Abstract
The nematic instability is an undebatable ingredient of the physics of ironbased superconductors. Yet, its origin remains enigmatic as it involves a fermiology with an intricate interplay of lattice, orbital, and spin degrees of freedom. It is well known that thermoelectric transport is an excellent probe for revealing even subtle signatures of instabilities and pertinent fluctuations. In this paper, we report a strong response of the thermoelectric transport properties of two underdoped 1111 ironbased superconductors to a vanishingly small strain. By introducing the strain derivative of the Seebeck and the Nernst coefficients, we provide a description of the nematic order parameter, proving the existence of an anisotropic Peltiertensor beside an anisotropic conductivity tensor. Our measurements reveal that the transport nematic phenomenology is the result of the combined effect of both an anisotropic scattering time and Fermi surface distortions, pointing out that in a realistic description, abreast of the spin fluctuations also the orbital character is a fundamental ingredient. In addition, we show that nematic fluctuations universally relax in a Curie–Weiss fashion above T_{S} in all the elastotransport measurements and we provide evidences that nematicity must be band selective.
Similar content being viewed by others
Introduction
The investigation of nematic orders in solidstate systems has been strongly boosted in recent times by the hypothesis of their intimate link with the emerging unconventional superconductivity in copperbased^{1,2} and specially in ironbased superconductors^{3,4}. In the latter, the nematic order identifies a lowering of the rotational symmetry characterized by a tetragonaltoorthorhombic structural transition, which typically anticipates the formation of a magnetic order with additional signatures of orbital ordering^{3,4}. This crossover of multiple orders generate a "chickenoregg" problem, whose solution is considered a crucial step towards the understanding of the unconventional superconductivity^{3}.
One of the most successful experimental approach to this dilemma is the study of the strain suceptibility of different physical quantities in proximity of the structural transition. Remarkably, the use of the strain derivative of the electrical resistivity as a sensitive quantity mimic of the nematic susceptibility allowed to track the evolution of the nematic fluctuations and to distinguish their electronic origin from a simple ferroelastic distortion^{5,6,7}. Although this promotes the nematic order to the same level of the other electronic instabilities (i.e., superconductivity and density waves), its microscopic origin remains a puzzle, in particular concerning the role of the orbital and spin degrees of freedom. It is common wisdom that thermoelectric transport properties are excellent probes to investigate the fermiology of unconventional materials. In the vicinity of electronic instabilities, they could exhibit spectacular effects, resulting in an extreme sensitivity to phase transitions and fluctuations of order parameters^{8,9,10,11,12}. Therefore, in proximity of an electronic nematic instability, the evaluation of the thermoelectric response to an applied uniaxial strain, appears as an ideal experimental approach to unveil the role of Fermi Surface distortions.
In this regard, particularly promising is the observation of a strong anisotropy in the Seebeck (S) and the Nernst (ν) coefficients in the nematic phase of some detwinned 122 ironbased superconductors^{13,14,15,16}, as a direct indication of a possible strong elastothermoelectric effect. In order to exploit this potential, we introduce the elastoSeebeck effect and the elastoNernst effect, defined as the strain derivative of S and ν in the limit of vanishingly small strain ϵ. Experimentally, we take advantage of an innovative setup, which combines a standard thermoelectric measurement configuration, with the highly controlled uniaxial strain offered by a piezoelectric device. By measuring directly the slope of S and ν vs ϵ, we have access to the respective strain derivatives (Fig. 1, see Materials and Methods for details on the experimental setup), representing the nematic susceptibility of the system. In particular, in this work, we investigate the transport nematic phenomenology of two single crystals of LaFe_{1−x}Co_{x}AsO with x = 0 and 0.035^{17,18}, respectively. The former is the parent compound and the latter an electron underdoped sample of the La1111 family, so far almost unexplored due to the lack of sizeable single crystals.
We will show that the thermoelectric transport properties react extraordinarily to a tiny strain well above the nematic transition, revealing an extended zone of nematic fluctuations with a diverging behavior at the structural transition. Moreover, by analyzing the contribution of the different transport coefficients we demonstrate that a bandselective response of the Peltiertensor α is indispensable to quantitatively explain the behavior of the thermoelectric coefficient under strain, pointing out the fundamental role of the Fermi surface distortions caused by electronnematic order^{19}. In addition, we experimentally demonstrate that, within the validity of a singleband approximation, the elastoNernst coefficient can be predicted as a combination of the strain derivatives of the Peltier α and the conductivity σ tensors. This lets us paint a selfconsistent scenario in which all the elastotransport coefficients are bound to each other.
