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Gapless quantum spin liquid in a honeycomb Γ magnet
Qiang Luo 1,2, Jize Zhao 3✉, Hae-Young Kee 2,4 and Xiaoqun Wang 5,6✉

A family of spin–orbit coupled honeycomb Mott insulators offers a playground to search for quantum spin liquids (QSLs) via bond-
dependent interactions. In candidate materials, a symmetric off-diagonal Γ term, close cousin of Kitaev interaction, has emerged as
another source of frustration that is essential for complete understanding of these systems. However, the ground state of
honeycomb Γmodel remains elusive, with a suggested zigzag magnetic order. Here we attempt to resolve the puzzle by perturbing
the Γ region with a staggered Heisenberg interaction which favours the zigzag ordering. Despite such favour, we find a wide
disordered region inclusive of the Γ limit in the phase diagram. Further, this phase exhibits a vanishing energy gap, a collapse of
excitation spectrum, and a logarithmic entanglement entropy scaling on long cylinders, indicating a gapless QSL. Other quantities
such as plaquette-plaquette correlation are also discussed.
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INTRODUCTION
The ongoing search for exotic magnetic states in highly frustrated
antiferromagnets1–6 has been extended to a new class of correlated
materials with a two-dimensional honeycomb structure7–10 and its
three-dimensional variants11. It is suggested that bond-dependent
interactions could be realized in the spin–orbit coupled Mott
insulators with the aforementioned lattice geometry12. In particular,
the Kitaev honeycomb model exhibits a novel Kitaev quantum spin
liquid (QSL), which hosts fractionalized Majorana fermions and flux
excitations13. Realization of Kitaev interaction in real materials was
first proposed in iridates14–16, and then turned toward α-RuCl3 in
which Ru3+ ions are arranged in a honeycomb lattice and carry
effective spin-1/2 particles7,9. Although α-RuCl3 displays long-range
zigzag magnetic order at low temperature17–22, it is argued to be
proximate to the Kitaev QSL owing to the broad continuum of
magnetic excitations identified in Raman scattering23,24 and
inelastic neutron scattering9,25–27.
In spite of massive research efforts, it has been challenging to

determine exchange parameters of the proposed spin Hamilto-
nian for α-RuCl3 (see refs. 28,29 and references therein). However,
there is a broad consensus on a sizable off-diagonal Γ interac-
tion30,31, which is antiferromagnetic (AFM) and is potentially
comparable to the celebrated Kitaev interaction26,32,33. Crucially, it
is shown that the Γ interaction could help enhance the mass gap
of Majorana fermions34 and is responsible for the strongly
anisotropic responses to the magnetic field observed in α-RuCl3
provided that the Landé g-factor anisotropy is modest28,30,35. In
contrast to the Kitaev model13, analytical solution of the
honeycomb Γ model has not been found yet36. Previous classical
studies have demonstrated that its ground state is a classical spin
liquid37 followed by a flux-ordered spin liquid, which is stabilized
in a finite temperature window38. Given the infinite classical
ground-state degeneracy37, determining the precise quantum
nature of Γ model is nontrivial, and existing numerical works have
already led to conflicting results. Parallel works by exact
diagonalization39 and density-matrix renormalization group
(DMRG) study of a cylinder with a width of three unit cells40 both
claim that the ground state is a nonmagnetic phase. A variational

Monte Carlo simulation, on the other hand, suggests that it is a
zigzag order41. Furthermore, a recent study proposes that it is a
nematic paramagnet that spontaneously breaks the lattice
rotational symmetry42.
In this work, we study a model which consists of the Γ term and

of a staggered Heisenberg (~J) interaction along the bonds, dubbed
the bond-modulated~J–Γ model (see Eq. 1). Depending on the sign
of ~J, it could either favor the zigzag order (~J > 0) or stripy order
(~J < 0). If the ground state of Γ model is a zigzag ordered phase,
then the zigzag order protruding from the pure Γ limit should
compete with and survive up to a finite ferromagnetic ~J
interaction. Otherwise, there will be an intermediate phase
sandwiched between the two magnetically ordered states. Thus,
this model works as a virtuous arena to clarify the debates by
unfolding the competing states, although it is not a description of
any particular material. By employing the DMRG method on both
finite cylinders with circumferences of up to 10 sites and C3-
symmetric hexagonal clusters43,44, we identify a disordered state
in between. This phase manifests characters of a gapless QSL
including a dense excitation spectrum, logarithmic entanglement
entropy scaling, and short-range plaquette–plaquette correlation.
The pure Γ limit belongs to this QSL and is separated from the
zigzag order by a first-order transition.

RESULTS
Model
The Hamiltonian of the bond-modulated ~J–Γ model reads

H ¼ ~J
X
hijikγ

ηγSi � Sj þ Γ
X
hijikγ

ðSαi Sβj þ Sβi S
α
j Þ; (1)

where Sγi (γ = x, y, z) is the γ-component of a spin-1/2 operator at
site i, and α and β are the two other bonds on a honeycomb
lattice. ηγ= 1 for the bond 〈ij〉γ along the horizontal direction and
equals to −1 otherwise (see Fig. 1). ~J and Γ are parameterized
using ϑ∈ [0, π] so as to ~J ¼ cos ϑ and Γ ¼ sinϑ ð� 0Þ.
In what follows, we carry out a hierarchical study of Eq. (1) to

provide multi-faceted evidences of the gapless QSL nature of Γ
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magnet. We start by mapping out the classical phase diagram via
the parallel tempering Monte Carlo simulation45,46, and conclude
that the ground state of Γ model sits exactly at the classical
transition point on the verge of the zigzag phase. This makes
sense because the zigzag ordering belongs to the macroscopic
ground-state manifold of the classical Γ model37. Next, we show
the energy reduction and sublattice magnetization within the
linear spin-wave analysis (for a review, see ref. 47). Afterwards, we
present a quantum phase diagram obtained by large-scale DMRG
calculations on various distinct cluster geometries.

Classical phase diagram
Figure 2 shows the classical phase diagram of Eq. (1) obtained by
Monte Carlo simulations45,46, coincide exactly with the subsequent
results of energy optimization method (see "Methods” section).
Due to the bond-modulated ηγ-term, the conventional zigzag and
stripy orderings perpendicular to the Z bonds are induced when
ϑ/π is 0 or 1, respectively. By introducing AFM Γ interaction, the
ground state becomes more competitive, triggering the possibility
of other magnetic orderings in the moderate interaction regime.
The ground-state energy eg= Eg/(NS

2) (Eg is the total energy) is

shown in Fig. 2a, while selected spin configurations of the
corresponding phases are depicted in Fig. 2b–d. In the phase
diagram, the leftmost is the zigzag order with ezzg ¼ �ð2Γþ 3~JÞ=2
and its magnetic moment direction is n ½111�. The rightmost is
occupied by the stripy order with estg ¼ �ðΓ� 3~JÞ=2. Its spins are
perpendicular to n ½111�, but could vary freely in the plane
spanned by ea ½112� and eb ½110�, showing an emergent continuous
symmetry. Further, an extensive intermediate region appears in
between. It is dominated by a so-called mixed phase in which the
AFM order and two twining zigzag orders are degenerate with
energy emixed

g ¼ �ð2Γ� ~JÞ=2. Here, twining zigzag orders refer to
the other two zigzag orders whose spin orientations are different
from the one shown in Fig. 2b (for spin configurations, see
Supplementary Note 1). The zigzag–mixed transition takes place
exactly at ϑclt;l=π ¼ 0:5, reflecting the classical spin liquid of the Γ

model37. There is no direct transition between the mixed phase
and the stripy phase expected to occur at ϑclt;r=π = 1� 1

π atan 2 ≈
0.6476. Instead, a noncollinear phase (see Fig. 2d) with eg =

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~J
2 þ Γ2=16

q
− Γ=

ffiffiffi
2

p
appears in a narrow window of ϑ/π that is

less than 0.02, see inset of Fig. 2a.

Spin-wave theory
To understand the role played by quantum fluctuations and for
the sake of comparison with the DMRG results later, we have
performed the linear spin-wave calculation47 based on the
quadratic Hamiltonian H ¼ Eg½S2 ! SðSþ 1Þ� þ S

2

P
qψ

y
qMqψq,

where ψy
q ¼ ðayq; byq; � � � ; a�q; b�q; � � � Þ is the Nambu spinor, and

Mq is a 2 × 2 block matrix (see “Methods” section and
Supplementary Note 2). There are four spin-wave dispersion
branches ωqυ (υ = 1–4) for the four-sublattice (ns= 4) zigzag and
stripy orderings. In the zigzag order, there exists a magnon gap Δ
at M point in the Brillouin zone (see inset of Fig. 3a). When
approaching Γ limit, ~J=Γ � 1, the lowest magnon branch is

softened and the gap vanishes as Δ=Γ ’
ffiffiffiffi
30

p
3

ffiffiffiffiffiffiffi
~J=Γ

q
. Therefore, the

zigzag order could only survive for AFM ~J (i.e., ϑ/π < 0.50), beyond
which the magnon branch becomes imaginary and should be
terminated by a transition.
The magnon spectra for the representative stripy order with ϑ/

π= 0.75 are shown in Fig. 3a where the wave vector q is
parameterized in units of (h, k) as q = ð 2πa1 h; 2πa2 kÞ

15. The spectra are
symmetric with the middle of the Γ–M line, so the Γ and M points
are equivalent. Due to the emergent continuous symmetry of the
classical stripy order, the magnon spectra are gapless. In the
presence of quantum fluctuations, however, the degeneracy is
lifted via order-by-disorder mechanism48, selecting two of them
that are either parallel or antiparallel to eb axis (see inset of Fig. 3b).
To illustrate it, we firstly define the quantum energy correction

