
ARTICLE OPEN

Anomalous and anisotropic nonlinear susceptibility in the
proximate Kitaev magnet α-RuCl3
Ludwig Holleis1, Joseph C. Prestigiacomo2, Zhijie Fan 1, Satoshi Nishimoto 3,4, Michael Osofsky2, Gia-Wei Chern1,
Jeroen van den Brink 3,4 and B. S. Shivaram 1✉

The leading order nonlinear (NL) susceptibility, χ3, in a paramagnet is negative and diverges as T→ 0. This divergence is destroyed
when spins correlate and the NL response provides unique insights into magnetic order. Dimensionality, exchange interaction, and
preponderance of quantum effects all imprint their signatures in the NL magnetic response. Here, we study the NL susceptibilities
in the proximate Kitaev magnet α-RuCl3, which differs from the expected antiferromagnetic behavior. For T < Tc= 7.5 K and field B
in the ab-plane, we obtain contrasting NL responses in low (<2 T) and high field regions. For low fields, the NL behavior is
dominated by a quadratic response (positive χ2), which shows a rapid rise below Tc. This large χ2 > 0 implies a broken sublattice
symmetry of magnetic order at low temperatures. Classical Monte Carlo (CMC) simulations in the standard K− H− Γ model secure
such a quadratic B dependence of M, only for T ≈ Tc with χ2 being zero as T→ 0. It is also zero for all temperatures in exact
diagonalization calculations. On the other hand, we find an exclusive cubic term (χ3) that describes the high field NL behavior well.
χ3 is large and positive both below and above Tc crossing zero only for T > 50 K. In contrast, for B ∥ c-axis, no separate low/high field
behaviors are measured and only a much smaller χ3 is apparent.
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INTRODUCTION
Since the demonstration by Kitaev1 of the existence of a quantum
spin liquid state in two dimensions through exact calculations on
a honeycomb lattice, there has been an intense experimental
search for its realization in real material systems. Aided through
insights provided by Jackeli and Khaliullin2 to engineer (bond-
dependent) exchange interactions, the materials search has
identified several promising systems with prominent attention
given thus far to two candidates, the iridium oxides and
ruthenium chloride3,4. Despite the presence of a very large
exchange energy (of the order of 100 K), these systems do not
order down to comparatively low temperatures. When they do
order magnetically, the features observed in both microscopic
probes such as neutron scattering and macroscopic measure-
ments such as magnetometry and thermal response are highly
unusual and contrast dramatically with what is expected from
conventional magnets. In their thermal transport5, thermody-
namic6 and microwave response7, they provide tell-tale signs as to
the presence of fractionalized excitations sought after in Kitaev
magnets.
In the proximate Kitaev spin liquid candidate, α-RuCl3 neutron

scattering experiments show a low-temperature magnetic excita-
tion spectrum consisting of sharp spin wave peaks and a
continuum associated with fractional excitations6,8. A magnetic
transition that sets in at 7.5 K where the spins assume a zig-zag
chain pattern located in the ab-plane with two neighboring chains
being antiferromagnetically aligned9 is also established. Raman
scattering studies also reveal unconventional magnetic excitations
with a broad continuum whose temperature dependence is
apparent over a large scale compared to the magnetic ordering
temperature10,11. The linear susceptibility shows a discontinuity in
slope12 at TN= 7.5 K and exhibits substantial in-plane anisotropy
that persists in the normal state13. The high temperature (T >

150 K) susceptibility is convincingly Curie-like; however, there is an
extended intermediate “Kitaev paramagnetic” region6 beyond Tc.
The out-of-plane anisotropies are also significant: the susceptibility
parallel to the c-axis is nearly an order of magnitude smaller with
only a minor signature at the 7.5 K transition. These magnetic
signatures are in stark contrast to what is known in conventional
2D (insulating) antiferromagnets14.
In this communication, we report measurements of the

nonlinear DC susceptibilities, χ2 and χ3, in α-RuCl3 and illustrate
that they probe many key aspects of the proximate Kitaev spin
liquid state as well as the zig-zag antiferromagnetic phase. The
equilibrium magnetization in any system can be written in the
general form:

M ¼ χ1Bþ χ2B
2 þ χ3B

3 þ � � � (1)

where the coefficients represent the various order susceptibilities.
In particular, the coefficient χ2 is nonzero when time reversal
symmetry is broken, while preserving lattice symmetry; for
instance15, in ferromagnets.
The nonlinear susceptibility χ3 in a classical paramagnet is

negative at all temperatures and diverges16 as T→ 0, while χ2 is
nonexistent due to time-reversal symmetry. The negative diver-
gence in χ3 can be interrupted, however, if the system develops
long-range magnetic order. We illustrate in Fig. 1A–C the three
known types of characteristic behavior of both the linear (χ1) and
the nonlinear (χ2 and χ3) susceptibilities for typical ferromagnets,
bipartite antiferromagnets, and spin glasses, respectively15,17–19. In
all three cases, significant nonzero χ3 is found only in the vicinity
of the critical temperature. It is worth noting that χ3 assumes only
negative values at T > Tc for all three types of magnets and tends
to zero rather quickly as T increases. The second-order suscept-
ibility, χ2, is less studied and a nonzero χ2 is possible only when
time-reversal symmetry is either explicitly or spontaneously
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broken, as in ferromagnets. Moreover, even for bipartite antiferro-
magnets, an effective time-reversal symmetry due to the
sublattice symmetry results in a vanishing χ2 even in the ordered
state below Tc; see Fig. 1B.
In α-RuCl3 we find, in contrast, that χ3 assumes significantly

positive values over an extended temperature range above the
ordering temperature. While there is a divergence of χ3 at Tc as
might be expected, its value remains significantly positive down
to the lowest temperatures. We also find a quadratic field
dependence of M, giving rise to a significantly positive χ2, which
exists only in the ordered state and has a large nonzero value even
as T→ 0. To our knowledge, such a behavior of χ3 and χ2 have not
been observed before. Further, this unexpected quadratic
contribution is highly anisotropic and found only when the
magnetic field is perpendicular to the high symmetry axis (c-axis).

RESULTS AND DISCUSSION
Experimental results
In Fig. 2, we show the measured magnetization isotherms for B ∥
a-axis (i.e., ϕ= 0° as per the definition adopted in ref. 13) plotted
in a manner that facilitates the extraction of the nonlinear
susceptibilities. Equation (1) above defines the susceptibility
parameters and motivates plots such as Fig. 2. It is apparent
from the top nine panels in Fig. 2 that the slope of the lines for B ∥
a-axis, which are well defined and close to zero at high T, turn
significantly positive when lowering T, and increase in magnitude
as the ordering temperature Tc= 7.5 K is approached. Below Tc,

the response breaks into two distinct regions, with a crossover
threshold field of B* ≈ 2 T. The nonlinear response below B* is
considerably larger than that at the high field end, 3 T < B < 5 T.
Confining ourselves to the quadratic term only, as per Eq. (1) in
this low field region, we obtain values of χ2 as shown in Fig. 3b.
The values of χ2 are positive and large at the lowest temperatures
and decrease monotonically towards Tc, where it rapidly drops to
zero. It is important to note that a nonzero χ2 is only possible in
systems in which time-reversal symmetry is broken20. In a strict
bipartite antiferromagnet, however, time-reversal symmetry is not
broken. The fits described above also yield χ1 via the intercept,
which can be used as a consistency check on the linear
susceptibility values obtained at constant low field through
temperature sweeps. The absence of any feature in χ1 in the
vicinity of 14 K alludes to the high quality of the sample measured.
Another significant feature notable in the nine panels on the

top in Fig. 2 is the presence of a clear upward curvature, in the
3–5 T region, particularly in the 6 and 10 K isotherms. This
curvature implies the presence of a cubic term, which can be
extracted by plotting M/B against B2 on the x-axis as shown in the
bottom nine panels of Fig. 2. The values of χ3 obtained by fitting
the linear region in such plots with B between 3 and 5 T below Tc
and over the entire field range (0–5 T) above Tc are shown in Fig.
3c. The high linearity of these fits illustrates the absence of a χ2
term in these regions of the phase diagram. Performing such
separate fits in the two regions is the most natural way to analyze
our results. Our approach of separate fits is further motivated by