Results
ElastoSeebeck
Figure 2a, b shows the temperature dependence of Seebeck coefficient S of the x = 0 and the x = 0.035 sample, respectively. Their amplitude and trend are consistent with previous reports on polycrystalline compounds^{9}. In the x = 0 sample a sign change of S occurs at around 170 K, caused by the multiband nature of this material. Since holelike and electronlike pockets contribute to the Seebeck coefficient with opposite sign, they tend to compensate their respective effect, possibly generating a change in the sign of S, as in our case. In the x = 0.035 compound, the electron doping, obtained by Cosubstitution, pushes it closer to the condition of singlecarrier transport and the Seebeck coefficient remains always negative, as expected for a system dominated by electrons. This has been already shown in La(Fe,Co)AsO and Sm(Fe,Co)AsO series of polycrystalline samples, where a departure from the carrier compensation in favour of an electronlike transport due to Codoping has been demonstrated^{20,21}.
Figure 2c, d presents the temperature dependence of the strain (ϵ) derivative of the Seebeck coefficient δ(ΔS/T)/δϵ, with ΔS = S(ϵ) − S(ϵ = 0), for the x = 0 and x = 0.035 compound, respectively (the elastoSeebeck effect of an additional sample with x = 0.01 is reported in Supplementary Note 3 and Supplementary Fig. 4). The normalization to T is introduced to get rid of the entropy contribution. Interestingly, in both the compounds a change of regime appears in correspondence of the structural transition, whose onset is around T_{S} = 155 K in the parent compound and T_{S} = 80 K for the underdoped one^{18}. While δ(ΔS/T)/δϵ of the x = 0 compound exhibits a sharp cusplike transition, in the x = 0.035 compound the change of regime at T_{S} is more broadened. However, for T > T_{S}, where the crystalline cell is tetragonal and nematic fluctuation are expected, δ(ΔS/T)/δϵ is finite and large in both the compounds, evidencing a strong response of the Seebeck coefficient to a vanishingly small strain. Moreover, δ(ΔS/T)/δϵ exhibits a diverging trend by approaching T_{S}. This behavior is typically detected in the context of elastoresistivity measurements, where a Curie–Weiss fashion of the elastoresistivity is interpreted as the fingerprint of large nematic fluctuations with an electronic origin^{5,6,22}.
In addition, with our experimental approach we could also take advantage of the fact that S is sensitive to the sign of the charge carriers. Indeed, the most striking result of our measurement concerns the sign of δ(ΔS/T)/δϵ: In the parent compound, though S changes sign, δ(ΔS/T)/δϵ is always positive and it remains finite also when S crosses the zero. This points out that not all the different Fermi pockets are responsible for the electronic nematic phenomenology but only some of them contribute. Interestingly, the strain derivative persists to be positive also in the x = 0.035 sample, in which the transport properties are dominated by the electronlike carriers. This suggests that if the nematicity is band selective, the electronpockets play the major role.
ElastoNernst
Figure 3a, d shows the temperature dependence of the Nernst coefficient ν of the x = 0 and the x = 0.035 sample, respectively (see Supplementary Note 8 and Supplementary Fig. 10 for the magneticfield dependence of the Nernst coefficient). First of all, one can notice that, differently from the Seebeck coefficient, ν is positive in the considered temperature range for both the compounds. Indeed, in the Nernst effect the contribution of different types of carriers is independent on the sign of their electric charge^{23}. Hence, the contributions by holelike and electronlike pockets tends to sum up instead of compensating. This effect is also called ambipolar Nernst effect^{23} and it is responsible for the violation of the Sondheimer’s cancellation^{24}, which typically causes the suppression of the Nernst coefficient in singleband materials. In addition, in the parent compound, ν undergoes an abrupt increase at T_{S}, consistent with previous reports^{9,11}. This has been sometimes attributed to the Fermi surface distortion caused by the development of the long range magnetic ordering and the consequent band reorganisation with the appearance of Diracconelike bands^{9,10}. In the x = 0.035 compound the Nernst coefficient decreases in absolute value with respect to the parent compound. The reduction of ν upon Codoping has been also observed in the 122 family, where it has been interpreted as the vanishing of the Diraccone effects due to the suppression of the magnetic order^{10}. Furthermore, the electron doping causes also a tendency towards the domination of the electronlike carriers with the reduction of the ambipolar effect.