ΔEðϕÞ ¼ Sestg þ S
2ns

P
υ

R d2q
ð2πÞ2 ωqυðϕÞ, where ϕ is the angle in the ea-eb plane49. For ϑ/π= 0.75, which is deep in the stripy order, we

show ΔE(ϕ) vs. ϕ in the inset of Fig. 3b. The energy correction has
its minima at ϕ= π/2 or 3π/2, corresponding to the two mostly
favored configurations at the quantum level. The energy barrier
δE, defined as the energy difference between ΔE(0) and ΔE(π/2), is
approximately 0.0175. The main panel of Fig. 3b shows energy
barrier at different ϑ/π in the stripy order. When ϑ/π= 1.00 the
energy barrier is zero, consistent with the gapless Goldstone
modes thereof. Beyond that, the energy barrier is finite, indicating
that the stripy order should also be twofold degenerate in the
quantum case.
Due to the magnon instabilities of zigzag and stripy orderings,

they could only exist in their classically allowed regions.

Fig. 1 Lattice geometry. Illustration of an XC6 cylinder on a
honeycomb lattice. ηγ is +1 (−1) for horizontal (zigzag) bonds. The
insets are (left) the unit cell for the zigzag/stripy order with a1= 3
and a2 ¼

ffiffiffi
3

p
, (middle) the hexagonal plaquette operator Ŵp with its

six sites enumerated, and (right) the X (red), Y (green), and Z
(blue) bonds.

Fig. 2 Classical phase diagram. a Monte Carlo simulations of
classical energy eg under three XC clusters of 16 × 16 (red triangle),
24 × 24 (green square), and 32 × 32 (blue circle). The solid black line
stands for the exact solution given by the energy optimization
method. The classical phase diagram is then determined by kinks in
energy curves. Inset: Zoom in of energy curves near ϑclt;r=π � 0:6476.
A noncollinear (NCL) phase appears in a narrow window of 0.6368 <
ϑ/π < 0.6543. b, c Depict the zigzag order and stripy order,
respectively. d A NCL phase with a unit cell of 4 × 2.
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The corresponding phase transitions could be illuminated by their
sublattice magnetization. It is observed that magnetization of the
zigzag order is almost saturated when ϑ/π < 0.4. As ϑ/π
approaches 0.5, it undergoes a considerable suppression and
the lowest branch of the magnetization nearly vanishes at ϑclt;l=π ¼
0:50 (see Supplementary Fig. 5). The stripy order is more stable
and its magnetization only has a small reduction at
ϑclt;r=π � 0:6476. However, spin-wave energy in the mixed phase,
say AFM order, is overwhelmingly higher than its neighbors. It
thus implies that the genuine phase in the intermediate region
should be different from its classical counterpart, imposing
restrictions on the applicability of the spin-wave analysis.

Intervening magnetically disordered state
As discussed, the spin-wave calculation fails in the intermediate
regime, hence the quantum study is necessary. We have
performed the standard DMRG computation on three XC clusters
of 12 × 6 (n= 6), 16 × 8 (n= 8), and 20 × 10 (n= 10) and compute
the ground-state energy eg= Eg/N which is shown in Fig. 4. The
energy curves in the middle are very flat, while they have two
sharp downwarping when away from the middle region, leading
to two well-marked kinks that are signals of first-order transitions.
These discontinuous phase transitions could also be advocated by

the entanglement entropy, which has a trend to jump as the
system size is increased (see Supplementary Figs. 9 and 11).
Therefore, the DMRG result supports an intermediate region that
impedes a direct transition between the zigzag and stripy
phases50,51. For comparison, we also depict the spin-wave energy
of the zigzag order (green belt) and stripy order (blue belt) in Fig.
4. It is clearly found that there is a further energy reduction of the
zigzag order beyond the linear approximation, in accord with the
dramatic suppression of magnetic order parameter which will be
clarified later. Strikingly, as shown in the inset of Fig. 4, the energy
eg of Γ model (ϑ/π= 0.5) exhibits a nonmonotonic scaling
behavior52, indicative of a possible periodicity as revealed in the
Kitaev model13. At each fixed circumference n, the energy is
linearly decreasing with length Lx of the cylinder. By varying the
circumference n from 4 to 10, the extrapolated energy has an
oscillation in a window of −0.357 < eg <−0.352. Therefore, we
estimate that the energy of Γ model is eg=−0.354(3) in the
thermodynamic limit.
In order to unveil the nature of the intermediate region and to

pin down the precise phase boundaries, we resort to the magnetic
order parameter, which is defined as MNðQÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNðQÞ=N

p
where

SNðQÞ is the magnetic structure factor with Q being the ordering
wavevector (see “Methods” section for definition). The zigzag
phase has a peak at M point in the Brillouin zone, while the stripy
phase possesses both peaks at M and M0 points. Crucially,
magnetic structure factor of the intermediate region is diffuse
with a soft peak. Figure 5a displays order parameters MN(Q) of the
zigzag and stripy phases on four distinct XC clusters with a
circumference ranging from 4 to 10. Akin to their spin-wave
results, magnetization of the zigzag and stripy phases exhibits
maxima at ϑ/π ≈ 0.25 and 0.75, respectively. This implies that these
magnetic orderings are most stable, when Γ term is approximately
of equal strength to the Heisenberg interaction. Away from these
points, quantum fluctuations are enhanced so that the magnetic
ordering in the intermediate region is dramatically suppressed,
followed by an algebraically decay with the circumference n (see
Fig. 5c, d). After a careful inspection of the finite-size effect, we
conclude that the magnetization will disappear eventually as the
best fitting gives M→ 0.0 for Γ model (ϑ/π= 0.5).
The entire quantum phase diagram of Eq. (1) is presented in Fig.