Fig. 1 Schematic of the known qualitative behaviors of the linear (χ1) and nonlinear (χ2 and χ3) magnetic susceptibilities in different
flavors of magnetic systems. In the ferromagnet (A) and spin glass (C), the nonlinear susceptibility, χ3, is negative above the characteristic
temperature and has a sharp discontinuity at a characteristic temperature (Tc or Tg). In the anti-ferromagnet (B), the sign of χ3 in the
paramagnetic regime depends on the coordination number25. Below this temperature, it is observed to rapidly approach zero as T→ 0 for all
three phases. χ2, on the other hand, exhibits such a discontinuity only for (A) (e.g., ferromagnet) where time-reversal symmetry is broken15. In
comparison, in the other two cases it is zero.
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signs of a crossover transition at ≈2 T in neutron12,21, microwave
response7, and differential susceptibility22 experiments.
As can be seen in Fig. 3c, χ3 is significantly positive near Tc and

decreases in magnitude as the temperature is increased. A
power-law fit as shown in the figure provides a reasonable
empirical description of the behavior of χ3 in the (Kitaev)
paramagnetic region. Experimentally, however, a crossover to
negative χ3 occurs above temperature 50 K (a temperature of the
order of the Kitaev exchange6). Below Tc the values of the
nonlinear susceptibility are obtained through linear fits in two
separate regions as explained above. The high field region yields
values for χ3 that exhibit a sharp peak at T= 6.5 K just below the
ordering temperature. They remain positive down to the lowest
temperature of 2 K with no evidence of a downturn towards
zero. While a negative cubic power-law dependence is expected
from the Curie law for the third-order susceptibility in para-
magnets16, such a positive behavior has not been reported to
our knowledge.

We have also measured the nonlinear susceptibility for
magnetic fields perpendicular to the ab-plane. Representative
magnetization isotherms plotted similar to those in Fig. 2 are
shown in Fig. S2. The extracted values of χ3 are small and
positive and increase monotonically as the temperature is
lowered as seen in Fig. S3. More importantly, as evident in
Fig. S2, the nonlinear response is well described by a single cubic
term and there is no evidence for a large quadratic response as
found for B ∥ a-axis. Given that for B ∥ a-axis the deviation from a
linear behavior of the magnetization due to a quadratic
contribution is roughly ten times larger than that arising from
the cubic term, such behavior if present for B ∥ c-axis would be
easily seen within the resolution of the MPMS SQUID measure-
ments. We also present in Fig. S4 preliminary data for the in-plane
nonlinear response when B ⊥ a-axis. While the behavior observed
is qualitatively the same as in Fig. 3, there are quantitative
differences. Further characterization of this in-plane anisotropy
will form part of a separate comprehensive study.

Fig. 2 Magnetization isotherms. The top set of nine panels show the ratio of the measured magnetization, M, to the magnetic field, B,
in α-RuCl3 (with B up to 5 T ∥ a-axis) plotted against B. Such a plot provides the quadratic nonlinear susceptibility, χ2, via the slope of the blue
straight lines on the low field side. Since at the high field end (B > 3 T) the response is better fit with a cubic term χ3, we show in the nine
panels on the bottom a similar plot but with B2 on the abscissa and the fits in orange straight lines. It is clear from these panels that χ3 when
B ∥ a-axis is positive over a wide temperature range, while χ2 vanishes for T > TN.
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Comparison to traditional nonlinear susceptibility responses
Measurements of the equilibrium third-order susceptibility,
although rare, have been performed in 2D magnets, frustrated
systems, spin glasses, and strongly correlated itinerant meta-
magnets, that is, materials that show a rapid rise of magnetization
at a critical field Bc (see, for example, ref. 23). In a bipartite
antiferromagnet such as FeCl2