Figure 3b, e presents the temperature dependence of the strain derivative of the Nernst coefficient δ(Δν/T)/δϵ as a function of T, where Δν = ν(ϵ) − ν(ϵ = 0). In analogy to the strain derivative of the Seebeck effect, also δ(Δν/T)/δϵ presents a diverging behavior in the tetragonal phase and a change of regime at around T_{S}. Note, that these data alone do not allow to extract a clear information of the strain dependence of the Nernst coefficient as a function of doping, since the apparent strong reduction of δ(Δν/T)/δϵ from the x = 0 to the x = 0.035 compound is inevitably connected to the strong doping dependence of the Nernst coefficient ν itself as presented in Fig. 3a, d. In order to eliminate this particular cause of the amplitude variation, we normalize the strain dependences with respect to the unstrained ν and define a Nernst nematic susceptibility χ_{ν} = δ(Δν/ν)/δϵ. It is important to notice that the ambipolar nature of the Nernst effect prevents ν to cross the zero value in our compounds, in contrast to the Seebeck coefficient discussed above. χ_{ν} can be directly compared to the susceptibility calculated from the elastoresistivity χ_{ρ} = −δ(Δρ/ρ)/δϵ^{22}, whose value is generally assumed as the response of the electronic nematic order parameter to the applied strain^{5,6,22}. The result is presented in Fig. 3c, f for the x = 0 and the x = 0.035 sample, respectively.
For T > T_{S}, we checked the consistency of our data with a Curie–Weiss fit χ_{ν} = χ_{0} + C/(T − T*), where χ_{0} is an intrinsic piezoelectric effect unrelated to the electronic nematicity, C is the Curie constant and T* is the Curie temperature^{5,6}. In particular, T* must be the same for χ_{ν} and χ_{ρ}, because it represents the mean field electronic nematic critical temperature^{5,6}. Hence, for the fit, we fixed T* to the value obtained by fitting χ_{ρ}^{22} (orange lines in Fig. 3c, f), since it must be unvaried. In particular, T* = 134.5 ± 8.0 K and T* = 38.4 ± 9.2 K for the x = 0 and the x = 0.035 sample, respectively, while χ_{0} and C have been left free to vary. The results are shown in Fig. 3c, f, where the blue lines represent the fitting curves, which nicely interpolate the experimental data. This confirms the Nernst effect as a primary probe for detecting and tracking the electronic nematic fluctuations.
Let’s now focus on the absolute value of χ_{ν} and χ_{ρ}. Interestingly, χ_{ν} tends to decrease from x = 0 to x = 0.035, reaching the respective maximal value of around 230 and 120 close to T_{S}. On the contrary χ_{ρ} increases with doping. The increase of χ_{ρ} due to Codoping in the Ba(Fe,Co)_{2}As_{2} series was attributed to an increase of the nematic fluctuation intensity towards the optimally doped composition, which maximizes the superconducting critical temperature^{5,6}. By assuming that both χ_{ν} and χ_{ρ} should reflect the response of the nematic order parameter to the applied strain, the reason for their mismatch deserves some consideration. The Nernst coefficient is a complex quantity, which results from a nontrivial combination of of the resistivity tensor ρ and the Peltier thermoelectric tensor α, reading ν = α_{xy}ρ_{yy} − α_{xx}ρ_{xy}^{25}. In this notation x is the direction along which strain and heat gradient (or electric current) are applied, while y is the transverse direction. In complex materials, such as the ironbased superconductors, the experimental prediction of ν is usually unsuccessful due to the complications of the multiband nature. However, in the next section, we show that the behavior of the elastoNernst of the x = 0.035 compound (closer to the singleband condition thanks to the doping) can be reasonably obtained from the other transport coefficients, in a selfconsistent scenario (a partial analysis is also reported in Supplementary Note 4 and Supplementary Fig. 5 for the x = 0 compound).
