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Proximity to a critical point driven by electronic entropy
in URu2Si2
Neil Harrison 1✉, Satya K. Kushwaha1,2, Mun K. Chan 1 and Marcelo Jaime 1

The strongly correlated actinide metal URu2Si2 exhibits a mean field-like second order phase transition at To ≈ 17 K, yet lacks
definitive signatures of a broken symmetry. Meanwhile, various experiments have also shown the electronic energy gap to closely
resemble that resulting from hybridization between conduction electron and 5f-electron states. We argue here, using
thermodynamic measurements, that the above seemingly incompatible observations can be jointly understood by way of
proximity to an entropy-driven critical point, in which the latent heat of a valence-type electronic instability is quenched by thermal
excitations across a gap, driving the transition second order. Salient features of such a transition include a robust gap spanning
highly degenerate features in the electronic density of states, that is weakly (if at all) suppressed by temperature on approaching To,
and an elliptical phase boundary in magnetic field and temperature that is Pauli paramagnetically limited at its critical
magnetic field.
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INTRODUCTION
URu2Si2 remains of immense interest owing to the possibility
of it exhibiting a form of order distinct from that observed
in other known materials1. The term “hidden order” (HO) has
been coined2,3 to describe the finding of an apparent
Bardeen–Cooper–Schrieffer (BCS)-like phase transition at To ≈
17 K4,5, yet the absence of any definitive signatures of symmetry-
breaking reconcilable with the entropy at the transition tempera-
ture1. Whereas the majority of the proposed forms of HO3,6–22

involve translational symmetry breaking3,8–22, the experimental
evidence in favor of this is indirect (see Methods)23–28. By contrast,
neutron scattering, x-ray scattering, and scanning tunneling
microscopy studies of URu2Si2 have shown that the usual
momentum-space signatures of translational symmetry-breaking
are missing within the HO phase29–31. The form of the electronic
energy gap within the HO phase is found instead to be consistent
with the opening of a hybridization gap between conduction and
f-electron states centered on the chemical potential μ, as shown
schematically in Fig. 129–33. This gap has further been reported to
evolve into a pseudogap at temperatures above To

32,34,35,
suggesting departures from the Landau formalism.
The motivation for the present study is the realization that a HO

phase corresponding to the formation (or opening) of a
hybridization gap centered on μ would be expected to exhibit
thermodynamic signatures distinct from those of a BCS-like phase
transition36–39. For example, since the process of hybridization
causes f electrons to become more delocalized (see Fig. 1)40,41,
such a phase transition would be expected to be accompanied by
changes in the 5f-electron core occupancy and valence42, thereby
displaying some parallels to valence transition systems. Further-
more, since all of the available states in a narrow f-electron band
(i.e., two electrons per formula unit—one filled and one empty)
typically participate in the formation of hybridization gap40,41, in
contrast to the small fraction of the carriers in a conduction band
that participate in the formation of a BCS-like gap36–39, significant
differences in the entropy of the quasiparticle excitations would
be expected in thermodynamic experiments. Finally, since there is

no absolute requirement for the magnitude of a hybridization gap
to vanish at a phase transition, it need not be thermally
suppressed in the same manner as a BCS-type gap.
Experimental observations that could already be considered

conducive to 5f-electron hybridization playing an important role in
URu2Si2 include the intermediate valence character of the 5f
electrons identified in x-ray scattering studies43,44 and the finding
of measureable volume and lattice changes across the HO
transition in dilatometry experiments45,46, which become increas-
ingly sharp under a strong magnetic field47,48.
We show here by way of thermodynamic49,50 measurements

