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Straintronics with van der Waals materials
Feng Miao 1✉, Shi-Jun Liang1 and Bin Cheng 1,2✉

With the outstanding mechanical properties, van der Waals (vdW) materials have attracted extensive attention in the research of
straintronics in the past decade. In this perspective, we first review the recent progresses of the straintronics with vdW materials
based on three different lattice deformation modes, i.e., in-plane strain, out-of-plane strain, and heterostrain. Then we discuss the
current technique challenges in this field, and finally provide our perspectives on future research directions for both fundamental
physics and electronic applications.
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Tuning electronic properties of materials lies at the heart of
modern electronics. Strain engineering, as an efficient strategy to
tune the electronic properties of materials and explore new
quantum states in condensed matter physics, gives rise to an
emerging research field referred as “straintronics”. In the past few
years, straintronics with van der Waals (vdW) materials has
attracted lots of attention1–11. VdW materials usually possess
extraordinary mechanical properties, such as large anisotropic
compressibility and Young’s modulus, providing a powerful knob
for both exploring novel quantum states and developing new
device functionalities based on strain engineering. In light of the
layered structure, the strains acting on vdW materials are usually
classified into in-plane type and out-of-plane type (Fig. 1), which
are achieved by stretching the sample along the two-dimensional
(2D) plane and compressing the sample perpendicularly to the 2D
plane, respectively. Furthermore, stacking vdW materials into
vertical heterostructures leads to a new type of strain engineering,
i.e., heterostrain. Here, we briefly review the recent progresses of
straintronics with vdW materials according to different modes of
lattice deformation, and share our perspectives on future research
directions in this field.
As the mostly studied type of strain on vdW materials, in-plane

strain has been widely utilized to engineer the electronic band
structure12–16 through changing the covalent bond lengths and
angles within individual 2D layer. Especially, the band gap
modification controlled by in-plane strain has been first proposed
in graphene17, and then achieved in transition metal dichalco-
genides (TMDs)18, black phosphorous19, etc. Besides, the deforma-
tion of in-plane lattice can also modulate the intralayer exchange
energy20 and spin–orbit coupling (SOC)21, enabling the strain-
assisted transition between different magnetic states in the vdW
magnets22. One recent example is ultra-sensitive magnetization
reversal assisted by in-plane strain in Fe2GeTe3

23, which indicates
an alternative way to realize low-power magnetization switching
in spintronic devices. In addition, transition from ferromagnetic
state to antiferromagnetic state under in-plane strain in mono-
layer CrI3 is also predicted24,25, which requires more experimental
efforts in the future. Another degree of freedom that could be
adjusted by in-plane strain is the symmetry of crystal lattices.
Especially, the rotational symmetry of vdW materials could be
lowered if the in-plane strain is anisotropic, providing a unique
approach to create the Berry curvature dipole and current induced
magnetization in vdW materials with three-fold rotational

symmetry, such as MoS2
26, BiTeI27, etc. Moreover, in-plane strain

could alter the topology of the quantum states that is correlated
to the rotational symmetry, enabling the topological switching in
vdW topological materials. At the current stage, vdW topological
materials that could be investigated by applying in-plane strain
include anomalous quantum Hall insulators such as MnBi2Te4

28

and magnetic twisted bilayer graphene29,30, quantum spin Hall
insulator such as undoped monolayer WTe2

31, and 2D topological
crystalline insulators such as monolayer IV–VI semiconductors32.
Finally, in-plain strain could significantly modify the electronic
correlation effects, resulting in metal-to-insulator transition,
modulating the charge-density-wave, and tuning superconduct-
ing properties, etc. In particular, uniaxial in-plane strain has been
proved to be an effective tool to explore the superconducting
pairing symmetry33, which could be utilized in vdW super-
conductors such as twisted bilayer graphene34, twisted double
bilayer graphene35, monolayer NbSe2

36, doped monolayer WTe2
37,

monolayer Fe(Te,Se)38, and monolayer Bi2Sr2CaCu2O8+δ
39,40.