24, or even in the classic 2D
magnets, (C2H5NH3)2CuCl4

14, the DC nonlinear susceptibility, χ3,
exhibits a “lambda”-like anomaly just below Tc as expected by the
theory. From below Tc the standard response of χ3 in these
systems is a rapid rise to a large positive value at Tc, above which it
drops with the sign being set by the coordination number25. For
instance, in the paramagnetic phase of the Kagome system
SCGO26, a large positive value of χ3 is seen above Tc, but it reaches
close to zero within 2Tc. In many strongly correlated itinerant
metamagnets27,28, in which an order parameter develops, χ3 peaks
at the ordering temperature and decreases rapidly at T→ 0.
Nonlinear susceptibility measurements in such systems typically
probe higher-order correlations and place strong constraints on
the ground state29,30. These latter systems are three-dimensional
electronically, but can exhibit a strong magnetic anisotropy due to
the g-factor. Nevertheless, in these systems, for all directions it is
sufficient to include only the cubic term and the possibility of a
dual response with a quadratic term has almost never been
discussed (for an exception, see ref. 31). Thus, the features reported
above in α-RuCl3 are in contrast to much of what is known about
nonlinear susceptibilities in magnets. The unmistakable presence
of a large T→ 0 quadratic term makes α-RuCl3 a unique 2D
quantum antiferromagnet.

Comparison to simulations of the J1–J3–K–Γ model
In order to understand the nature of the nonlinear susceptibility in
α-RuCl3, it is possible to consider several approaches based on
different model Hamiltonians employed thus far13,32. Most of
these approaches start with the Kitaev–Heisenberg model
appended with various choices of off-diagonal terms33,34. The
correct choice of the Hamiltonian is still very much a matter of
debate with the sign of the Kitaev term or even the necessity of
the Kitaev term being in question35–37. We focus on this model
and apply two separate calculation tools to study the nonlinear
susceptibilities for α-RuCl3: (a) we use CMC simulations with the

model Hamiltonian

H ¼ P

hijiγ
½J1Si � Sj þ KSγi S

γ
j þ ΓðSαi Sβj þ Sβi S

α
j Þ�

þ P

hhhijiii
J3Si � Sj � gμBB �P

i
Si

(2)

This so-called J1–J3–K–Γ model is considered one of the the
most successful efforts in modeling α-RuCl3

32. (b) We employ
exact diagonalization (ED) methods with slight adjustment on
parameters as in ref. 38. For (a), although quantum fluctuations are
expected to be strong for such spin-1/2 systems, the fact that the
magnet develops a long-range antiferromagnetic order justifies
the classical spin approximation, as a first step to understanding
the magnetic properties of the ordered phase. For (b), the choice
is based on the recognition that it reproduces the magnetization
isotherms to high fields very well.
With the CMC simulations we reproduce the phase transition to

the so-called zig-zag order at Tc ≈ 0.11 K, where K is the dominant
Kitaev exchange constant, with the other parameter values
normalized to K taken as Γ= 0.5, J1= 0.036, J3= 0.035, ga= gb
= 2.3, and gc= 1.339,40. Our calculations of the linear susceptibility
χ1 based on the Monte Carlo data, as shown in Fig. 4 (top panel),
shows a broad bump near the critical temperature, a feature that
is qualitatively consistent with the experiment (Fig. 3a). However,
in stark contrast to the experimental data, our simulations find a
positive and significant χ2 only in the vicinity of Tc (Fig. 4 -middle
panel). Our finding of a vanishing χ2 at very low temperatures in
the zig-zag phase is, in fact, consistent with an emergent time-
reversal symmetry of the low T-ordered state. To see this
emergent symmetry, we first note that although there are three
equivalent propagation directions for the zig-zag order, it has
been shown experimentally and theoretically that the ground
state of α-RuCl3 is a single-Q zig-zag. Spins in such single-Q zig-zag
are collinear, with opposite spins sitting on alternating zig-zag
chains of the honeycomb lattice. The total magnetization of such
collinear bipartite antiferromagnetic order is the sum of the two
sublattices: M ¼ ðMA þMBÞ n̂, where n̂ is the collinear spin
direction, and 〈MB〉=− 〈MA〉. Their contributions to the second-
order magnetic susceptibility d