that the HO phase in URu2Si2 exhibits signatures consistent with a
critical point. In this unprecedented case, a discontinuous
electronic phase transition into a state with a robust hybridization
gap between the conduction and f electrons centered on μ
becomes concealed as a mean field-like second-order phase
transition owing to the effect of substantial quasiparticle
excitations across the gap. We find the gap excitations, which
are responsible for the exponential tail in the low temperature
(T < To) heat capacity4,5, to contribute significantly more to the
internal energy than they do to the free energy, leading to an
unusual situation in which the transition manifests itself second
order in nature in all the observables, while maintaining some
characteristics of a discontinuous phase transition. These include a
robust gap that is weakly (if at all) suppressed by temperature,
spanning highly degenerate features in the electronic density of
states that are quantitatively consistent with a half-filled narrow f-
electron band that has become gapped29,30 (see Fig. 1), and an
elliptical phase boundary that is usually the hallmark of valence
transition systems51–53. The effective g-factor characterizing the
ratio of the Pauli-limited critical magnetic field Bo to the critical
temperature To is in quantitative agreement with prior measure-
ments54–56. The near-degeneracy in the free energies of the HO
and paramagnetic phase over a range of temperatures T ≥ To
further causes the hybridization gap in URu2Si2 to become highly
susceptible to the formation of a pseudogap34,35, should
fluctuations or inhomogeneities be present.
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RESULTS
Thermally robust hybridization gap
The salient feature of the HO phase in URu2Si2 is a sharp anomaly
in the specific heat suggestive of a continuous phase transition
(see Fig. 2 and Methods)1–5,49,57. One of the more striking
properties of this transition is an exponential tail that extends
over a broad range of temperatures and is often compared to the
exponential tail observed in BCS-type phases at low tempera-
tures36–39. In the BCS theory36, the excitation gap Δ causing the
exponential tail has the form C / e�

Δ
T , where Δ= aTc, a ≈ 1.5, and

Tc is the transition temperature. Were one to set Tc= 17 K, the BCS
theory would predict an excitation gap of Δ ≈ 25 K for which the
population of excited quasiparticles (� e�

Δ
T ) would reach at least

≈22% of its saturated value as the transition temperature is
approached from below. In such a scenario, the excitation of
quasiparticles across the gap would cause a suppression of the
amplitude of the order parameter with increasing temperature,
and its ultimate closure at the phase transition temperature. This
closure would, in turn, cause the number of quasiparticles excited
across the gap to reach 100%. By contrast, previous reports of a
much larger excitation gap of Δ ~ 100 K in URu2Si2

4,5 imply that
only a small population of excited quasiparticles of order ~0.3%
occurs on reaching the transition temperature. This is too small a
fraction for Δ to be significantly suppressed by thermal excitations
in the manner of a BCS-type phase transition.
A further difficulty with the application of the BCS phenomen-

ology to URu2Si2 is that its validity requires only a small fraction
(nΔ≪ 1 electrons per formula unit) of the carriers in the
conduction band to be displaced in energy on either side of the
chemical potential when the gap opens36–39. However, when we
estimate the number of electrons displaced by the opening of a
2Δ-wide BCS gap in URu2Si2 (using Δ= 100 K), we obtain nΔ= 2ΔD
(ε)= 6Δ × Δγ/π2R ~ 0.5 electrons per formula unit (where R is the
gas constant). We base this estimate on the entropy Sexp ¼ ΔγTo
associated with the formation of the HO phase having been found
experimentally by the integration of Cexp=T to be Sexp ¼ 0.2 Rln 2
(see Fig. 3)4,5, for which the change in Sommerfeld coefficient at To
is Δγ ≈ 68mJmol−1K−2. Since our estimate of nΔ ~ 0.5 electrons per
formula unit corresponds to a significant fraction of a band, it
implies that a major reconfiguration of the electronic bands
accompanies the formation of the HO phase in URu2Si2.
In the case of a hybridization gap, by contrast, the majority of

the gapped states originate from an f-electron band (or level) that
is already likely to have been highly degenerate prior to the onset
of a hybridization gap, as shown schematically in Fig. 1a. When
hybridization occurs at a characteristic energy V between the
conduction electron and a coherent lattice of f electrons (see Fig.

Fig. 1 Formation of a hybridization gap. a Conduction electron band (red) and weakly dispersive f-electron band (green) in the absence of a
hybridization gap. b Hybridization bands forming at low temperatures, where V is the hybridization potential. c Indirect gap 2Δ separating
peaks in the electronic density of states.