Compared to intralayer coupling, the interlayer coupling in vdW
materials is relatively weak due to its vdW type. Many physical
properties sensitive to the interlayer spacing have been engi-
neered via the out-of-plane strain41. For example, out-of-plane
strain can introduce positive piezoconductive effect in few-layer
graphene, which is inaccessible through in-plane strain engineer-
ing42, and enhance the electrostatic potential from the substrate
in graphene/hBN heterostructures, enabling the dynamical tuning
of the band structure43. Moreover, the reduction of interlayer
spacing induced by out-of-plane strain in magic-angle twisted
bilayer graphene successfully varies the interlayer hopping
energy, leading to the shift of the magic angle for the
superconducting and correlated insulating states44. Other inter-
layer couplings that could be effectively modified by out-of-plane
strain include interlayer exchange energy, which controls the
interlayer magnetic order in few-layer CrI3

45,46, and interlayer
exciton binding energy that determines the excitonic/optoelec-
tronic behaviors47. Currently, the setup for applying out-of-plane
strain on the vdW materials and heterostructures has already been
well established. The future focus of out-of-plane strain engineer-
ing on vdW materials is twofold: exploring new states that are
absent in ambient pressure, and understanding the mechanisms
of novel interlayer effects. Here, examples of emergent interlayer
effects include proximity spin–orbit coupling in graphene/TMDs
heterostructures48,49, in-plane orbital effect in twisted double
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bilayer graphene50, unconventional ferroelectricity in moiré
heterostructures51,52, etc.
As a ubiquitous type of strain in vdW heterostructures,

heterostrain arises when the adjacent 2D layers have unequal
in-plane strains53–57. On one hand, heterostrain inherits certain
characteristics of in-plane strain, such as the capability of tuning
intralayer hopping/exchange energy and breaking rotational
symmetry. On the other hand, heterostrain also possesses many
features similar to interlayer strain, since heterostrain could
modulate the interlayer coupling by altering the relative
displacement of the adjacent layers. Notably, the relative
interlayer displacement can adjust the lattice mismatch of the
adjacent layers, enabling the design of diverse moiré patterns by
engineering the heterostrain. This moiré engineering promises a
versatile platform for the exploration of correlated electronics and
photonics in not only 2D moiré systems, but also one-dimensional
moiré superlattices in twisted bilayer graphene or TMDs58,59.
Currently, heterostrain in vdW heterostructures is mainly gener-
ated by the inevitable thermal relaxation during the layer-stacking
process, which leads to inhomogeneous and uncontrollable strain
distribution. Such disorder of heterostrain distribution not only
hinders the experimental investigation on the role of heterostrain
engineering on correlated electronic behaviors in twisted bilayer
graphene and TMDs, but also obstructs the extension of
heterostrain engineering to other types of vdW heterostructures.
To that end, developing new techniques to fabricate uniform and
designable heterostrain in vdW heterostructures is one of the
major challenges.
Another key challenge in this field is to develop fast and non-

invasive methods to quantitatively characterize various types of
strains in vdW materials, either naturally occurring or engineered.

Compared to transmission electron microscopes (TEM) or scan-
ning tunneling microscopy (STM), optical techniques such as
Raman spectroscopy could provide more efficient and mild
strategies, and have been widely used in characterizing in-plane
strain in monolayer graphene60,61 and TMDs62. Therefore, extend-
ing those optical measurement techniques to the characterization
of in-plane strain in more vdW materials and heterostrain in vdW
heterostructures is urgently required.
To sum up, strain engineering provides powerful means for

tailoring quantum and topological properties in vdW materials by
directly modulating the interatomic distances and rotational
symmetry. Meanwhile, the emergence of thousands of new vdW
materials and heterostructures provides tremendous opportu-
nities for the research of straintronics. Those materials that could
be immediately investigated include vdW semiconductors for
band gap engineering and piezoconductive/piezoelectric effects,
heterostructures consisting of vdW semiconductors for excitonics/
optoelectronics, twisted bilayer graphene, or TMDs for moire
engineering and correlated electronics/superconductivity, vdW
magnetic materials for magnetization switching, vdW topological
materials for topological switching, etc. Aside from the motiva-
tions of fundamental researches, other targets could be to
develop new types of strain-assisted device functionality, such
as data sensing based on excitonics/optoelectronics, logic
operation based on band engineering and topological switching,
data storing and computing based on magnetization switching,
and eventually achieve strain-assisted in-sensor memory and in-
sensor computing devices desirable for applications such as e-
textiles, e-tattoo, etc., in flexible electronics.

Fig. 1 Summary of straintronics with vdW materials. The strain engineering on vdW materials can be classified into in-plane strain, out-of-
plane strain, and heterostrain. Related directions for the future research in this field are proposed.
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