4z image R0 at (0, 0, −π/
2) [see Fig. 2c]. Since ℓ is in the Mx plane, mx for states on the path
is still well defined. Meanwhile, because the mx eigenvalues are
flipped between R and R0, the two phonon branches that we
studied above must also cross each other at some point Q on the
path ℓ, as illustrated in Fig. 2c, d. Since ℓ is arbitrary, the crossing
point must trace out a nodal ring passing through O and lying in
the Mx plane. The same argument applies to the My plane and
results in another nodal ring. The two rings are perpendicular to
each other, touch at point O [and also at (0, 0, ±π) which is another
D2d-invariant point], and are connected by S4z. Therefore, they
compose a nodal chain in the momentum space running along
the S4z axis, as illustrated in Fig. 2a.
We have a few remarks. First, we required point O to be a non-

TRIM point. The reason is that if it is a TRIM point, then the time-
reversal symmetry T and S4z would require the two branches that
are degenerate at O remain degenerate on the qz axis. In this case,
we have only a single phononic nodal line, rather than a chain.
Second, the touching of two perpendicular rings at the O point

can also be inferred from the k ⋅ p effective model expanded at O.
Constrained by the D2d group and on the E basis, we obtain the
following effective model expanded to q-quadratic order

HeffðqÞ ¼ ϵðqÞσ0 þ c1qxqyσx þ ½c2qz þ c3ðq2x � q2yÞ�σz; (2)

where ϵðqÞ ¼ ε1ðq2x þ q2yÞ þ ε2q2z , εi and ci are real model
parameters, and σ’s are Pauli matrices. The model shows a linear
band splitting along qz and quadratic splitting in the qx-qy plane.
The degeneracy manifold indeed conforms with that of two
orthogonal nodal rings (see details in the Supplementary
Information).
Third, the analysis above applies only to spinless particles. For

spinful ones like electrons, the SOC will generally destroy the
nodal chain51.

Candidate space groups
Based on the proposed symmetry conditions above, we search for
the candidate SGs through the 230 SGs. For each SG, we examine
the little co-group for each non-TRIM high-symmetry point and
check whether it contains D2d as a subgroup. This screening
results in 10 SGs, including SG 121, 122, 139, 140, 141, 142, 225,
226, 227, and 228.
After obtaining these SGs, we further check whether our

proposed symmetry conditions are indeed fulfilled in these SGs.
This is necessary because of two reasons. First, point O is not at the
BZ center. The fractional translation in the certain non-
symmorphic operations of the SG may alter the symmetry algebra

Fig. 1 Symmetry-enforced nodal chains for the five candidates
SGs. a SG 121, 139, and 140 host nodal chains running along the
fourfold S4z axis. b In SG 225 and 226, there are chains running along
all three directions, forming a network structure. Here, the rings with
different orientations are marked with different colors.

Fig. 2 Schematic diagram for a nodal chain. a Schematic diagram
for a nodal chain formed by two rings located in two mutually
orthogonal mirror planes Mx and My. O is a non-TRIM point with D2d
little co-group. b Spectrum along the qz axis for a pair of phonon
branches that correspond to the E representation of D2d at O. mi (i=
x, y) are the mirror eigenvalues. c An arbitrary path ℓ in the Mx plane,
which connects a point R on the qz axis to its S4z image R0. The
spectrum along ℓ is shown in (d), where the two branches must still
cross at some point Q, as they have opposite mx eigenvalues. The
crossing point traces out a ring in the Mx plane, as shown in (c).
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at such a point. Second, depending on the SG, there may be some
additional symmetry, particularly some magnetic symmetry (of the
form UT with U a spatial operation), at point O, which may affect
the formation of the nodal chain. This process removes five of the
ten SGs, for which the nodal chain would reduce to a straight
nodal line along the S4z axis due to additional non-symmorphic
operations. The remaining five candidates SGs are listed in Table 1.
Among the five candidates SGs in Table 1, by using the MKVEC

tool57–61, we find that for SG 121, the magnetic little co-group at O
is −42 m, which is just D2d. Meanwhile, for the other four SGs, the
magnetic little co-group at O is 40=m0m0m, which is a supergroup
of D2d and contains the extra magnetic symmetry of PT .
Nevertheless, we verify that the extra PT symmetry does not
affect the existence of the nodal chain in these SGs. The
information of crystal system and the corresponding point O are
also given in Table 1.
Next, we check that for these five SGs, the required vector

representation at O must exist due to the real-space vector basis
symmetry. Specifically, for each SG candidate, by using the
BANDREP tool62–64, we examine the representations at O induced
by the (real-space) vector basis at all possible Wyckoff positions in a
unit cell (see the Supplementary Information for details)62. Through
this process, we confirm that the required vector representation
and hence the nodal chain are guaranteed to appear in these five
SGs. Clearly, from the analysis, the symmetry enforcement here
originated from the vector basis symmetry of phononic systems.
This symmetry enforcement mechanism is the most important
characteristics of our proposed topological phonons.
Interestingly, the five SGs can give two different patterns of the

nodal chains, as illustrated in Fig. 1. One observes that the chains
in SG 121, 139, and 140 form a one-dimensional structure running
along the S4z axis. In comparison, there are three families of
orthogonal chains for SG 225 and 226, forming a three-
dimensional chain network.
In addition, we note that except for SG 121, the groups in Table

1 possess the inversion symmetry P. Then for these SGs, the
combined PT symmetry enforces a π-quantized Berry phase for
arbitrarily closed loops in momentum space, constituting a one-
dimensional Z2 topological charge for PT -invariant systems. For
SGs with mirror or certain rotation symmetries, the Berry phase can
also be quantized on some loop, if the symmetry operation
reverses the momentum on the loop. This offers the nodal rings
additional protection, namely, each ring is protected by the π Berry
phase defined on a small loop encircling the ring. As a result, even
when the symmetry is reduced by certain perturbations on the
system, each ring should persist as long as PT is still preserved.

Nodal-chain phonons in K2O
Guided by the symmetry condition, we identify an existing
material K2O as a candidate with almost ideal nodal-chain
phonons. The K2O crystal was synthesized long ago in the

1930s65. As shown in Fig. 3a, it has the antifluorite crystal structure
with the SG 225 (Fm3m), which is one of the candidates in Table 1.
We investigate its properties by using the first-principles calcula-
tions based on the density functional theory (DFT). The calculation
details are presented in the Methods. The optimized conventional
lattice constant is a= 6.49Å, which agrees well with the
experimental value of 6.44Å65. The two types of atoms K and O
occupy the 8c and 4a Wyckoff positions, respectively.
The calculated phonon spectrum of K2O is plotted in Fig. 3c.

According to Table 1 and Fig. 1b, for SG 225, the ring touching
point O corresponds to the W point of the BZ, and there are three
mutually orthogonal rings, forming a network of chains in the
extended BZ. In Fig. 3c, a chain at around 7 THz formed by two
optical branches can be clearly observed (indicated by the red
arrows). A careful scan of the BZ confirms that the crossing
between the top two branches forms the chain pattern consistent
with Fig. 1b.
Notably, in Fig. 3c, the phonon band structure around the chain

is not very “clean”, because the top phonon branch bends down
near the BZ center. Fortunately, this is remedied by including the
non-analytic correction from long-range Coulomb interactions,
which is typically pronounced for ionic crystals such as K2O. This
correction leads to the well-known energy splitting between
longitudinal optical and transverse optical phonon branches near
the BZ center, i.e., the LO-TO splitting. In Fig. 3d, one observes that
the correction results in a large LO-TO splitting and pushes up the
top branch. Meanwhile, the dispersion around the chain is more or
less unaffected. Consequently, the phononic nodal chain is now
well exposed in a large frequency window with a width ~1 THz.
The energy of the chain can be readily inferred from the dip in the
phonon density of states.
The phononic nodal chain here is guaranteed to exist in the

spectrum, associated with the vector representation induced by
the real-space vector basis. It should be noted that there are also
other induced representations presenting at the same time, and
the corresponding phonon branches do not form nodal chains.
This is the case for the bands around 5 THz in Fig. 3.
The clean band structure, the relatively large frequency window,

and the small energy variation on the chain make K2O an almost
ideal candidate for experimental studies of our proposed
symmetry-enforced nodal-chain phonons.

Topological surface phonon modes
We have mentioned that owing to the PT symmetry, each ring of
the chain features a quantized π Berry phase. It follows that the
Zak phase, defined as the Berry phase along a straight line
traversing the BZ, must change by π when the line crosses a ring.
The π Zak phase is verified by our first-principles calculations, as
indicated in Fig. 4a. It leads to the protected drumhead-like
surface modes, which span the region in the surface BZ bounded
by the projection of the ring.
In Fig. 4b, we plot the calculated surface phonon spectrum for

the (001) surface of K2O. One indeed finds the drumhead surface
phonon modes, as indicated by the arrows. Drumhead surface
modes also exist for conventional nodal-ring states, but they
typically exist only on particular surfaces. For example, when the
ring is parallel to the (001) surface, it is not going to produce
drumhead surface modes on (100) and (010) surfaces. In
comparison, since a nodal chain here is composed of orthogonal
nodal rings, it must have drumhead surface modes simultaneously
on multiple surfaces.

DISCUSSION
We have revealed a topological phonon state that manifests the
features of phononic systems, namely, it is enforced to exist by the
vector basis symmetry of phonons. With this understanding, our

Table 1. SGs hosting the proposed symmetry-enforced nodal-chain
phonons.

SG No. Crystal system Touching point

121 Tetragonal P(14,
1
4,

1
4) P

0(� 1
4, � 1

4,
3
4)

139 Tetragonal P(14,
1
4,

1
4)

140 Tetragonal P(14,
1
4,

1
4)

225 Cubic W(12,
1
4,

3
4)

226 Cubic W(12,
1
4,

3
4)

Here, the coordinates of the ring touching points (O point in Fig. 2a) are
also provided. P and P0 points are connected by symmetry in SG 139 and
140, but not in SG 121.
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work will open the direction to explore more types of topological
phonons that are enforced by the basis of symmetry.
As mentioned in the introduction part, there are also other

types of nodal chains in both spinless and spinful systems. For
example, ref. 53 reported a spinless nodal chain in the electronic
band structures of some honeycomb layered structures. Different
from our case, the ring contact point (O point) there is not fixed on
a high-symmetry point but can move on a high-symmetry path;
and more importantly, the chain there is not symmetry enforced
but is of accidental type.

It should be noted that although our proposed phononic nodal
chain is guaranteed to exist in certain SGs, its energy and
dispersion still depend on the details of the system. Hence,
identifying experimentally favorable material candidates still
requires extensive effort and a degree of luck. Nevertheless, the
symmetry conditions revealed here to provide useful guidance for
the material search. Besides K2O, we also identified a few other
example materials, including Ge2Zn4Se8 (SG 121), Te2O4Tb4 (SG
139), and Ag4Tl4I8 (SG 140), with the help of the phonon database
47.

Fig. 4 Calculated surface phonon spectrum for the (001) surface of K2O. a K2O’s BZ and the corresponding (001) surface BZ. A straight path
passing through the nodal ring has a π Zak phase. This leads to protected drumhead surface modes. Here, we only show the ring in the
horizontal plane. The analysis also applies to the other rings of the chain. b Calculated surface phonon spectrum for the (001) surface of K2O
(without non-analytic correction). The arrows indicate the drumhead surface phonon modes.

Fig. 3 Calculated phonon spectrum and phonon density of states for K2O. a Conventional unit cell and (b) primitive cell of K2O. c Calculated
phonon spectrum and phonon density of states for K2O. The arrows indicate points on the nodal chain. d Calculated phonon spectrum and
phonon density of states with non-analytic correction (LO-TO splitting) included.

J. Zhu et al.

4

npj Quantum Materials (2022)    52 Published in partnership with Nanjing University



In an experiment, the bulk phonon dispersion can be imaged by
inelastic x-ray scattering (IXS)37–39 or neutron scattering66. The
surface phonon modes can be probed by the high-resolution
electron energy loss spectroscopy67, helium scattering68, or THz
spectroscopy69,70. Particularly, recent experiments with inelastic
x-ray scattering have successfully mapped out topological
phonons with meV-resolution, which is sufficient for detecting
the nodal-chain phonons in K2O.
Currently, the study of topological nodal phonons is still at an

early stage, mostly driven by academic interest. These phonons
may have impacts on observable physical properties or effects. For
example, as argued by Singh et al. 41, phonon band crossings tend
to introduce phonon-phonon scattering centers, which suppresses
the lattice thermal conductivity and may enhance the thermo-
electric performance. As for the drumhead surface phonon modes,
Zhang et al. 43 suggested that they may induce surface electronic
structure anomalies through electron-phonon coupling. This may
promote the possibility of surface superconductivity. In addition,
most catalytic processes also occur on the surfaces. The
topological surface phonon modes may in some cases promote
the catalysis if the phonon frequency is in resonance with certain
mid steps in the reaction. Certainly, these are still preliminary
speculations. Possible applications of these topological phonons
will require more future research works.
Note added. During the review of our work, a work by Tang and

Wan appeared71, which did a systematic study of all band nodal
structures in the 1651 magnetic space groups and 528 magnetic
layer groups for both spinless and spinful systems. In the five-
candidate space groups, their results are consistent with our
analysis here.

METHODS
Details of first-principles calculations
Density functional theory (DFT) calculations were conducted by using the
Vienna ab initio simulation package (VASP)72,73. The projector augmented
wave (PAW) pseudopotentials were adopted in the calculation74,75.
Generalized gradient approximation (GGA) in the form of
Perdew–Burke–Ernzerhof (PBE)76 realization was adopted for the
exchange-correlation potential. The valence electrons treated in the
calculations include K (3s23p64s1) and O (2s22p4). The kinetic energy cutoff
was fixed to 520 eV. Γ-centered 10 × 10 × 10 k point mesh was adopted for
the self-consistent calculations. The energy and force convergence criteria
were set to be 10−7 eV and 0.001 eVÅ−1, respectively. We used density
functional perturbation theory (DFPT)77 in combination with the Phonopy
package78 to obtain the force constants and phonon spectra. A supercell of
3 × 3 × 3 is adopted for the calculation of force constants. Nonanalytical
correction (NAC) was considered in treating the long-range interaction of
the macroscopic electric field induced by the polarization of the collective
ionic motions near the Γ point, following the approach of ref. 79. For
computing the surface phonon spectrum, we first calculated the second
rank tensor of force constant in Cartesian coordinates from DFPT, from
which we can get the tight-binding parameters for the bulk and surface
atoms78. Then we obtain the surface Green’s function iteratively by using
the WannierTools package80–82.
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