Fig. 2 Heat capacity and entropy of URu2Si2. a C/T at B= 0 from
ref. 57 (blue line), with the phonon (i.e., ThRu2Si2 in gray) component
and the total electronic contribution (magenta curve) indicated. γHO
is the residual electronic contribution within the hidden-order phase
(see Methods). b Total entropy obtained from Stot ¼

R1
0 ðCe=TÞdT ,

where Ce is the total electronic contribution to the heat capacity.

Fig. 3 Electronic entropy and free energy of quasiparticle
excitations in URu2Si2. a The entropy divided by Rln 2 (where R
= kBNA) at different values of the magnetic field calculated using
Sexp ¼ R1

0
Cexp

T dT where Cexp refers to the measured heat capacity
after subtracting the phonon contribution and γHO (see Methods).
The entropy is similar to that previously obtained4,5. b ΦΔ
calculated from the experimental heat capacity data of URu2Si2 using
Eq. (2) as described in the Methods at different magnetic fields as
indicated. The horizontal axis is the temperature T divided by the
observed transition temperature To(B) at each magnetic field.
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1b), the majority of the f-electron states become piled up at
energies ±Δ on either side of the gap (see Fig. 1c), where Δ≪ V. In
such a situation, 2Δ usually corresponds to the indirect gap shown
schematically in Fig. 1b, c. On assuming the chemical potential to
be located at μ= 0, a more appropriate approximation for the gap
is an electronic density of states of the form

gΔðεÞ ¼
nf
2

X
i¼± 1

δðε� iΔÞ (1)

consisting of delta functions, where each is comprised of nf/2 ≈ 1
electron per formula unit and is separated from the other by a gap
2Δ. The level below the chemical potential is filled, whereas that
above the chemical potential is empty. We assume a Kondo
semimetallic ground state in which a hybridization gap coexists
with small ungapped sections of Fermi surface; the latter likely
originate from a small finite dispersion of the unhybridized f-
electrons and are responsible for the residual specific heat (γHO in
the Methods) and quantum oscillations. Assuming a density of
states of the form given by Eq. (1), the quasiparticle excitation
term to the free energy of the HO phase is given by

ΦΔ ¼ �nf RT
Z 1

�1
gΔðεÞln ð1þ e�

ε
TÞdε� Φ0

¼ �nf RT ln ð1þ e�
Δ
TÞ;

(2)

where Φ0 is a constant whose value enforces the constraint ΦΔ→
0 in the limit T→ 0. While we assume the gap to be symmetric
with regard to μ, the same form for the free energy is obtained for
the case of nf electrons contained in a single delta function
located at ε=+Δ or ε=−Δ. On calculating the specific heat, we
find the Schottky form

CΔ ¼ �T
∂2ΦΔ

∂T2 ¼ nf RΔ2

T2

e�
Δ
T

ð1þ e�Δ
TÞ2

; (3)

where e�
Δ
T � 1. We obtain Δ= 84 ± 2 K to reasonable accuracy by

performing a straight line fit to an Arrhenius plot of the
experimentally measured specific heat Cexp multiplied by T2

(shown in Fig. 4). The finding of a straight line up to ~14 K
suggests that Δ remains largely unchanged up to this tempera-
ture, which corresponds to ≈80% of To.

An identically large hybridization gap governing the quasipar-
ticle excitations is evidenced by the presence of a similar activated
behavior in the susceptibility (also shown in Fig. 4). We model the
spin susceptibility using