Analysis of the transport coefficients of the x = 0.035 compound
First of all, in a singleband approximation, it is possible to evaluate also a Seebeck susceptibility χ_{S} = δ(ΔS/S)/δϵ, shown in Fig. 4a as a function of T. For T > T_{S}, we interpolated the χ_{S} curve with a Curie–Weiss function, fixing again T* to the value obtained by fitting χ_{ρ}. As in case of χ_{ν}, the Curie–Weiss curve nicely reproduces the experimental data. The Seebeck coefficient is explicited in terms of transport coefficients as S = α_{xx}ρ_{xx}, where α_{xx} and ρ_{xx} are the diagonal terms of the Peltier and the resistivity tensors, respectively. It is immediate to verify that χ_{S} = χ_{ρ} + χ_{α}, where χ_{α} = δ(Δα_{xx}/α_{xx})/δϵ. From these relations, one can evaluate the temperature dependence of α_{xx} and χ_{α}, presented in Fig. 4b. It must be noticed that \({\chi }_{{\alpha }}\) is of the same order of magnitude as χ_{ρ}. However, they exhibit an opposite sign, which is understandable, considering that \({\alpha }_{xx} \sim d{\sigma }_{xx}/dE={\rho }_{xx}^{1}d{\rho }_{xx}/dE\), where σ_{xx} is the electrical conductivity and E is the energy.
At this point, one can consider χ_{ν} and verify wether it is experimentally obtainable by a combination of the other transport coefficients. In the limit of small strain, in which we operate, one can safely state that ρ_{xx} ≃ ρ_{yy} and δρ_{yy}/δϵ = (1/Y_{P})δρ_{xx}/δϵ, where Y_{P} is the Poisson ratio of the piezoelectric device. The offdiagonal terms do not directly contribute to the anisotropy^{19}. Hence, we can evaluate δ(ν)/δϵ = α_{xy}δρ_{yy}/δϵ − ρ_{xy}δα_{xx}/δϵ, where α_{xy} is obtained by combining the transport properties in unstrained conditions^{25}. The result is shown in Fig. 4c in comparison with the experimental value. The two curves are in good agreement, demonstrating experimentally the validity of the description of transport properties in terms of conductivity and Peltier tensors.
Several remarks are in order. First of all we point out that a selfconsistent interconnection of transport coefficients is rarely proven experimentally. One might speculate that the clean result is facilitated by the use of strain derivatives, which render spurious effects less important. Second, our analysis shows the necessity of two different contributing transport coefficients (ρ_{xx} and α_{xx}) to explain the behavior of ν under strain.
The validation of this method is an important result because it can be applied to the investigation of all the singleband systems in which the proximity to an instability or a phase transition renders electronic properties susceptible to the strain. This includes many cuprates superconductors and doped ironbased superconductors.
Discussion
In the previous section, we demonstrated the existence of a finite χ_{α} beside a finite χ_{ρ}. With this established, one can conjecture on the microscopic mechanisms that determine the transport nematic phenomenology. From the transport point of view a large susceptibility to the applied strain is the result of a strong anisotropy either in the scattering time and/or in the Fermi surface parameters, such as the Fermi velocity. Generally, an anisotropic scattering time as a source for transport anisotropy is supported by a pure spinnematic scenario^{26,27,28,29}, while the pure orbitalordering description takes mainly into account anisotropies of the Fermi surface parameters^{30,31,32,33}.
The advantage of the thermoelectric properties and especially of the Nernst effect is their capability to catch both these aspects. This can be directly inferred from the simplest imaginable model for a singleband material. As mentioned above, from the solution of the Boltzmann equation, one can obtain the following link between the Peltier thermoelectric tensor and the conductivity tensor: \({\boldsymbol{\alpha }}=({\pi }^{2}/3)({k}_{B}^{2}T/q)(d{\boldsymbol{\sigma }}/dE){ }_{E = {E}_{{\rm{F}}}}\), with k_{B} the Boltzmann constant^{8}. Hence, α is a direct measurement of the variation in conductivity caused by a (even infinitesimal) shift in the chemical potential, induced, for instance, by a Fermi surface distortion. In particular, for the Nernst coefficient, assuming a smooth (but not null) variation of the mobility with respect to the energy, the following expression can be derived: ν = \(({\pi }^{2}/3)({k}_{B}^{2}T/e)\mu /{E}_{{\rm{F}}}\), where the dependence on both the mobility and the Fermi energy appears explicitly^{8}. Naturally, this expression cannot be quantitatively applied to complex materials like ironbased superconductors, but it is very useful to comprehend at a glance the versatility of the Nernst coefficient in probing the electronic properties of a material. Hence, assuming the nematicity in ironbased superconductors as an electronoriginated effect, an impressive response of the thermoelectric properties to the strain is not completely surprising.
In the context of cuprate superconductors, it was explicitly predicted that the Nernst effect anisotropy is a very sensitive probe of Fermi surface distortions caused by electronnematic order^{19}. This is caused by a large anisotropy in α, which overcomes the anisotropy of ρ and results particularly enhanced in correspondence of a change of the Fermi surface topology^{19}. This means that, if only an orbital anisotropy dominates the transport, a χ_{α} substantially larger than χ_{ρ} can be expected. Since in our case \(\left{\chi }_{\rho }\right\ge \left{\chi }_{\alpha }\right\), it is likely that a significant contribution from an anisotropic scattering time must be present.
On the other hand, it has been reported that the NMR spinlattice relaxation rate \({({T}_{1}T)}^{1}\) of LaFeAsO is finite well above T_{S}, as a signature of persistent spin fluctuations^{34}. For T < T_{S}, \({({T}_{1}T)}^{1}\) increases a lot, before diverging in correspondence of T_{N}, where spin fluctuations freeze^{34}. Interestingly, neither χ_{ρ} nor χ_{ν} seem to be sensitive to the magnetic transition (see magnetization data Supplementary Note 1 and Supplementary Fig. 2) and they do not follow the trend of \({({T}_{1}T)}^{1}\). This suggests that they are not mimicking the spin susceptibility of the system. As a consequence, the existence of an anisotropic scattering time, directly linked to anisotropic spin fluctuations, is not sufficient to explain the transport anisotropy, but an orbital contribution from the distortion of Fermi surface must be included. Hence, to shed light on the cryptic nematic phase of ironbased superconductors, it is evident that a theoretical picture, which includes different microscopic mechanism must be adopted. In this sense the orbitalselective spinnematic model is a promising candidate, since it predicts that, once the orbital character of the spin fluctuations is taken into account, both the anisotropy in scattering rate and in the Fermi surface parameters (i.e., the Fermi velocities) must play a substantial role^{35,36,37}.
In summary, we measured the strain derivative of the Seebeck and the Nernst effect of two single crystals belonging to the 1111 family of ironbased superconductors. We observed that thermoelectric properties, in proximity of a nematic instability, are strongly susceptible to a vanishingly small strain. The inspection of the Seebeck effect provided a clear signature of the bandselective character of the nematic phenomenology in case of a multiband system, which is a fundamental information for the definition of a nematic order parameter. In addition, by defining a Nernst nematic susceptibility, we experimentally demonstrated that an anisotropy in the resistivity tensor \(\boldsymbol{\rho }\) is not enough to explain the behavior of the thermoelectric properties, but a finite anisotropy in the Peltiertensor α must be included. This suggests that the transport nematic phenomenology is likely to be the result of the combined effect of both an anisotropic scattering time and Fermi surface distortions, pointing out that in a realistic description, beside the spin fluctuations also the orbital character is a fundamental ingredient. We expect that these results will trigger novel theoretical insights, setting new bounds for the anisotropic transport models and giving a substantial contribution to the understanding of the nematic puzzle.
Methods
Crystal growth
The crystals were obtained using the solidstate single crystal growth method at ambient pressure using Na–As as a liquid phase promoting an abnormal grain growth due to enhanced interfacial anisotropy by introducing a liquid–solid interface. This is a different strategy from the usually used flux growth. As this growth is based on polycrystalline starting materials, a polycrystalline sample of LaFeAsO was prepared using a twostep solidstate reaction. The obtained polycrystalline pellets and Na–As powder were layered into an alumina crucible. The molar ratio of LaFeAsO to Na–As used was 1:4, which corresponds to a ratio in volume of about 1:1. The material was heated to 1080 °C and annealed for 200 h. By using this method single crystals sized up to 2 × 3 × 0.4 mm^{3} were obtained (see Supplementary Fig. 1). Reference ^{17} gives a detailed description of the synthesis process of all the investigated compounds. The crystals were analyzed using SEM with EDX, Laue backscattering, powder Xray diffraction and SQUID magnetometry measurements (see Supplementary Note 1 and Supplementary Fig. 2). In addition, preliminary resistivity and Hall effect measurements have been performed (see Supplementary Note 2, Supplementary Fig. 3).