χ2 � hM3i ¼ hM3
Ai þ hM3

Bi þ 3hM2
AMBi þ 3hMAM

2
Bi (3)

cancel each other due to the sublattice symmetry hM3
Ai ¼ �hM3

Bi
and hM2

AMBi ¼ �hMBM2
Ai. The persistence of the quadratic χ2

Fig. 3 Linear and higher-order susceptibilities. Panel (a) shows the linear susceptibility obtained through temperature sweep (black circles)
as well as those obtained from the intercepts of the magnetization isotherms of the χ2 and χ3 analysis such as in Fig. 2 (blue circles). Panel (b)
shows χ2 extracted from the low field quadratic response, from plots such as in Fig. 2, top nine panels. Similarly, panel (c) shows the
temperature dependence of χ3 obtained from plots such as those in Fig. 2, bottom nine panels. A sharp “lambda”-like anomaly is apparent for
χ3 obtained from the high field (3–5 T) response when B ∥ a-axis. The error bars capture the coefficient of determination of the linear fits such
as shown in Fig. 2.
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down to the lowest temperatures in our experiments thus
highlights the unusual nature of the zig-zag order. This intriguing
discrepancy could be due to nontrivial quantum fluctuations in
the ordered state. Another possible scenario is that the nonzero χ2
results from a highly inhomogeneous multidomain zig-zag order
at low temperatures. Indeed, at the interfaces between different
zig-zag domains, the two sublattice collinear spins argument
given above no longer applies and a nonzero χ2 could result from
the complex noncollinear structure at the domain boundaries. Our
experiments also imply that the low-temperature χ2 vanishes at
the critical field B* ≈ 2 T. Interestingly, this critical field B* has
recently been attributed to the so-called Q-flop transition
identified both in neutron diffraction12,21 and terahertz spectro-
scopy41,42. Since the presence of the magnetic field in the ab-
plane breaks the equivalence of the three zig-zag orientations, the
Q-flop transition describes a repopulation of zig-zag domains in
which two energetically unfavorable zig-zag domains are replaced

by the third one. Such a realignment of the zig-zag domains also
significantly reduces the noncollinear spins residing on the
interfaces of different zig-zag order, thus giving rise to a reduced
χ2. Detailed numerical simulations of the Q-flop transition and its
effects on χ2 will be left for a further computational study. The
breaking of the sublattice symmetry, which leads to a nonzero χ2
in the ground state, could also come at the dynamical level, for
example, due to nontrivial quantum fluctuations with noncollinear
high-order spin correlations in the ordered state27. Other
possibilities such as a stacking of the single-Q collinear zig-zag
order along the c-direction that breaks the sublattice symmetry
cannot be ruled out either. Compared with CMC simulations
another intriguing result from our experiments is the persistence
of large χ3 in both high- and low-temperature regimes. The values
of χ3 from CMC simulations approach zero very rapidly above Tc in
contrast to the experimental large and positive values that persist
for temperatures significantly greater than Tc. The low-
temperature discrepancy of χ3 can be attributed to the absence
of quantum fluctuations in CMC.
However, the importance of such fluctuations is borne out in