χΔ ¼ μ0½g�effσμB�2Rk�1
B

R1
�1 f0FDðεÞgðεÞdε

¼ nf μ0½g�effσμB �2R
kBT

e�
Δ
T

ð1þe�
Δ
T Þ

2 ;
(4)

where f0FDðεÞ is the energy derivative of the Fermi–Dirac
distribution function. Figure 4 shows that the experimental Cexp
and χexp data in URu2Si2 are characterized by similar values of the
excitation gap Δ within experimental uncertainty, indicating that
the spin and charge excitations are representative of the same
electronic states. The observation of an activated behavior
somewhat closer to To in the susceptibility reinforces the finding
from heat capacity measurements of a large mostly temperature-
independent gap. It also represents a marked departure from the
case of a BCS-like order parameter, such as a charge-density
wave58, where the gap magnitude shrinks and rapidly fills in with
thermally excited quasiparticles close to the transition.
The values of Δ in Fig. 4 are of comparable magnitude to those

typically found in optical conductivity and tunneling experi-
ments29,30,32,33,59,60. We find stronger quantitative consistency
with the range of gap values, 63 ≤ Δ ≤ 82 K, attributed to
hybridization in point contact spectroscopy experiments (see
Fig. 3c, d of refs 32,33), thereby reinforcing our interpretation that
the exponential tail of the heat capacity anomaly in URu2Si2

1–5 is
caused by quasiparticle excitations across a hybridization gap
rather than a BCS-type gap.

Participation of two electrons per formula unit
The Arrhenius fit of Eq. (3) to the specific heat data also provides
us with a means to extract an experimental estimate for the
absolute number nf of f-electron states participating in the
hybridization gap. From the intercept ln ½nfRΔ2� � 11.9 of the
Arrhenius plot in Fig. 4, we obtain nf ≈ 2.47 ± 0.25 per formula unit,
which corresponds to roughly two 5f electrons per formula unit—
again, suggesting one filled and one empty. This value is
significantly larger than the estimate of nΔ ≈ 0.4 electrons
displaced by the gap that we obtain on substituting Δ= 84 K
into nΔ= 2ΔD(ε)= 6Δ × Δγ/π2R, suggesting that the nf ≈ 2 elec-
trons participating in the formation of the hybridization gap must
involve states that are much farther from the Fermi surface than
those typically participating in a BCS-type gap. This can include
states that are farther removed from the chemical potential than
±Δ or f electrons that are confined to the atomic core above To.
Entropy considerations add further weight to a scenario in

which the number of electrons participating in the gap are too
numerous to have originated from states close to the Fermi
surface. Since the entropy of the gap excitations is given by

SΔ ¼ � ∂ΦΔðB;TÞ
∂T

¼ nf R ln ð1þ e�
Δ
TÞ þ Δ

T
e�

Δ
T

ð1þe�
Δ
T Þ

� �
;

(5)

on substituting nf ≈ 2 electrons per formula unit participating in
the gap we arrive at a total “projected” entropy (on taking the limit
Δ→ 0) of SΔ � Rln 4. This is ten times larger than the experimen-
tally observed entropy associated with the transition of Sexp �
0:2Rln 2 (see Fig. 3 and Methods)4,5 at To, and twice as large as the
total electronic entropy Stot � Rln 2 obtained on integrating the
full electronic contribution to C/T (magenta curve in Fig. 2a) up to
50 K in Fig. 2b. One way to reconcile the existence of a gapped f-
electron band supporting a projected electronic entropy of Rln 4
(were this to persist beyond To) with an actual integrated total
electronic entropy of Rln 2 at T= 50 K ~ TK is if To involves a
transition from a screened Kondo lattice state consisting of local

Fig. 4 Arrhenius plot. ln ½CexpT2� (blue circles) versus 1/T at B= 0,
which we fit to ln ½CΔT2� (blue line) where CΔ is given by Eq. (3). We
compare this against ln ½χexpT� (red circles, shifted to bring it into
alignment with the specific heat) fit to χΔ (red line) given by Eq. (4),
where χexp is the measured susceptibility (shown in the inset). Solid
lines fits are used to provide gap estimates ΔC and Δχ, obtained
from the specific heat and susceptibility, respectively.
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spins with a twofold degeneracy at T > To into a partially gapped
state with fully itinerant f electrons including spin and charge
degrees of freedom at T < To. A transition of this nature has indeed
been suggested on the basis of scanning tunneling microscopy
studies29,30, which find a hybridization gap at T < To and single
impurity-type behavior at T > To

30.