Elastothermoelectric transport measurements
We applied an inplane uniaxial strain by gluing the samples on the surface of a commercial piezoelectric stacks (Part. No. Pst 150/5 × 5 × 7, form Piezomechanik, Munich, Germany), using the Devcon General Purpose Adhesive Epoxy (No. 14250). The asgrownsingle crystals have been cleaved with a thin blade down to a thickness of about 30–40 μm in order to be sure that the strain is fully transferred across the sample^{22}. The final dimensions of the samples were typically 1 × 1 × 0.04 mm^{3}. The samples have been glued oriented, in order to align the straining axis of the piezo to the orthorhombic axis of our compounds, corresponding to the [110] crystalline direction, along which the nematic fluctuations are expected to develop^{5,6,22}. Following the same procedure adopted in the elastoresistivity experiments^{5,6,22}, the applied strain has been measured by using a resistive strain gauge mounted on the back side of the piezostack and read through a Wheatstone bridge. The temperature evolution of the applied strain and the Poisson ratio of the piezostack have been characterized (see Supplementary Notes 5 and 6 and Supplementary Fig. 6). Thanks to the homogeneity of the piezostack, if the sample is thin enough (as in our case) the reading of the gauge nicely correspond to the strain applied to the sample^{5,22}. In order to perform the thermoelectric characterization, we built a thermal circuit by connecting one side of the sample to a resistive heater (R = 2.7 kΩ) and the other side to the thermal mass of our sample holder. The thermal connections have been made by using silver wires glued with a thermal epoxy (WakefieldVette Delta Bond 152KA). The temperature gradient has been measured using a ChromelAuChromel differential thermocouple, calibrated in magnetic field. Longitudinal and transverse couples of electrodes have been attached to the sample to pick up the Seebeck and the Nernst signals (Fig. 1a). The electrical leads have been realized by gluing 50μmthick silver wires to the sample with a silver paste (Dupont 4929N). Figure 1b, e shows the measurement procedure for collecting the strain derivative of the Seebeck and the Nernst coefficients. First of all the sample, mounted on the piezo, is thermalized at the desired temperature T and in case of the Nernst coefficient measurement a constant magneticfield B is applied with a direction perpendicular to the abplane of the sample. Then, a heating power W_{H} is applied through the heater to the sample (bottom panels in Fig. 1c, e) in order to create a temperature gradient ∇ T = ΔT/l_{T}, where ΔT is the temperature difference measured by the thermocouple and l_{T} is the distance between the thermocouple tips. This causes a response in the Seebeck and Nernst voltages (ΔV_{S} and ΔV_{N} in the top panels of Fig. 1b, e). The corresponding Seebeck and Nernst coefficients are S = −ΔV_{S}/(l_{S} ∇ T) and N = ΔV_{N}/(l_{N} ∇ T), where l_{S} and l_{N} are the distance between the respective couples of electrodes. Then, the piezo actuator is activated and the applied voltage is varied along the cycle 0 V → 100 V → −30 V → 0 V. During this process, we measure simultaneously the variation of the Seebeck (Nernst) coefficient ΔS (Δν) with the corresponding electrodes and the effective strain ϵ with the strain gauge (middle panels in Fig. 1b, e). In the regime of small strain (ϵ < 0.1%) in which we operate ΔS and Δν are linearly dependent on ϵ (Fig. 1c, f). Hence, we can extract δ(ΔS)/δϵ or δ(Δν)/δϵ as the angular coefficient of the linear fit in the ΔS or Δν vs ϵ graph (red lines in Fig. 1c, f). In addition for the Nernst coefficient we antisymmetrized the signal by inverting the magneticfield B in order eliminate any spurious contribution.
By repeating this procedure for all the required temperatures we can track the T dependence of the elastoSeebeck and elastoNernst effects.
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
Daou, R. et al. Broken rotational symmetry in the pseudogap phase of a hightc superconductor. Nature 463, 519–522 (2010).
Lawler, M. J. et al. Intraunitcell electronic nematicity of the hightc copperoxide pseudogap states. Nature 466, 347–351 (2010).
Fernandes, R. M., Chubukov, A. V. & Schmalian, J. What drives nematic order in ironbased superconductors? Nat. Phys. 10, 97–104 (2014).
Chuang, T.M. et al. Nematic electronic structure in the “parent” state of the ironbased superconductor Ca(Fe_{1−x}Co_{x})_{2}As_{2}. Science 327, 181–184 (2010).
Chu, J.H., Kuo, H.H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012).
Kuo, H.H., Chu, J.H., Palmstrom, J. C., Kivelson, S. A. & Fisher, I. R. Ubiquitous signatures of nematic quantum criticality in optimally doped febased superconductors. Science 352, 958–962 (2016).
Hosoi, S. et al. Nematic quantum critical point without magnetism in fese1xsx superconductors. Proc. Natl. Acad. Sci. USA 113, 8139–8143 (2016).
Behnia, K. The nernst effect and the boundaries of the fermi liquid picture. J. Phys. Condens. Matter 21, 113101 (2009).
Pallecchi, I., Caglieris, F. & Putti, M. Thermoelectric properties of ironbased superconductors and parent compounds. Supercond. Sci. Technol. 29, 073002 (2016).
Matusiak, M., Bukowski, Z. & Karpinski, J. Doping dependence of the nernst effect in Eu(Fe_{1−x}Co_{x})_{2}As_{2}: Departure from diracfermion physics. Phys. Rev. B 83, 224505 (2011).
Kondrat, A., Behr, G., Büchner, B. & Hess, C. Unusual nernst effect and spin density wave precursors in superconducting LaFeAsO_{1−x}F_{x}. Phys. Rev. B 83, 092507 (2011).
Behnia, K. & Aubin, H. Nernst effect in metals and superconductors: a review of concepts and experiments. Rep. Prog. Phys. 79, 046502 (2016).
Fujii, T., Shirachi, T. & Asamitsu, A. Measurement of the thermopower anisotropy in iron arsenide. Phys. C 530, 31–34 (2016).
Jiang, S., Jeevan, H. S., Dong, J. & Gegenwart, P. Thermopower as a sensitive probe of electronic nematicity in iron pnictides. Phys. Rev. Lett. 110, 067001 (2013).
Matusiak, M., Babij, M. & Wolf, T. Anisotropy of the seebeck and nernst coefficients in parent compounds of the ironbased superconductors. Phys. Rev. B 97, 100506 (2018).
Matusiak, M., Rogacki, K. & Wolf, T. Thermoelectric anisotropy in the ironbased superconductor \({\rm{Ba}}{({{\rm{Fe}}}_{1x}{{\rm{Co}}}_{x})}_{2}{{\rm{As}}}_{2}\). Phys. Rev. B 97, 220501 (2018).
Kappenberger, R. et al. Solid state single crystal growth of threedimensional faceted LaFeAsO crystals. J. Cryst. Growth 483, 9–15 (2018).
Wang, L. et al. Nematicity and structure in LaFe_{1−x}Co_{x}AsO. J. Magn. Magn. Mater. 482, 50–53 (2019).
Hackl, A. & Vojta, M. Nernsteffect anisotropy as a sensitive probe of fermisurface distortions from electronnematic order. Phys. Rev. B 80, 220514 (2009).
Wang, C. et al. Effects of cobalt doping and phase diagrams of lFe_{1−x}Co_{x}AsO (l = La and Sm). Phys. Rev. B 79, 054521 (2009).
Okram, G. S., Kaurav, N., Soni, A., Pal, A. & Awana, V. P. S. Effect of codoping on the resistivity and thermopower of SmFe_{1−x}Co_{x}AsO (0.0≤x≤0.3). AIP Adv. 2, 042137 (2012).
Hong, X. et al. Evolution of the nematic susceptibility in LaFe_{1−x}Co_{x}AsO. Phys. Rev. Lett. 125, 067001 (2020).
Bel, R., Behnia, K. & Berger, H. Ambipolar nernst effect in NbSe_{2}. Phys. Rev. Lett. 91, 066602 (2003).
Sondheimer, E. H. & Wilson, A. H. The theory of the galvanomagnetic and thermomagnetic effects in metals. Proc. R. Soc. A 193, 484–512 (1948).
Meinero, M. et al. Unusual thermoelectric properties of BaFe_{2}As_{2} in high magnetic fields. Phys. Rev. B 98, 155116 (2018).
Fernandes, R. M., Abrahams, E. & Schmalian, J. Anisotropic inplane resistivity in the nematic phase of the iron pnictides. Phys. Rev. Lett. 107, 217002 (2011).
Fernandes, R. M. et al. Effects of nematic fluctuations on the elastic properties of iron arsenide superconductors. Phys. Rev. Lett. 105, 157003 (2010).
Breitkreiz, M., Brydon, P. M. R. & Timm, C. Resistive anisotropy due to spinfluctuation scattering in the nematic phase of iron pnictides. Phys. Rev. B 90, 121104 (2014).
Gastiasoro, M. N., Paul, I., Wang, Y., Hirschfeld, P. J. & Andersen, B. M. Emergent defect states as a source of resistivity anisotropy in the nematic phase of iron pnictides. Phys. Rev. Lett. 113, 127001 (2014).
Kontani, H., Saito, T. & Onari, S. Origin of orthorhombic transition, magnetic transition, and shearmodulus softening in iron pnictide superconductors: Analysis based on the orbital fluctuations theory. Phys. Rev. B 84, 024528 (2011).
Lee, C.C., Yin, W.G. & Ku, W. Ferroorbital order and strong magnetic anisotropy in the parent compounds of ironpnictide superconductors. Phys. Rev. Lett. 103, 267001 (2009).
Valenzuela, B., Bascones, E. & Calderón, M. J. Conductivity anisotropy in the antiferromagnetic state of iron pnictides. Phys. Rev. Lett. 105, 207202 (2010).
Chen, C.C. et al. Orbital order and spontaneous orthorhombicity in iron pnictides. Phys. Rev. B 82, 100504 (2010).
Ok, J. M. et al. Nematicity and magnetism in LaFeAsO single crystals probed by ^{75}As nuclear magnetic resonance. Phys. Rev. B 97, 180405 (2018).
Fanfarillo, L., Benfatto, L. & Valenzuela, B. Orbital mismatch boosting nematic instability in ironbased superconductors. Phys. Rev. B 97, 121109 (2018).
FernándezMartín, R., Fanfarillo, L., Benfatto, L. & Valenzuela, B. Anisotropy of the dc conductivity due to orbitalselective spin fluctuations in the nematic phase of iron superconductors. Phys. Rev. B 99, 155117 (2019).
Fanfarillo, L. et al. Orbitaldependent fermi surface shrinking as a fingerprint of nematicity in FeSe. Phys. Rev. B 94, 155138 (2016).
Acknowledgements
We thank R. Wachtel, D. Meiler, J. Werner, L. Giebeler, S. MüllerLitvanyi, and S. Gass (all IFW Dresden) for support. FC thanks Laura Fanfarillo for valuable scientific discussion. This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) through the Priority Programme SPP1458 (Grant No. BU887/151), under grant DFGGRK1621, and through the Emmy Noether Programme WU595/33 (S.W.). This project has been supported by the Deutsche Forschungsgemeinschaft through the Research Projects CA 1931/11 (F.C.) and AS 523/31 (S.A.). This project has received funding from the European Research Council (ERC) under the European Unions’ Horizon 2020 research and innovation programme (grant agreement No 647276–MARS–ERC2014CoG).
Funding
Open Access funding enabled and organized by Projekt DEAL.
Author information
Authors and Affiliations
Contributions
F.C., C.W., and X.C.H. performed the measurements and the data analysis. S.S. contribute to the data interpretation. R.K., S.A., and S.W. grew and characterized the samples. F.C., B.B., and C.H. designed and supervised the project. F.C. and C.H. wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Caglieris, F., Wuttke, C., Hong, X.C. et al. Strain derivative of thermoelectric properties as a sensitive probe for nematicity. npj Quantum Mater. 6, 27 (2021). https://doi.org/10.1038/s41535021003247
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41535021003247
This article is cited by

Ubiquitous enhancement of nematic fluctuations across the phase diagram of iron based superconductors probed by the Nernst effect
npj Quantum Materials (2022)

Nematicity and nematic fluctuations in ironbased superconductors
Nature Physics (2022)