5b. In addition to the conventional zigzag and stripy orderings,
there is a disordered phase, which is later interpreted as a QSL, is
stabilized in a large region between ϑt,l and ϑt,r with ϑt,l/π≃ 0.50
and ϑt,r/π= 0.66(1). It should be noticed that even though the
bond-modulated Heisenberg interaction has a strong tendency to
favor the zigzag ordering, the ground state of Γ model remains
disordered albeit the transition point ϑt,l is so close to π/2. A more
elaborative study on hexagonal clusters of N = 24 and 32 suggests
that ϑt,l/π= 0.498(1) (see Supplementary Fig. 12). For other less

Fig. 3 Spin-wave analysis of the stripy phase. a Four branches of the magnon spectra ωqυ in the stripy phase where ϑ/π= 0.75. The path
along the symmetry directions in the momentum space is depicted in the inset. b Energy barrier δE between the stripy phases of different
orientations in the classically allowed zone. Inset: Quantum energy correction ΔE(ϕ) vs angle ϕ suited at the ea-eb plane. The parameter is fixed
to ϑ/π= 0.75, which is marked as a black hexagram in the main panel.

Fig. 4 Quantum ground-state energy. DMRG result of eg under
three XC clusters where the circumferences n are 6 (red triangle), 8
(green diamond), and 10 (blue circle). The thick belts are the energy
of the zigzag order (green belt) and stripy order (blue belt) obtained
by the linear spin-wave theory (LSWT). Inset: Extrapolation of energy
for Γ model. For each circumferences n the energy is linearly
decreasing with 1/N and the special cases (Lx/Ly= 2) are marked by
filled symbols. The extrapolated values fall in the purple band
centered at −0.354(3).
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sensitive perturbations such as the third-nearest-neighbor Heisen-
berg (J3) interaction, the zigzag order could only exist for J3/Γ >
0.075 (see Supplementary Fig. 20). While for another off-diagonal Γ0

interaction, the zigzag order is generated at Γ0=Γ<� 0:01553.
These, in turn, confirm the robust nonmagnetic character of Γ
model notwithstanding the aggressive zigzag ordering.

Gapless excitation and entropy scaling
Next, we investigate the nature of the disordered phase by
calculating the excitation gap and entanglement entropy. For this
purpose, we target the first sixteen energy states on a 24-site
hexagonal cluster by the DMRG method (see “Methods” section),
and the first fifteen low-lying excitation gaps, Δυ= Eυ− Eg (υ=
1−15), is shown in Fig. 6a. It can be seen that Δ1 is vanishing small
while Δ2 survives in the zigzag/stripy phases, indicative of the
doubly degenerate ground states predicted by the semi-classical
analysis. In the intermediate region, the ground state is unique
and the density of state in the low-energy spectrum is higher than
its neighbors. Such a collapse of excitation gaps could be
interpreted as a sign of gapless spectrum54,55. To check the
behavior of the lowest excitation gap as N is varied, we focus on
four selected points at ϑ/π = 0.40, 0.50, 0.60, and 0.80, under
hexagonal cluster of N= 18, 24, and 32. As can be seen from Table 1,
the lowest excitation gap Δ2 of the zigzag phase (ϑ/π= 0.40) and
stripy phase (ϑ/π= 0.80) is considerably large and slightly grows
with the increasing of system size. For the intermediate phase,
however, the lowest excitation gap Δ1 at ϑ/π = 0.50 and 0.60
declines quickly when N changes from 18 to 32, indicating that the
excitation gap tends to close eventually.
We then turn to XC cylinders which enable us to calculate the

excitation gaps on large system sizes. Above all, we calculate the
first fifteen excitation gaps on a XC cluster of 8 × 4 and we find
that there is unlikely a big ground-state degeneracy in the
intermediate region since the gap increases gradually without
abrupt change (see Supplementary Fig. 8). Therefore, we only
present the two lowest excitation gaps on three larger XC clusters
up to 200 sites (see Fig. 6b). The gaps in the middle are rather
small, indicative of a gapless region. We also take a closer look of
the gaps at ϑ/π= 0.50, where different YC clusters are also
adopted. For either XC or YC cluster, Δ1,2 show a decreasing trend
with the increasing of circumference n. In spite of the oscillation in
value, they appear to vanish within a reasonable round-off,

showing the gaplessness of the excitation spectrum in Γ model
(see Supplementary Fig. 13). As a final consistency check for the
gapless nature, we calculate the excitation gap on cylinder
geometry of 2 × Lx × Ly (for geometry, see inset of Fig. 7b) with
N= 2LxLy sites in total. Although the three-leg cylinder (Ly= 3) is
gapped, excitation gap on cylinder of Ly= 4 decreases quickly
with Lx and is expected to disappear as Lx→∞ (see Supplemen-
tary Fig. 14). Such a strong size-dependent behavior of the
excitation gap is typical of gapless systems.
The entanglement entropy has appeared as a versatile tool in

diagnosing quantum critical systems described by conformal
field theory. In this regard, the von Neumann entanglement

Fig. 5 Magnetic order parameters and quantum phase diagram. aMagnetic order parameters M(Q) for the zigzag order (open symbols) and
stripy order (filled symbols) with Q=M and/or M0 under four finite XC clusters. The thick gray line shows the magnetic order in the
thermodynamic limit. b Quantum phase diagram of the bond-modulated ~J–Γ model. c, d Extrapolations of the maximal peaks M throughout
the reciprocal space. c Linearly extrapolation for Γ model with ϑ/π= 0.50. dϑ/π = 0.55 (red triangle), 0.60 (green diamond), and 0.65 (blue
circle), respectively.

Fig. 6 Excitation gaps. a The first fifteen excitation gaps Δυ with
degeneracy for a N= 24 hexagonal cluster. The zigzag and stripy
phases are doubly degenerate while the ground state of the QSL in
the middle is unique. b The two lowest excitation gaps Δ1 (open
symbols) and Δ2 (filled symbols) at three XC clusters where the
circumferences n are 6 (red triangle), 8 (green diamond), and 10
(blue circle). The thick belt is the extrapolated bulk gap.
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entropy is introduced and it is defined as SðlÞ ¼ �Trðρln ρÞ
where ρ is the reduced density matrix of a subregion with length
l56. Figure 7a shows the representative behavior of SðlÞ in the Γ
model on a 2 × 16 × 4 cylinder, which contains eight sites along
each column. When l is a multiply of 8, it corresponds to a neat
edge-cutting where the two halves have smooth margins. The
entanglement entropy is minimized and forms a lower branch as
marked by solid symbols. Otherwise the subsystems will be more
entangled, gaining extra entropy over the lower bound. There-
fore, we shall fix l= N/2 to extract the central charge upon a
series of finite cylinders. For such a critical system, it is
recognized that the entanglement entropy scaling takes the
form of SvN � SðN=2Þ ¼ c

6 ln ð 2Lxπ Þ þ c0 where c is the central
charge and c0 is a non-universal constant56. In Fig. 7b, we shows
the logarithmic fitting of SvN for cylinders of length Lx = 8, 16, 24,
and 32. It is found that SvN obeys the formula well with
the fitting constants ðc; c0Þ � ð2:92; 1:09Þ, showing that the
central charge is close to 3. An alternative fitting of the lowest
branch of the entropy on each cylinder also demonstrates that

c ≃ 3 (see Supplementary Fig. 16). By contrast, for the three-leg
cylinder the entropy is extremely insensitive to the length
(see Fig. 7b), revealing a central charge of 0. The fact that the
central charge depends highly on the width (Ly) of cylinders may
imply the existence of spinon Fermi surface (SFS). In this
scenario, the pockets of SFS might be detected by different cuts
in the Brillouin zone, and thus the central charge could vary for
different Ly. We note in passing that the central charge argument
has also been used to explore the possible SFS in the field-
induced gapless QSL in the Kitaev model57–59. Another possibility
is a Dirac QSL6,60 with three Dirac Fermions around M points,
which is potentially consistent with the central charge 3 on four-
leg cylinders. Information of the central charge on wider
cylinders should be helpful to distinguish between the two
scenarios. Regardless of different QSL natures, the vanishing
magnetization and excitation gap in the Γ model, together
with the distinct central charges on cylinders of Ly= 3
(c= 0) and Ly= 4 (c= 3), manifest that its ground state is likely
a gapless QSL.

Flux-like density and plaquette correlation
So far, we have confirmed that there is no magnetic ordering in the
honeycomb Γmodel, yet little is known about the lattice symmetry
breaking. Very recently, there is a proposal of plaquette ordering
stemming from a broken translational symmetry in the classical
Γ model38. It is thus of interest to examine whether there is a
plaquette ordering in the quantum situation. To this end, we study
the hexagonal plaquette operator Ŵp and its correlation. Actually,
Ŵp also has its own merit as it can capture the associated phase
transitions33. The six-body plaquette operator is known as13

Ŵp ¼ 26
Y
i2p

Sγi ¼ 26Sx1S
y
2S

z
3S

x
4S

y
5S

z
6; (2)

which is the product of spin operators on out-going bonds around
a plaquette (see Fig. 1).
Figure 8 a shows the flux-like density hWpi ¼

P
phŴpi=Np where

Np=N/2 is the number of hexagonal plaquette on clusters of N =
24 and 32. Starting from ϑ/π = 0.0, hWpi is zero, followed by a
continuous decrease before arriving at the transition point, ϑ/π≃
0.50. Afterwards, it begins to increase and then surpasses the critical
line to enter into the stripy phase where hWpi> 0. Recalling the
quantum phase diagram shown in Fig. 5b, our result corroborates
that the flux-like density could signal phase transitions. For Γ model

Fig. 7 Entanglement entropy scaling. a Entanglement entropy SðlÞ
of a consecutive segment of length l on a 2 × 16 × 4 cylinder in the Γ
model. The solid symbols of the lowest branch represent the neat
edge-cutting with l being a multiply of 8 (i.e., the number of the sites
along each column). The bipartite entanglement entropy with l= N/
2 is marked as a blue square. b Entanglement entropy scaling on
three-leg cylinders (dashed line) and four-leg cylinders (solid line).
The fitting constants are ðc; c0Þ � ð0:02; 0:85Þ and ðc; c0Þ �
ð2:92; 1:09Þ for Ly = 3 and 4, respectively. The inset shows the
bipartite partition of a four-leg cylinder with equal sites in the left
and right halves.

Fig. 8 Flux-like density and plaquette correlation. a Flux-like
density hWpi and b plaquette order parameter PðQÞ for N = 24 (red
triangular) and 32 (blue circle). The inset exhibits the plaquette
structure factor of Γ model, which has a relatively weak peak at K
point (corner of the Brillouin zone) in the reciprocal space.

Table 1. Lowest excitation gap on hexagonal clusters.

ϑ/π Phases Lowest excitation gap

N= 18 N= 24 N= 32

0.40 Zigzag – 0.63943681 0.73353505

0.50 QSL 0.08821080 0.08656249 0.04009844

0.60 QSL 0.19543027 0.13898662 0.08599835

0.80 Stripy – 0.22834260 0.24451198

The lowest excitation gap at ϑ= 0.40π, 0.50π, 0.60π, and 0.80π on hexagon
clusters of N = 18, 24, and 32. For the zigzag/stripy phase the lowest excitation
gap is Δ2, while for the intermediate region the lowest excitation gap is Δ1.
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we have hWpi ¼ �0:25ð2Þ, which is about a quarter of that in the
Kitaev model13. Based on the plaquette–plaquette correlation
hŴpŴqi, we then introduce the plaquette order parameter
PNpðQÞ via the plaquette structure factor WNpðQÞ38 (see “Methods”
for definition). In Fig. 8b, we show that the QSL phase has a vigorous
peak at Γ point in the reciprocal space but a weaker intensity at
K point, signifying a perceptible plaquette correlation. Nevertheless,
The fact that the strength of PNpðKÞ goes down rapidly suggests
that there is unlikely a plaquette ordering in the region, further
corroborating a QSL without a broken symmetry.

DISCUSSION
Ever since the seminal proposal of the Kitaev interaction in heavy 4d/
5d transition metal oxides12, which triggers the thriving research
direction of Kitaev materials, tremendous efforts have been devoted
to realizing the Kitaev QSL in real materials, yet hampered by the
ineluctable non-Kitaev terms such as the off-diagonal Γ interaction.
Whereas the honeycomb Γ model has drawn enormous attention, its
quantum nature is still under debate. To this end, we introduce a
bond-modulated Heisenberg interaction to check its tendency
towards probable magnetic orderings. For the magnetic phase
diagram of the proposed bond-modulated ~J–Γ model, we find an
intermediate region which is intervened between the zigzag and
stripy phases. Though exhibiting magnetic order at the classical level,
quantum fluctuations suppress such ordering since it acquires a large
energy according to the spin-wave result. In the quantum case, it
turns out to be disordered and is separated from its two neighbors by
first-order transitions. By taking massive numerical efforts on the Γ
model, we are able to confirm the following three subtle physical
issues. (i) The low-energy spectrum is rather dense on a 24-site
hexagonal cluster, and the lowest excitation gap goes down gradually
with the expansion of cluster size. The empirical extrapolation on
large cylinders up to 200 sites gives a vanishing energy gap, in line
with the logarithmic behaviors of entanglement entropy. (ii) The
zigzag magnetic ordering vanishes eventually, consistent with
the suppression of magnetization of the zigzag order by spin-wave
analysis. (iii) In the plaquette structure factor, there is a perceptible
short-range plaquette correlation because of a subleading peak at K
point. These findings strongly corroborate the ground state of Γ
model is a gapless QSL rather than a zigzag order, despite the latter
being close in energy.
We would like to mention that, due to the gapless nature and for

the lack of continuous spin symmetry, it is exceedingly challenging
to capture the fractionalized excitation in the proposed QSL. The
flux insertion method, which pumps fractional particles from one
edge to the other, is usually a promising way to elucidate the
topological characters of the ground state. It is performed by
adiabatically twisting boundary conditions of the Hamiltonian so
that the U(1) symmetry is required. The discrete symmetries of the Γ
model thus inherently hinder this trick. Actually, topological
degeneracy is in general not well-defined for a gapless QSL, as
different gauge sectors are closely connected due to gapless
excitations. Nonetheless, the Kitaev QSL is special because flux Ŵp
is a conserved quantity, allowing for the identification of different
flux sectors by the vison insertion55. Also of note is that a recent
study suggests the existence of a nematicity due to the lattice
rotational symmetry breaking42. We would like to stress that the
symmetry of Γ model itself is discrete and the asymmetrical
boundary condition could cause instability on the landscape of
bond energy, making it hard to determine the nematicity in the
thermodynamic limit. However, the pending lattice nematicity does
not alter our proposal of the QSL, because it could be accompanied
by a broken lattice symmetry as reported in other theoretical
models61,62. Despite such challenges, our work emphasizes on the
inspiring and intractable quantum nature of the Γ model. Notably,
the dominating Γ region could be realized in α-RuCl3 under
compression where the magnitude of Kitaev interaction is small53.

In short, our results provide a significant guidance to further
theoretical and experimental studies on honeycomb magnets.

METHODS
Density matrix renormalization group
In order to check for finite-size effects, we have performed large-scale DMRG
calculations43,44 on three kinds of cluster geometries. Firstly, the frequently
used geometry is a Lx × Ly XCn cluster under cylindrical boundary condition
(see Fig. 1). Here, X indicates the orientation of the cylinder, while n is the
circumference of the cylinder. We consider even circumferences n (=Ly/a0)
ranging from 4 to 10 lattice spacing a0, and use fixed ratio Lx/Ly= 2 unless
stated explicitly otherwise. N= LxLy is the total number of spins. Secondly, we
consider the honeycomb cylinder of 2 × Lx × Ly where Lx (Ly) is the number of
unit cell along e1 ¼ ð ffiffiffi

3
p

; 0Þ (e2 ¼ ð1=2; ffiffiffi
3

p
=2Þ) direction (see the inset of

Fig. 7). Due to the limitation of modern computational capability, we focus
primarily on four-leg cylinders (Ly= 4). The maximal value of Lx is 32, and the
total number of spins N= 2LxLy. Lastly, we also use the C3 symmetric
hexagonal clusters with N = 24 and 32 sites under full periodic boundary
conditions. In all cases, we keep up to m = 3000–5000 states and perform
about 12 sweeps in the calculation, so as to ensure the truncation error is
smaller than 10−6. When targeting the first few low-lying energy levels, we
diagonalize a subspace of a sparse Hermitian matrix iteratively by Davidson
algorithm, with the precision of each eigenvalue maintained at a desired
standard. In addition, all the targeted states are used with an equal weight to
construct the reduced density matrix.
The magnetic order parameter is defined by MNðQÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNðQÞ=N

p
where SNðQÞ ¼

P
αβδαβS

αβ
N ðQÞ is the total static magnetic structure factor,

with

Sαβ
N ðQÞ ¼ 1

N

X
ij

hSαi Sβj ieiQ�ðRi�RjÞ: (3)

Here, Ri is the position of spin and Q is the ordering wavevector. We also
calculate the plaquette–plaquette correlation hŴpŴqi, where Ŵp is the
hexagon plaquette operator (see Eq. 2). Likewise, we define the static
plaquette structure factor

WNp ðQÞ ¼
1
Np

X
pq

hŴpŴqieiQ�ðRp�RqÞ; (4)

where Rp is the central position of each plaquette, and Np= N/2 is the
number of plaquette. To eliminate the strong finite-size effect due to the

identity hðŴpÞ2i = 1, we introduce the plaquette order parameter (see
Supplementary Note 5)

PNp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WNp ðQÞ

Np

s
� 1ffiffiffiffiffiffi

Np
p : (5)

Simulation and energy optimization
We use the parallel tempering Monte Carlo simulation with the heat-bath
algorithm to prevent the possible metastable state at low temperatures45,46.
The simulation is carried out in a temperature range with a hundred of
replicas. The heat-bath algorithm is performed at given temperature,
followed by a so-called thermal replicas, where configuration swaps
between different temperatures are allowed with a probability according to
a detailed balance condition. The simulations are performed on three XC
clusters of 16 × 16, 24 × 24, and 32 × 32, under toroidal boundary condition.
The resulting energy-optimized spin configuration is then served as the

benchmark for the analytical calculation. The classical spin can be written as

Si ¼ S sin θi cosϕi; sin θi sinϕi; cos θið Þ; (6)

where θi∈ [0, π) and ϕi∈ [0, 2π). Taking the zigzag (zz) order and stripy (st)
order for instance, their classical energy are

ezzg ¼ � 1
2
ð3~J þFmaxðθ;ϕÞΓÞ (7)

and

estg ¼ 1
2
ð3~J þ Fminðθ;ϕÞΓÞ; (8)

where the explicit form of the auxiliary function is

Fðθ;ϕÞ ¼ sin2θ sin 2ϕ� sin 2θðsinϕþ cosϕÞ: (9)
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Mathematically, the maximum of Eq. (9) is 2 with ðθ;ϕÞ ¼ ðπ �
atanð ffiffiffi

2
p Þ; π=4Þ or ðθ;ϕÞ ¼ ðatanð ffiffiffi

2
p Þ; 5π=4Þ. This means that the classical

energy of the zigzag phase is ezzg ¼ �ð2Γþ 3~JÞ=2 with the classical
magnetic direction n ¼ ½111�. The mimimum of Eq. (9) is −1, and the
energy of the stripy phase is estg ¼ �ðΓ� 3~JÞ=2. Its moment direction is free
to vary in a plane that is perpendicular to n, indicating an emergent
continuous symmetry in the classical stripy phase. The analytical energy
and spin configurations of the other magnetic phases are shown in
Supplementary Note 1.

Linear spin-wave theory
We summarize the derivation of the spin wave spectra of the zigzag phase,
which is one of the degenerate ground states of the classical Γ model. In
the framework of linear spin-wave theory, the local spin operator Si ¼
Sxi ; S

y
i ; S

z
i

� �
is represented by bosonic creation and annihilation operators ai

and ayi . By virtue of the Holstein-Primakoff transformation, we have

~S
þ
i ’

ffiffiffiffiffi
2S

p
ai; ~S

�
i ’

ffiffiffiffiffi
2S

p
ayi ; ~S

n
i ¼ S� ayi ai: (10)

Here, ~S
n
i � ðS � nÞ is the spin component along the classical ordered

moment n and ~S
±
i � ðSi � eÞ± {½Si � ðn ´ eÞ� are the ladder operators

consisting of the orthogonal spin components, with e being an (arbitrary)
unit vector perpendicular to n and satisfying the right-hand rule47. The
spin operator is thus

Sτ;i ¼
ffiffi
S
2

q
ðai þ ayi Þeþ τ

ffiffi
S
2

q
ð�{ai þ {ayi Þðn ´ eÞ þ τðS� ayi aiÞn (11)

where τ is introduced for classical spin which is either parallel (τ=+1) or
antiparallel (τ=−1) to n. The γ-component of the spin Sγτ;i ¼ Sτ;i � eγ .
For the zigzag phase, we choose the following orthogonal axis, e= [112],

n ´ e ¼ ½110�, and n ¼ ½111�. Because of the four-sublattice (ns = 4) nature,
the magnetic unit cell is taken as the rectangle of the area a1 × a2 with a1=
3a0 and a2 ¼

ffiffiffi
3

p
a0, see Fig. 1. Within the magnetic unit cell, the wave

vector q could be parameterized in units of (h, k) as q = ð 2πa1 h; 2πa2 kÞ
15. In this

notation, M and M0 points in the Brillouin zone could be rewritten as (1, 0)
and (0, 1), respectively. By introducing four flavors of Holstein–Primakoff
bosons and using the Fourier transformation, we arrive at the following
spin-wave Hamiltonian

Hzz
SW ¼ �NSðSþ 1Þezzg þ S

2

X
q

x̂yqĤqx̂q; (12)

where x̂yq ¼ ðayq; byq; cyq; dyq; a�q; b�q; c�q; d�qÞ is a vector of length 2ns and
Ĥq is a 2ns × 2ns matrix of the form

Ĥq ¼
Λ̂q Δ̂q

Δ̂
y
q Λ̂

T
�q

 !
(13)

with

Λ̂q ¼

A Eq 	 Bq
E
q A B
q 	
	 Bq A Eq
B
q 	 E
q A

0BBB@
1CCCA (14)

and

Δ̂q ¼

	 Cq 	 Dq;þ
C

q 	 D


q;þ 	
	 Dq;� 	 Cq

D

q;� 	 C


q 	

0BBB@
1CCCA: (15)

The parameters in Eqs. (14) and (15) are given by

A ¼ 3~J þ 2Γ

Bq ¼ �2ð~J � Γ=3Þϱ�1 cos πk

Cq ¼ ð~J � Γ=3Þϱ2
Dq;τ ¼ 2Γ

3 ðcosπk þ τ
ffiffiffi
3

p
sinπkÞϱ�1

Eq ¼ 2Γ
3 ϱ

2

8>>>>>><>>>>>>:
(16)

where ϱ= eıπh/3. Since B�q ¼ B
q , C�q ¼ C

q , E�q ¼ E
q , and D�q;τ ¼ D


q;�τ , we

hence deduce that Δ̂
y
q ¼ Δ̂q and Λ̂

T
�q ¼ Λ̂

y
q .

The quadratic Hamiltonian Eq. (12) can be diagonalized via a bosonic
Bogoliubov transformation T(q). To preserve the canonical commutation
rules of the bosons, it should satisfy the orthogonality relations

TΣT†= T†ΣT= Σ where Σ= diag(1, −1). The eigenvalues of ΣĤq give the
magnon spectrum ΩðqÞ ¼ diagðωq;1;ωq;2; � � � ;ωq;ns Þ. The spin-wave dis-
persions of other magnetic orderings (including the mixed phase and the
noncollinear phase) are shown in Supplementary Note 2.
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