Elliptical phase boundary
Further support for a robust hybridization gap and a significant
change in the electronic structure accompanying the transition in
URu2Si2 is to be found in the elliptical form of the phase boundary
(see Fig. 5). This can be understood phenomenologically by
considering a minimal model for the free energies of the
paramagnetic (P) and the HO phases of the form

F0P ¼ � 1
2ΔγT

2 � 1
2μ0

ΔχzzB
2
z

F0HO ¼ �Uo þ ΦΔðB; TÞ:
(6)

An important factor in determining our choice of F0P in URu2Si2 is
that the Kondo temperature TK ~ 70 K61,62 greatly exceeds To,
suggesting the development of Kondo screening40 well in
advance of the transition at To. The Sommerfeld coefficient and
spin susceptibility are both found to be strongly enhanced at
temperatures both above and below To

4,5,63,64, while quantum
oscillation experiments54,65,66 find moderately enhanced quasi-
particle effective masses deep inside the HO phase.
While Kondo screening implies that there is a finite V within the

paramagnetic phase at T > To, there is a lack of thermodynamic
evidence for a gap (see Fig. 2 and Methods for alternative

possibilities)—there is, however, spectroscopic evidence for a
broadened gap possibly attributed to a pseudogap for a narrow
range of temperatures above To

32,34,35 (see Methods). Given the
comparatively slowly varying electronic contribution to C/T with
temperature at T > To, as a simplifying measure, we consider
constant changes Δγ and Δχzz in the respective Sommerfeld
coefficient and the c-axis spin susceptibility between the
paramagnetic and HO phases in Eq. (6), and neglect terms that
are common to both phases (such as that due to phonons). Also,
since the spin susceptibility exhibits a strong Ising-like aniso-
tropy23,54,55,67,68 on both sides of the transition, Bz ¼ B cos θ refers
here to the c-axis component of the magnetic field, while Uo

represents the internal energy gained by the formation of the
hybridization gap; we assume U0 to be approximately constant in
view of the robust Δ (see Methods). One advantage of adopting
such a simple form for the free energy is that it can be compared
directly against specific heat measurements without needing to
assume a priori whether the Ehrenfest classification69 of the
transition is of first or second order, or the question of whether a
symmetry is broken.
Since a phase transition is defined as the point at which

F0P ¼ F0HO, a value for Uo that remains finite and positive at the
transition allows us to obtain an equation for the phase boundary
that has the elliptical form

ToðBÞ
ToðB ¼ 0Þ

� �2

þ Bz
Bo

� �2

¼ 1; (7)

where

2½Uo � ΦΔðB; TÞ� ¼ ΔγT2
o � μ�1

0 ΔχzzB
2
o: (8)

This form is verified by the experimental finding of an elliptical
form for the phase boundary for URu2Si2 in Fig. 5. A near constant
Uo corresponds to the phase boundary having a similar form to
that of valence transition systems51–53. Another important factor
in the elliptical shape of the phase boundary is the finding that the
excitation term ΦΔ(B, T) in Fig. 3b is a small contribution to the free
energy for T ≤ To, (see Methods) and rises to nearly the same value
at the phase boundary for all values of the applied magnetic field.

Pauli paramagnetic limiting
Our findings that the spin and charge excitations in Fig. 4 are
governed by the same gap (further supported by the reduction in
carrier number found in Hall effect measurements)61 and that the
phase boundary is primarily determined by a simple balance
between quadratic energy terms imply that the excitations
behave as though they were conventional quasiparticles. We
confirm this by showing that the HO phase boundary is Pauli
paramagnetically limited. Turning to the phase boundary given by
Eq. (7), we expect changes in the values of the Sommerfeld
coefficient Δγ ¼ π2

3 k
2
BΔDðεÞ and the spin susceptibility Δχzz ¼

μ0½g�effσμB�2ΔDðεÞ to be defined in terms of the same change in
the electronic density of states ΔD(ε)70. The ratio To/Bo,θ of the
transition temperature to the strength of the critical magnetic field
therefore depends solely on the effective quasiparticle g-factor

g�eff;θ ¼
2πkBffiffiffi
3

p
μB

To
Bo;θ

(9)

(assuming σ ¼ 1
2 pseudospins). Here, g

�
eff;θ � g�eff cos θ refers to the

angle-dependent effective g-factor (including its renormalization
by Landau Fermi liquid parameters) that accounts for Zeeman
splitting of the Landau-level states observed in quantum
oscillation experiments54 and the spin susceptibility of the Fermi
liquid state that competes with superconductivity within the HO
phase at low temperatures55. On inserting the previously
measured71 angle-dependent critical magnetic field Bo,θ of the
HO phase into Eq. (9), we obtain excellent quantitative agreement

Fig. 5 Elliptical phase diagram. a To(Bz) phase boundary of URu2Si2,
taken from the peak in the specific heat capacity at the
transition49,50 and the step in the resistivity at high fields74, where
Bz refers to the magnetic field applied along the crystalline c-axis.
The solid line represents a fit to Eq. (7). We neglect the additional
phase transitions at B≳ 36 T74. b Same data plotted in T2o-versus-B

2

coordinates.
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between the angle-dependent geff,θ and prior estimates of geff,θ
from quantum oscillation and Pauli-limited superconducting
upper critical field measurements in Fig. 654,55. These findings
are, again, consistent with Uo and Δ both being largely robust
against an increase in temperature within the HO phase.
Our finding that the critical field is determined by Eq. (9), and

not the conventional expression72,73

g�eff;θ ¼
ffiffiffi
2

p
kBΨ

μBBP;θ
(10)

for the Pauli paramagnetic limit defined in terms of an order
parameter Ψ, is another strong indication that the HO gap in
URu2Si2 is caused by hybridization rather than a conventional BCS-
like order parameter. While Eq. (10) has been shown to be valid for
the superconducting phase of URu2Si2

55, setting Ψ= Δ in Eq. (10)
would yield a 90% overestimate for the critical field of the
HO phase.

Quenched latent heat at the transition
The experimental observations presented thus far are suggestive
of a discontinuous phase transition in URu2Si2. The gap is found to
retain a large amplitude close to the phase transition (in Fig. 4),
with the pre-factor of the specific heat indicating that nf ≈ 2
electrons participate in its formation. The phase boundary is
further found to have the elliptical form (in Fig. 5) in common with
first-order valence transitions systems, and a critical field that is
Pauli paramagnetically limited (in Fig. 6). Experimentally, however,
the transition is found to be of first order only near the upper
critical field B0 of the HO phase47–49,64,74.
A key feature of URu2Si2 that distinguishes it from established

valence transition systems is the presence of quasiparticle
excitations across a gap. Whereas these excitations give rise to a
large contribution to the specific heat for T < To (see Methods)4,5,
their contribution to the free energy is comparatively small—too
small, in fact, to cause a significant departure of the phase
boundary from an ideal elliptical form in Fig. 5. The entropic
energy term SΔT is, however, found to be large enough to almost
completely quench the latent heat at the transition. This can be
demonstrated by comparing the relative free and internal
energies of the paramagnetic and HO phases in Fig. 7. Figure
7a, b shows the relative free energies of the paramagnetic and HO

phases obtained using Eq. (6), both in the absence (by artificially
setting ΦΔ= 0 in Fig. 7a) and presence (by setting Δ= 84 K in ΦΔ

in Fig. 7b) of quasiparticle excitations across the gap. The
parameter Uo has been arbitrarily adjusted so that ΔF ¼ F0HO �
F0P ¼ 0 at the known transition temperature.
We proceed to extract the relative internal energies of the two

phases in the absence (again, by artificially setting ΦΔ= 0 in Fig.
7c) and presence (again, by setting Δ= 84 K in ΦΔ in Fig. 7d) of
gap excitations. The relative internal energies are therefore given
by

U0
P ¼ 1

2ΔγT
2 � 1

2μ0
ΔχB2

U0
HO ¼ �Uo þ ΦΔðB; TÞ þ TSΔ;

(11)

where SΔ is the entropy associated with gap excitations given by
Eq. (5). Figure 7 shows that whereas the absence of gap
excitations ordinarily leads to a large latent heat ΔU at the
transition (see Fig. 7c), analogous to that encountered in valence
transition systems51–53, the presence of quasiparticle excitations in
Fig. 7d causes ΔU to be quenched in the vicinity of the transition;
we find that ΔU vanishes within ~3 K of the transition temperature
in URu2Si2.

Change in the Ehrenfest classification of the transition
Depending on the degree of suppression of the latent heat, the
Ehrenfest classification69 of the transition therefore has the
potential either to be of first or second order in URu2Si2.
The order of the transition is ultimately determined by the form
of the departure of the measured specific heat Cexp (blue circles in
Fig. 4) near the transition temperature from the ideal Arrhenius
form CΔ (blue line in Fig. 4) given by Eq. (3). This places
quantitative constraints on the manner in which the hybridization
gap and phase transition evolve as a function of temperature. In
Fig. 8, we extend the fits of CΔ (black curves) to the measured
specific heat Cexp (red, green, and blue curves) to different
magnetic field values, showing the departure of CΔ from Cexp to
become larger with increasing magnetic field.

Fig. 6 Polar g-factor plot. Angle θ-dependent g�eff;θ (magenta
diamonds) obtained from θ-dependent critical magnetic field Bo,θ of
the hidden-order phase71 using Eq. (9). This is compared against
prior g-factor estimates from spin zeroes in the quantum oscillation
amplitude54 (blue filled circles) and the upper critical field Bc2 of the
Pauli-limited superconducting state55 (open brown circles) within
the hidden-order phase. The solid black line represents
g�eff;θ ¼ g�eff cos θ, while the dotted line represents an isotropic g= 2.

Fig. 7 Free and internal energies. a Free energies according to Eq.
(6) in the absence of thermal excitations (i.e., ΦΔ= 0) at B= 0 for the
paramagnetic (P) and hidden-order (HO) phases, computed using
Δγ= 68mJmol−1K−2 (parameter similar to that found in URu2Si2 at
B= 0)5 and Uo ≈ 10 Jmol−1. At the transition To, F

0
P ¼ F0HO. b Free

energies according to Eq. (6) inclusive of thermal excitations,
computed using Δγ= 68mJmol−1K−2, Δ= 84 K, and Uo ≈ 8 Jmol−1.
c Internal energies according to Eq. (11) in the absence of thermal
excitations (i.e., ΦΔ= 0) at B= 0. d Internal energies according to Eq.
(11) inclusive of thermal excitations. The latent heat at the transition
is given by ΔU.
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One possibility is that Δ= 84 K (at B= 0) remains constant up to
the transition temperature, giving rise to a weakly first-order
phase transition (see Fig. 7b) in which the latent heat is similarly
small to that depicted in Fig. 7d. In this case, the latent heat must
approximately equate to the difference in heat capacity via

ΔUðTÞ �
Z

ðCexp � CΔÞdT (12)

in Fig. 4. On considering this as a possibility, we estimate ΔU ≈
4 Jmol−1. This value is somewhat smaller than the value ΔU ≈
8 Jmol−1 (shown as a pink square in Fig. 9) obtained from

ΔUðT ¼ ToÞ ¼ To Sexp � SΔ
� �

; (13)

in which we equate the experimental entropy Sexp � 0:2Rln 2
associated with excitations at the transition4,5 (see Methods) with
that SΔ obtained on inserting the fitted values of nf and Δ= 84 K
into Eq. (5). The difference between these estimates suggests that
the ~3 K range in temperature over which Cexp deviates from CΔ is
too large to be solely attributable to the latent heat of a first-order

phase transition. Figure 10a (details provided in the Methods)
shows that the difference between ΔU(T) given by Eq. (12) and ΔU
(T= To) and given by Eq. (13) occurs for all values of the applied
magnetic field.
An alternative possibility is that Δ(T) undergoes a small

reduction on the approach to the transition, leading to an
increase in the entropy (and number) of the quasiparticles excited
across the gap, and to a further reduction in the value of ΔU given
by Eq. (13). On considering such a possibility, