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Unsupervised clustering for identifying spatial inhomogeneity
on local electronic structures
Hideaki Iwasawa 1,2,3✉, Tetsuro Ueno 1,2, Takahiko Masui 4 and Setsuko Tajima5

Spatial inhomogeneity on the electronic structure is one of the vital keys to provide a better understanding of the emergent
quantum phenomenon. Given the recent developments on spatially resolved ARPES (ARPES: angle-resolved photoemission
spectroscopy), the information on the spatial inhomogeneity on the local electronic structure is now accessible. However, the next
challenge becomes apparent as the conventional analysis encounters difficulty handling a large volume of a spatial mapping
dataset, typically generated in the spatially resolved ARPES experiments. Here, we propose a machine-learning-based approach
using unsupervised clustering algorithms (K-means and fuzzy-c-means) to examine the spatial mapping dataset. Our analysis
methods enable automated categorization of the spatial mapping dataset with a much-reduced human intervention and workload,
thereby allowing quick identification and visualization of the spatial inhomogeneity on the local electronic structures.
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INTRODUCTION
Not uncommonly, the emergence of the quantum phenomenon
accompanies dominant states that are not spatially homoge-
neous1. This situation is generally originated from the cooperative
interplay among internal degrees of freedom—charge, spin,
orbital, and lattice. As ubiquitously observed in strongly correlated
materials, such complexity leads to forming local structures with
various sizes and scales (self-organization). For a fundamental
understanding of the physical properties of the quantum
materials, it is thus required to unravel the interconnection
between the electronic and structural inhomogeneity.
Angle-resolved photoemission spectroscopy (ARPES) is widely

recognized as a representative tool for studying the electronic
structures of quantum materials2–5. However, the local electronic
structures have been elusive by ARPES. This is because the spatial
resolution of ARPES has been relatively poor, typically in milli- to
sub-milli-meter scale, as conventional ARPES systems pursued
higher energy and momentum resolution. On the other hand, the
situation has been changed these days with the development of
spatially resolved ARPES, incorporating the advanced micro-/
nano-focusing optics6–8. Indeed, the spatially resolved ARPES
enabled probing the local electronic structures at micro-nano
order length scales: the inhomogeneous phase transitions (metal-
insulator transition) in transition metal oxides (vanadate9,
manganite10), the termination-dependent electronic and chemical
structures in Y-based high-Tc cuprates11,12, the twinned domains
picked from unstrained BaFe2As213, the weak topological insulator
states in Bismuth compounds14,15, and the heterostructures of a
wide variety of two-dimensional materials16–19.
As in the typical and practical procedure of the spatially resolved

ARPES experiments, these successful ARPES (=momentum-
resolved) observations were typically performed only at limited
position(s), selected based on the real-space mapping dataset prior.
Subsequent ARPES data such as band-structures or Fermi surface
are utilized as representatives of spatial electronic inhomogeneity
for understanding the physical properties of the system. Therefore,

characterizing the spatial mapping dataset and selecting areas/
points of interest is crucially important in spatially resolved ARPES
experiments. In the conventional analysis of the spatial-mapping
dataset, spectral feature extraction was mostly performed by
integrating ARPES spectra with some energy and momentum
windows11–13 or fitting one-dimensional curves sliced from ARPES
spectra20,21. These analyses indeed provided reasonable results
because they were performed based on the researcher’s experience
and knowledge as well as the close check with eyes. Paradoxically,
however, such conventional analyses inevitably require human
intervention, thereby, arbitrariness and workload. In addition,
conventional data analyses are getting more difficult because a
spatial mapping dataset is usually generated in a vast volume, as
supported by advances in automated instrumentation and data
acquisition22. Hence, it is highly desired to develop a radically
different approach that enables handling large and complex
experimental data with minimal human intervention and workload.
To this end, machine learning is the most promising approach,
given the success of machine learning in materials science23–25.
Here, we propose the unsupervised clustering approach designed

to recognize different types of local electronic structures in the
spatial mapping dataset. The goals are to automatically categorize
the spatial mapping dataset, visualize spatial evolutions of the local
electronic structures, and identify each of the better locations
representing each domain. Along this line, two representative
clustering algorithms, K-means and fuzzy-c-means, were used as
unsupervised learning. We first overview the spatially resolved
ARPES experiment and data pre-processing. Subsequently, the
conventional analysis, the K-means clustering, and the fuzzy-c-
means clustering were applied to the simple spatial mapping
dataset from a core level, mainly composed of a single peak. We
demonstrate that both unsupervised clustering methods categorize
the spatial mapping dataset into certain groups effectively and
visualize the spatial evolution of the spatial inhomogeneity, with a
much-reduced workload compared to the conventional analysis
method. The advantages and disadvantages of the two types of
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unsupervised clustering and conventional analysis methods will also
be described. Finally, we also demonstrate the versatility and
extensibility of the clustering analysis methods by representing
those applications to the more complex spatial mapping dataset
from the electronic states near the Fermi level (EF), where several
electronic bands disperse in energy and momentum.

RESULTS
Spatially resolved ARPES: overview and data pre-processing
The experimental setup of the spatially resolved ARPES experi-
ment is essentially the same as the scanning photoemission
microscopy (SPEM)8, as illustrated in Fig. 1a. Two-dimensional
ARPES image I(Ek, θ) was measured as a function of kinetic energy
(Ek) and emission angle (θ) at a local area irradiated by focused
incident light. Note that the energy unit is converted to the
binding energy EB= hν− ϕ− Ek, while the angle unit is not
converted to momentum in this paper. The data acquisition was
made by a snapshot (fixed) mode, which measures a detector
image for a short dwell time (~sub-sec) and is advantageous for
the spatially resolved ARPES experiment. In this work, we analyzed
two different types of spatial mapping datasets from Y-based
high-Tc cuprate YBa2Cu3O7-δ (see Methods). One data type focuses
on the Ba 4d5/2 core level composed of simpler lineshape, while
another one is composed of more complex electronic states near
the Fermi level (near-EF). These energy levels are indicated by the
shaded area in the angle-integrated energy distribution curve
(EDC) (solid line in Fig. 1b). We will first focus on the Ba 4d5/2 core
level, which is sensitive to exposed surface terminations due to
BaO- and CuO-layer, as schematically shown in Fig. 1a11, and its
simpler lineshape is more suitable to verify analysis methods.
As shown in the right panel in Fig. 1c, the spatially resolved

ARPES mapping dataset IARPES(EB, θ, xi, yj) can be obtained by
sequentially measuring the series of a 2D ARPES image IARPES(EB, θ)
as functions of the spatial coordinates xi and yj along the X and Y
axes, respectively. Here, i(j) is the integer ranging from 1 to nx(ny),

corresponding to the number of acquisition points along the X (Y)
axis. A most simple way to visualize the spatial distribution of
ARPES images is to convert a 2D ARPES image to an intensity at
each point by taking a full integration over energy and angle
dimensions, namely, I xi; yj

� � ¼ ΣEB;θIARPES EB; θ; xi; yj
� �

. As shown in
Fig. 1c, the resulting spatial image captures intensity inhomo-
geneity reflecting electronic modulations on the surface (see the
optical microscope image in Supplementary Fig. 1). However, the
limited information on the integrated intensity is not enough to
identify the surface terminations. To extend information while
keeping ease of analysis and data handling, we simplified the 2D
ARPES image into an integrated-EDC (iEDC) obtained by summing
up the whole points in the angle dimension [IiEDC(EB) = ΣθI(EB, θ)].
Consequently, the spatial mapping dataset IARPES(EB, θ, xi, yj) was
simplified into iEDCs, IiEDC(EB, p) (Fig. 1d), where the 2D spatial
coordinates (xi, yj) are flattened into the 1D array with the integer
index of p ranging from 1 to n (=nx × ny). Note that all the
clustering analyses were performed utilizing iEDCs throughout the
paper, while the integrated angle distribution curves (iADCs) can
also be used (see Supplementary Fig. 2 for data slicing). We found
that similar analyses on iADCs lead to the essentially same
conclusions, as confirmed by Supplementary Figs. 6 and 7.

Conventional analysis
The electronic modulations on the surface are exemplarily shown
in Fig. 1e, where we picked up several raw EDCs at spatial
coordinates (labeled as A–F in Fig. 1c). At first sight, one can
roughly categorize them into two groups in terms of peak energy.
The spatial distribution of each group can then be visualized by
employing the narrow integration windows (red and blue shaded
area in Fig. 1e) indicating almost opposite distributions (Fig. 1f, g).
Further, by taking the intensity difference between these two, one
can see the spatial distribution of two groups on the cleaved
surface, as shown in Fig. 1h. Note that the deeper and shallower
peak position indicates that those measured positions are
dominantly terminated by a CuO and BaO layer, respectively11.
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Fig. 1 General overview, data-preprocessing, and conventional analysis in spatially resolved ARPES experiment. a Schematic drawings of
the layout measuring a snapshot ARPES image and the two-types of surface terminations of YBa2Cu3O7-δ. b ARPES image and its angle-integrated
EDC in wide-energy range. c Total ARPES intensity mapping in the real space and schematic illustration of acquisition flow. d Integrated EDCs after
data pre-processing and its data indexes. e Exemplary EDCs extracted from several points, as labeled (A–F) in (c). f, g Partial ARPES intensity
mapping obtained by a limited integration energy window as indicated by red and blue shaded area in (e), respectively. h Difference intensity
mapping between (f) and (g), where each of pixel intensity is normalized by the averaged intensity of each map before taking the difference.
Panels (b), (c) and (f–h) are based on ref. 11 with permission, copyright American Physical Society 2018.
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The analysis described here can be regarded as a kind of
supervised classification. Namely, it is performed based on the
assumption of the presence of three classes (C0−2) in advance: we
labeled CuO- and BaO-terminated surface (C1 and C2) at which the
red and blue integration window returns the highest intensity, and
outside the sample (C0) for negligible intensity. Such analysis
based on the spectrum integration has been usually used and
worked effectively to characterize the surface morphology in
spatially resolved ARPES experiments6–8. Peak fitting analysis is
another commonly used data-categorization technique. It has an
advantage to the spectral integration that it can handle more
spectral information such as peak amplitude, center, and width20.
However, the peak fitting typically requires heavier time-cost and
workloads, and thereby, it is inferior to the spectral integration in
terms of versatility. Hence, we employed the spectral integration
as a conventional analysis in this work. For reference, we also
performed the peak fitting analysis for quantitative comparison
between different spatial-mapping data analysis techniques, as
discussed in Supplementary Note 5 and Supplementary Fig. 5.
Indeed, the peak fitting analysis showed the quantitative
agreement between the conventional and clustering analysis
methods, indicating the strength of the clustering analysis having
much-reduced workloads than the conventional analysis.

Unsupervised clustering
In the previous section, we reviewed how the conventional analysis
enabled investigating the spatial inhomogeneity on the local
electronic structures. However, such analysis requires visual and
manual data confirmation for extracting spectral features. In general,
manual feature extraction becomes more difficult and time-
consuming for the larger dataset and thus not practical for
distinguishing minor differences in the spectral features. More
problematically, the goodness of analysis highly depends on one’s
knowledge and/or experience in the conventional analysis. As already
mentioned, the procedure of conventional analysis can be regarded
as a kind of data classification in supervised learning. In other words,
the output data is labeled and classified by following the prelabeled
features extracted manually. However, no matter what results are
brought by such a conventional analysis, any analysis methods
accompanying human intervention more or less generate arbitrari-
ness and workload inevitably. It is, therefore, necessary to develop an
unsupervised analysis method to classify the large dataset and
understand data characteristics without prior knowledge and/or
experience. Unsupervised clustering is suitable to achieve this aim
and is divided into two types, hard- and soft-clustering. In the
following, we apply K-means26 and fuzzy-c-means27 clustering
methods, which are symbolic hard- and soft-clustering algorithms,
respectively. Note that the general descriptions of unsupervised
learning, including two clustering methods, are given in “Methods”.

K-means clustering. Next, we present the clustering analysis to
categorize the dataset into designated groups using the K-means
method, which is a computationally light method and one of the
most commonly used unsupervised learning algorithms26. The
K-means algorithm finds a group where the data points have high
similarity between them against the maximum number of clusters
(nk); the nk is an input hyperparameter and should not be
determined beforehand. To estimate the optimal value of nk,
we examined three evaluation approaches (the elbow method,
the Silhouette score, and the gap statistic), whose explanations are
described in “Methods”. As seen from these results shown in
Fig. 2a–c, their estimations (nk= 3, 2, and 5), indicated by the red
line, are different, meaning that the absolute determination of nk
is quite difficult (see Methods). We thus do not go into detail
about this issue in this work. While the obtained gap statistics
suggests that noptk ¼ 5, we alternatively adopted a higher value of
nk= 8 (blue dashed line in Fig. 2c) for further analyses, to examine

the nk-dependence clearly. In the following, we thus examine the
nk-dependence on the clustering results for nk= 3, 2, and 8, which
help understand the characteristics of the spatial dataset.
Figure 2d–i visualizes the results of K-means clustering for

different nk-values. Figure 2d–f and (g–i) shows the spatial
distribution of each cluster and the mean-EDC averaging all the
belonging members in a cluster, respectively. First, we found that
the absolute value of nk should be greater than two by comparing
the results between nk= 2 and 3 (Fig. 2h, g) as the mean-EDC
assigned for the cluster 3 appears, differently from the existing
mean-EDCs for nk= 2. In addition, the spatial distribution of clusters
for nk= 3 is similar to conventional analysis, and the peak position
of mean-EDC is different between clusters 2 (red) and 3 (blue).
However, the peak width for cluster 2 (Fig. 2g) is much broader
compared with the EDC extracted from the pixel (B and C in Fig. 1e),
indicating the mixing of two clusters (2 and 3). As seen in the mean-
EDCs in Fig. 2i, such mixture is, of course, reduced by increasing nk.
Indeed, the peak positions of the mean-EDCs (k= 2, 8) are
quantitatively consistent with the conventional analysis, as dis-
cussed in Supplementary Note 5 and Supplementary Fig. 5.
Also, the eight mean-EDCs can be classified into four groups by

similarity. Two clusters (k= 1 and 8) constitute an independent
cluster, representing the outside the sample (C0) and one domain
(C1). Whereas, five clusters (k= 2–6) show the similar shape of the
mean-EDCs with almost the same peak energy, confirming the
presence of the second domain (C2). The remaining cluster (k= 7)
seems to be the admixture of two domains C1 and C2.
Consequently, while we ignored the absolute determination of
the nk, the nk-dependence of the K-means results can lead to a
reasonable estimation of nk; three classes in this case. Note that this
estimation is also supported by a different approach using principal
component analysis, as discussed in Supplementary Note 3 and
Supplementary Fig. 3. On the other hand, however, the K-means
clustering analysis still left arbitrariness in determining a better
position from the cluster members in each cluster.

Fuzzy-c-means clustering. The K-means method is a famous hard
clustering algorithm whereby the data items are classified into K
clusters such that each item only belongs to one cluster. In other
words, each item’s attribution probability ρi at each data point
(I= 1,⋯, n) is given only 1 or 0 in the K-means method. Due to this
property, it is difficult to judge which item (position) is most
representing the cluster. Also, the K-means easily and inevitably
lead to admixture between different clusters. In contrast, we will
present that these disadvantages can be overcome by using the
soft clustering method, in which the attribution probability ρki

� �
ranges from 0 to 1, including decimal numbers, for each cluster
(k= 1,⋯, nk). In this work, as the representative of the soft
clustering algorithm, we employ the fuzzy-c-means method27 that
requires two hyperparameters: the fuzzifier m besides the
maximum number of clusters nk. Although the goodness of the
fuzzy-c-means clustering is often evaluated by a fuzzy partition
coefficient (FPC), we did not find reasonable nk- and m-
dependence on the FPC (see Supplementary Fig. 4 in Supple-
mentary Information). We thus employ nk= 3, as suggested above
by the K-means clustering, in the fuzzy-c-means clustering
analysis. On the other hand, m= 1.5 was chosen as a moderate
value from m-dependence on the clustering results, as
shown below.
Figure 3a, b shows the results of the fuzzy-c-means clustering

with nk= 3 and m= 1.5. The probability density ρki for each
cluster (k= 1, ⋯, nk) and the data points (I= 1, ⋯, n) is plotted
in Fig. 3a, where one can confirm that ρki takes 0 to 1 and
Σnkk¼1ρ

k
i ¼ 1 and Σni¼1Σ

nk
k¼1ρ

k
i ¼ n. Since the attribution probability

expresses the strength of the belonging of the item into the
cluster, it is possible to further classify the cluster members by
ρki in the case of the soft clustering. This is well demonstrated
by the mean-EDC within each cluster (Fig. 3b), where the
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averaging of objects is divided into four levels based on the
attribution probability; ρki ¼ 0:80�0:85; 0:85�0:90; 0:90�0:95;
and 0:95�1:00. Such spectral variation seen in the mean-EDCs
is similar to what is observed by the K-means clustering with
the higher maximum number of clusters (nk = 8), and the peak
positions of two clusters (k= 2, 3) for high ρki show quantitative
agreement (see Supplementary Fig. 5). In this way, the fuzzy-c-
means clustering allows us to find more intrinsic spectra
consisted of a single cluster.
On the other hand, the spatial visualization of a representing

cluster at each point is not straightforward compared with the
K-means clustering because each point has finite probability density
against multiple clusters in the fuzzy-c-mean clustering. For the
spatial visualization of the fuzzy-c-means results, we developed an
attribution score (Z) calculated by the binary-coded decimal
(Zi ¼ Σnkk¼1ρ

k
i � 2k�1) and also employed a contour plot. In the

present case, the Z score was found to be not greater than 4. As
indicated in Table 1, the attribution score of 1, 2, and 4 consists of
the single cluster, while Z= 3 and the other non-integers indicate
the admixture of clusters. The spatial Z-distribution shown in Fig. 3c
is similar to that is obtained by the K-means clustering with nk= 3,
while the image contrast illustrates a higher-purity region in each

cluster. Moreover, the probability distribution of Z is helpful to
understand the influence of the fuzzifier (m) on the clustering results.
As shown in the histogram of Z (Fig. 3d), main components by three
scores (Z= 1, 2, and 4) decrease as m increases. Conversely, the
remaining cluster members, even for higherm, represent the higher-
purity region in the cluster. This trend can be more clearly visualized
in the contour plots shown in Fig. 3e, f, where the cluster region is
considerably shrunk with m= 1.8. This means that the boundary
between different clusters becomes more unclear. Again, the
remaining small area, even in higher m-value, should be manifesting
the higher-purity region. These results indicate that the fuzzy-c-
means clustering is an effective tool to find suitable areas among
spatial-mapping data for further ARPES experiments in the k-space.

Versatility and extensibility of unsupervised clustering. So far, we
have demonstrated that the clustering analysis is useful to
categorize the spatial mapping dataset. However, there exists a
concern whether the present analysis is applicable to the more
complex dataset as the core level spectra are relatively simple. We
thus applied the clustering analysis to a more complex spatial-
mapping dataset from the near-EF electronic states, where energy
bands are more dispersive in energy and momentum.
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Fig. 3 Unsupervised clustering by the fuzzy-c-means algorithm. a Probability density (ρki ) distribution as a function of the acquisition point
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Figure 4 shows the K-means clustering results with nk= 3 and 8,
which were selected for the direct comparison to the clustering
results on the core-level mapping dataset, shown in Fig. 2. Note that
we excluded nk= 2 as it is evident that the clustering with nk= 2
just categorizes inside and outside the sample. Just for reference,
the evaluations on nk-values are shown in Fig. 4h–j, where (h) the
sum of squared error (SSE), (i) silhouette score, and (j) gap statistic
suggested the optimum nk-value as 3, 2, and 6, respectively.
By comparing the clustering results for nk= 3 between the near-EF

and core-level datasets shown in Figs. 4a–c and 2d, respectively, one
can notice that the clustering analysis worked regardless of the
complexity of the dataset. As was the case for the core-level dataset, it
is easy to identify the main components of each cluster: outside the
sample (k= 1), BaO-termination (k= 2), and CuO-termination (k= 3).
Looking more closely at the spatial distribution of cluster 2 (Fig. 4a), its
spatial region is much smaller than one obtained from the clustering
analysis for the core-level dataset with nk= 3 (Fig. 2d). Furthermore, it
is somewhat similar to the clustering results for the core-level dataset
with nk= 8 in Fig. 2f. Indeed, the admixture between clusters 2 and 3
is not apparent in the mean-EDCs (k= 2 and 3) in Fig. 4b, compared
with the broader mean-EDC (k= 2) obtained by the core-level
analysis in Fig. 2d. These results would indicate that the K-means
analysis on the near-EF dataset brought favorable clustering results,
probably due to the presence of more spectral features.
Then, let us focus on the K-means clustering results from the near-

EF spatial-mapping dataset using the higher nk-value (nk= 8). As seen
in Fig. 4e, the mean-EDC can be roughly categorized into three types:
outside the sample (k= 1), the BaO-termination showing higher
intensity with a peak near the Fermi level (k= 2–4), and the CuO-
termination showing a hump structure around 0.5 eV (k= 5–8). The
degree of admixture between different clusters is hardly distinguish-
able from the mean-EDC but can be somehow conjectured from

spectral features recognized in mean-ARPES images in Fig. 4f. For
instance, a characteristic V-shape band disperses in a narrow energy
region (~0.2 eV) centered around θ=+15°. This band is most clearly
seen in the BaO-termination (k= 2) then becomes weaker for k= 3
and 4, while it is faintly but surely present for k= 7 and 8. These
observations are thus indicating that the CuO-termination-dominant
clusters (k= 7 and 8) contain signals from the BaO-termination.
Similarly, the CuO-chain bands representing the CuO-termination
were observed, centered around θ= 0, ±15° with wide energy
dispersion (~0.8 eV). These bands are most clearly observed for k= 6,
then become weaker for k= 7 and 8, and extra background is
merged in the case of k= 5. Note that the background is apparent in
the mean-ARPES image, though it is hardly expected from the mean-
EDC. These results consistently suggest that more spectral features
help to expect the essential number of clusters and find higher-purity
areas in the spatial-mapping dataset.
We next present the application of the fuzzy-c-means clustering to

the near-EF spatial-mapping dataset. Figure 5a–d is the results of the
fuzzy-c-means clustering with nk= 3 and m= 1.5. Similar to the
application to the core-level dataset, the categorization of cluster
members by the probability density yielded similar classifications by
the K-means with the higher nk-value. Indeed, obtained mean-EDCs
for ρki ¼ 0:95�1:00 (Fig. 5b) and mean-ARPES images (Fig. 5c) are
similar to those obtained by the K-means clustering (Fig. 4e, f). Here,
k= 1–3 in the fuzzy-c-means corresponds to k= 1, 2, and 6 in the
K-means. As for the spatial distribution of the attribution score Z and
m-dependence on the histogram of the Z-score, comparable results
have been obtained in the fuzzy-c-means clustering on core-level
(Fig. 3c, d) and near-EF (Fig. 5d, e) datasets. This tendency is the same
for the spatial distribution of high-ρki region in the contour plots in
Fig. 5f, g, which are comparable to Fig. 3e, f. On the other hand, one
might recognize the slight difference in the spatial distributions of
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Fig. 5 Fuzzy-c-means clustering applied for complex near-EF dataset. a Probability density (ρki ) as a function of the acquisition point for
each cluster. b, c The mean of EDCs and ARPES images within each cluster, respectively. The averaging range is limited by a probability
window as indicated in the figure annotation for the mean-EDC while the ARPES image is averaged within 0:95 � ρki � 1:00. d Spatial
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probability density between them. This dissimilarity is probably
originated in differences in spectral features of core-level and near-EF
datasets. Since two types of datasets were measured from the same
surface, the clustering accuracy may be improved by clustering
based on both datasets (mutual information), which we leave for
future work.
Finally, we point out that finding a clustering algorithm suitable

for spatial-mapping ARPES dataset still needs to be pursued, as this
work treated representative K-means and fuzzy-c-means clustering
algorithms introductory. Indeed, there is a suite of choices for the
clustering algorithms: for instance, derived algorithms such as K-
means++28 or generalized fuzzy-c-means29, and algorithms with
different concepts such as agglomerative clustering30 or density-
based spatial clustering of applications with noise (DBSCAN)31.
Incorporating such an algorithm or developing existing algorithms
may improve the clustering accuracy. Despite that, it should also be
noted that the purpose of the analysis is likely more important than
trying various algorithms. The results for principal features must be
rather robust, whichever algorithm is used. In contrast, the clustering
accuracy should be more sensitive to the properties of the
employed algorithm when features of interest are weak or merged,
as the boundary of clusters.

DISCUSSION
Recent progress on the spatial resolution in the ARPES experiment
enabled us to investigate spatial inhomogeneity on the local
electronic structures, resulting in successful observations on
various quantum materials6–8. But meanwhile, the advantage of
spatially resolved ARPES, namely, significantly increased spatial
degrees of freedom, also brought us arbitrariness in identifying
the spatial evolution of the electronic structures as well as
selecting an appropriate measurement position from a large
volume of spatial mapping dataset. In this regard, we applied
machine learning in order to establish an effective analysis
method for the spatial mapping dataset.
We used two unsupervised clustering algorithms, K-means26 and

fuzzy-c-means27 methods, as the representative hard- and soft-
clustering, respectively. Both algorithms require the input hyper-
parameter(s), the number of clusters nk for K-means, and the nk and
fuzzifier m for fuzzy-c-means, which should be given appropriately
to obtain proper clustering results. Apart from the difficulty in the
absolute determination of these parameters, we showed that the
parameter dependence on the clustering results enables reasonable
estimations on these hyperparameters. In the first step, we used the
nk-dependence in the K-means to infer the nk, which is also
supported by the principal component analysis. Subsequently, by
using the estimated nk, the m-dependence in the fuzzy-c-means
enabled visualizing the high-purity region for each cluster. We
remark that this series of analyses can grasp and classify the overall
characteristics of the input spatial-mapping dataset. We also
demonstrate that the present clustering analysis essentially works
on either simple or complex datasets. We believe that our analysis
procedure presented here puts forward a novel and effective
analysis methodology for spatially resolved ARPES experiments.
Furthermore, the applications of present clustering analysis can be
expected to provide benefits on the categorization and visualization
of any multidimensional ARPES datasets without prior knowledge.

METHODS
Materials and spatially resolved ARPES experiments
High-quality single crystals of optimally doped YBCO (δ= 0.1, Tc= 93 K) were
grown by the crystal pulling technique and detwinned by annealing under
uniaxial pressure32. Micro-ARPES experiments were performed at beamline
I05 of the Diamond Light Source33 using a photon energy of 150 eV at ~7 K.
All the data were measured by a high-resolution hemispherical electron
analyzer (R4000, Scienta) after cleaving the samples in situ in ultrahigh

vacuum better than 2 × 10−10 mbar at ~8 K. The energy, angular, and spatial
resolution were set to be 8meV, 0.2◦, and ∼60 μm, respectively.

Unsupervised clustering: hierarchic and non-hierarchic
clusterings
Clustering is unsupervised learning to find the series of grouping in the dataset
that maximizes or minimizes a given criterion, evaluating the similarity or
dissimilarity of the data points within the same cluster. The dataset consists of
n observables, that is, n (=nx× ny) ARPES spectra Ii= (I1, I2,…, In), measured as
functions of X and Y coordinates, where nx(ny) is the number of X (Y)
measurement points in this work. The clustering model can be divided into
two types: hierarchic and non-hierarchic clusterings34,35. The hierarchic
clustering starts from n clusters, where each cluster contains only one
observable. Then, it iteratively combines the clusters having the highest
similarity until all the clusters are merged, thus creating a hierarchical structure.
Several linkage criteria have been proposed, such as the nearest-neighbor
(single linkage) method30, furthest-neighbor (complete linkage)36, and Ward’s
method37. However, the hierarchic clusterings are in principle unsuitable for
handling a large dataset because the increase of computational cost and more
complex hierarchical structure are expected in that case. In contrast, the non-
hierarchic clusterings generally require much less computational cost, thus,
suitable for handling a large dataset. The non-hierarchic clustering aims to
categorize n observables into the preset value for the number of clusters (nk).
As the output, an attribution probability to a cluster (ρ) is obtained for each
observable. Then, the non-hierarchic clustering can be further divided into two
types, hard- and soft-clusterings, depending on ρ-value permitted: the ρ only
takes 0 or 1 in the hard clustering, while it ranges between 0 and 1, including
decimals, in the case of the soft clustering. There are various algorithms
proposed for both clustering methods: for instance, partition around medoids
(PAM)38, K-means26, spectral clustering39, and EM (expectation-maximization)
algorithm based Gaussian mixture model (GMM)40 for the hard-clustering, and
fuzzy-c-means27, GMM40, probabilistic latent semantic analysis41, and non-
negative matrix factorization (NMF)42 for the soft-clustering.
In this work, we used the K-means and fuzzy-c-means algorithms, as they

are representative hard- and soft-clustering methods, respectively. All the
codes were developed by Python using the scikit-learn package43 for
K-means and the scikit-fuzzy package for fuzzy-c-means clustering, all of
which can be found at https://github.com/h-iwasawa/arpes-clustering. In
addition, a platform using Igor Pro for the K-means clustering is also available.
In the following, we will give a brief explanation of these algorithms.

K-means clustering. The K-means clustering categorizes the n observables,
Ii = (I1, I2,…, In), into the nk clusters Ck ¼ C1;C2; ¼ ;Cnkð Þ, where nk is
the preset value, and each member must belong to a single cluster. In the
K-means algorithm, the grouping is iteratively performed by determining the
centroids of the clusters ck ¼ c1; c2; ¼ ; cnkð Þ and by assigning the belonging
cluster of each member. The centroids are also regarded as the centers of the
gravity of the clusters. The K-means algorithm has various implementations,
though we used a standard iterative refinement approach as follows.
Step 1. Specify nk and randomly assign ck.
Step 2. Calculate the distances between a member and all the centroids of

the clusters, and then assign a belonging cluster Ck for each member, whose
centroid provides the nearest neighbor for a member.
Step 3. Calculate the new centroids ck based on the updated members in

Step 2.
Step 4. Repeat Steps 2 and 3 until the assignment in Step 2 no longer

changes.
This algorithm aims at minimizing the evaluating criterion, or objective

function (W), the sum of squared distances (Euclidean distance) used in this
work, given by

W Ii ; ckð Þ ¼
Xnk
k¼1

X
i2Ck

kIi � c2kk: (1)

though different distance metrics d(Ii, ck) can also be applicable, and Eq. (1)
can then be more generalized as

W Ii ; ckð Þ ¼
Xnk
k¼1

X
i2Ck

d Ii ; ckð Þ: (2)

It should be noted that the results of the K-means depend on the initial
assignment of ck and the preset value of nk. For the estimation of the
optimal number of cluster (noptk ), the elbow method44, silhouette analysis45,
and the gap statistic method46 were used in this work, as shown in Fig.
2a–c, respectively. Those explanations are briefly given in the following.
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Elbow method. The elbow method is a well-known and naive approach. It
calculates the SSE, which measures the cohesion of the clusters. As seen in
Fig. 2a, the SSE decreases rapidly with increasing nk for nk < noptk , while it
also decreases for nk � noptk but the reduction rate should be rather
gradual. Thus, the SSE curve shows an arm-like behavior with an elbow as a
function of nk, where the elbow point is considered to provide noptk
empirically. In this work, the elbow point can be clearly seen at k= 3 as
shown in Fig. 2a. However, it should be noted that the elbow method does
not always work well, especially if the data are not very cohesive.

Silhouette method. The silhouette method evaluates the cohesion (a(i))
and separation (b(i)) of clusters as

a ið Þ ¼ 1
Cin � 1j j

X
xðjÞ2Cin

xðiÞ � xðjÞ; (3)

b ið Þ ¼ 1
Cnearj j

X
x jð Þ2Cnear

x ið Þ � x jð Þ; (4)

where a(i) is the average distance between x(i) and other points in the same
cluster Cin, while b(i) is the average distance between x(i) and all points in
Cnear (the nearest-neighbor cluster of x(i)). As a measure of the cohesion
and separation of clusters, the silhouette score is then given as

s ið Þ ¼ b ið Þ � a ið Þ

max a ið Þ; b ið Þð Þ ; (5)

where s(i) ranges [−1, 1]. Thus, the best clustering is given when s(i)= 1, the
assignment of data belonging would be incorrect when s(i) < 0, and the
clusters overlap when s(i)= 0. As shown in Fig. 2b, the highest silhouette
score in the dataset is given at k= 2, while it was obviously not
appropriate. This stems from the fact that the silhouette method is not
good at treating the dataset that includes adjacent or overlapping clusters.

Gap statistic method. The gap statistic method is based on the statistical
testing methods. It aims to standardize the cohesion measure Wk for the
dataset Ii = (I1, I2,…, In) by using W�

k;b for the null reference distribution of
data (random dataset) Ib = (I1, I2,…, IB). The B is the number of bootstrap
samples. The optimal number of clusters noptk will be given at which the
gap statistic becomes maximum. Let Cr denotes the indices of observations
in cluster r, nr is the number of points in the cluster Cr, and Ii and Ii' are a
data point of the dataset Ii. Then, Wk is defined as

Wk ¼
Xnk
r¼1

1
2nr

X
i;i02Cr

kIi � I2i0 k: (6)

Since logWk falls the farthest when the value of k takes the optimal
number of clusters, the gap statistics can be estimated as

Gap kð Þ ¼ 1
B

PB
b¼1

logW�
k;b � logWk : (7)

In general, the gap becomes unchanged, and the results become precise
for B ≥ 500. The optimum number of clusters should provide a higher gap
value and is also given as the minimum value of k satisfying

Gap kð Þ � Gap k þ 1ð Þ � s k þ 1ð Þ; (8)

where

s kð Þ ¼ sdk

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

B

r
; (9)

and sdk denotes the standard deviation of logWkf gBb¼1. Thus, the gap
difference (Diff.) can be used as the criterion as

Diff: ¼ Gap kð Þ � Gap k þ 1ð Þ þ s k þ 1ð Þ � 0: (10)

The obtained gap statistics for the core-level dataset shown in Fig. 2c
indicates the local maximum at k= 8, while k= 5 seems more appropriate
judging from the gap difference shown in the inset of Fig. 2c. Similarly, in
the case of the near-EF dataset shown in Fig. 4f, the local maximum is given
at k= 8, while k= 6 should be appropriate judging from the gap
difference shown in the inset of Fig. 4f. However, it should also be noted
that the results of gap statistics fluctuate each time, even using a much
higher number of bootstrap (B= 1000 and 2000). Thus, we regarded the
gap statistics just as a reference and adapted B= 500 to reduce the
computational cost. Indeed, we adopted k= 8 as a trial and higher nk-value
in this work, to see the nk-dependence on the K-means clustering results.

Fuzzy-c-means clustering. The fuzzy-c-means clustering is very similar to the
K-means clustering, though it assigns the attribution probability uik ∈ [0, 1]
(i= 1,…, n, k= 1,…, nk) to all the clusters Ck ¼ C1; C2; ¼ ; Cnkð Þ for each data
point of the n observables, Ii = (I1, I2,…, In). Thus, each data point may have the
attribution probability across multiple clusters in the fuzzy-c-means clustering
(soft-clustering). This is in contrast to the K-means clustering, in which each
data point belongs to only a single cluster (hard-clustering). Then, the fuzzy-c-
means algorithm aims to minimize the objective function (W) given by

W uik ; ckð Þ ¼
Xn
i¼1

Xnk
k¼1

uikð Þmd Ii ; ckð Þ; (11)

where m is a hyperparameter called a fuzzifier that defines the maximum
fuzziness or noise in the dataset, and d(Ii, ck) = dik = ‖Ii − ck‖2 in the case of
Euclidean distance. The attribution probability uki and the centroids of
clusters ck, minimizing W(uki, ck), are respectively given as follows:

uki ¼ 1=dikð Þ 1
m�1Pn

i¼1 1=dikð Þ 1
m�1

; (12)

and

ck ¼
Pn

i¼1 uikð ÞmIiPn
i¼1 uikð Þm : (13)

The fuzzy-c-means algorithm aims to find uik and ck, yielding the minimum
of objective function W(uik, ck) by an alternate optimization as follows.
Step 1. Specify nk and m, and initialize uik randomly.
Step 2. Calculate ck.
Step 3. Calculate uik.
Step 4. Repeat Step 2 and 3 untilW(uik,ck) is minimized or ‖uik(t+1)− uik

(t)‖ < ε.
Here, t is the iteration number, and ε is a predefined convergence value. The

performance of the fuzzy-c-means clustering is often evaluated by using the
fuzzy partition coefficient (FPC). The FPC index is calculated by

FPC ¼ 1
nk

Pnk
k¼1

Pn
i¼1

u2ik : (14)

The FPC ranges between [0, 1], and the higher value is generally
expected to result in better clustering performance. As shown in
Supplementary Fig. 3, however, the FPC became higher with smaller nk
and m without showing any indication of the optimum number of these
hyperparameters. Thus, these hyperparameters were not determined
intuitively in the present case.

DATA AVAILABILITY
The datasets and codes that support the findings of this study can be found at
https://github.com/h-iwasawa/arpes-clustering.
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Table 1. Attribution score (Z) when the attribution probability (ρk )
takes binary value for each cluster (k = 1-3) with the case of nk=3.

Z ρk¼3 ρk¼2 ρk¼1

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1
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