similar calculations utilizing quantum chemistry methods
discussed below. They are also seen in quantum Monte Carlo
simulations in the pure Kitaev limit by Kamiya et al.43, which
show a persistent positive χ3 down to the lowest temperatures.
In quantum chemistry methods, we use ED of a closely related
Hamiltonian employed in ref. 38, which yields accurate results
for the magnetization isotherms in good agreement with
experimental results at the high field end. The calculated
magnetization isotherms in this approach plotted in a manner
similar to experiments are well fit with a single straight line
(see Fig. S9), implying that only χ3 contributes. The values of χ3
extracted from such calculations are large and positive even at
T= 0 (Fig. 5). Also shown in Fig. 5 is the behavior of the
calculated derivative d2M/dB2, which displays a zero intercept
for all temperatures. This implies that the dual-slope response,
which we attribute to the presence of the complex multidomain
zig-zag order or other sublattice-symmetry breaking mechan-
isms, is not found in the ED calculations. It is worth noting that
the nonzero value of χ3 for T→ 0 is also found in the pure Kitaev
model with quantum Monte Carlo calculations43. In such
calculations, it is possible to secure a crossover of χ3 at a higher
temperature; however, only through the antiferromagnetic
Kitaev interaction. Many calculations32 rule out an antiferro-
magnetic scenario, but our experimental results suggest not to
exclude this possibility.
Moving forward, any viable model for α-RuCl3 must explain the

quadratic contribution to the magnetization in the antiferromag-
netic zig-zag phase evident in our experiments. Further, it also has
to account for the persistence of the large positive values of the
third-order susceptibility for temperatures well above Tc. It might
be that the details of the material parameters will decide the
magnitude and the temperature range over which a positive
nonlinearity is stretched.
In summary, we have presented measurements of the nonlinear

susceptibility in the Kitaev magnet α-RuCl3. Most significantly, our
work has uncovered an anomalous quadratic response of the
magnetization to a field that yields a large positive χ2 in the
ordered state as T→ 0. This behavior is absent when B ∥ c-axis,
suggesting a strong 2D nature of the order parameter. This
anisotropy as well as the measured anisotropy of χ3 both above
and below Tc can serve as future characterization tools for pinning
down specific models for proximate Kitaev materials. In addition,
our observation of extended positive behavior of χ3 up to 50 K is
consistent with previous circumstantial evidence that the Kitaev-
type behavior with associated excitations persists up to fairly large
temperatures T ≈ 60 K≫ Tc

6,10. The low field crossover, that is, the
anomalous response with a quadratic term at low fields does not
have to be confined to α-RuCl3 and the generality of its presence

Fig. 4 CMC simulations. This figure shows the temperature
dependence of the linear and nonlinear susceptibilities obtained
in Monte Carlo calculations, for B ∥ a-axis. χ2 (middle panel) rises
rapidly to positive values at TC reaches a maximum and drops
sharply again below TC. This latter feature is in sharp contrast to
the experimental results where the large positive χ2 persists to the
lowest temperatures measured. Similar results in contrast to the
experiment are obtained for the behavior of χ3. It also attains a
positive value below T ≈ 0.11 (in units of K1), reaches a peak value
near TN, and rapidly decreases at lower temperatures (lower panel).
Note that y-axis scale is arbitrary.
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in Kitaev or other spin liquid compounds should be established.
Furthermore, our results could place constraints on models that
attempt to explain experimental observations in α-RuCl3 and
similar compounds outside the realm of Kitaev physics35,44. Is the
anomalous χ2 and the extended positive χ3 a natural consequence
of Kitaev- type models when quantum fluctuations are correctly
accounted for or is it a peculiarity of α-RuCl3

45? We note that the
conditions to approach pure Kitaev without the nuisance of
magnetic order experimentally are fairly easy to reach—the
zig-zag order is destroyed in α-RuCl3 at relatively low pressures
of ≈1 GPa46,47. Equally important to carry this work forward will be
attempts to predict an in-plane anisotropy of the nonlinear
response in a quantitative manner, followed by further detailed
experimental work in this regard.

METHODS
Materials and experiments
Our measurements were performed on high-quality single crystals similar
to those used for recent linear magnetometry measurements13. A
Quantum Design Magnetic Property Measurement System SQUID mag-
netometer capable of reaching 5 T was employed to obtain magnetization
isotherms in the temperature range 2–300 K.

Simulations
CMC as well as quantum chemistry-based ED calculations of the linear and
nonlinear magnetic response in the K–H–Γ model32 were performed using
available packages on a supercomputer.

DATA AVAILABILITY
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.
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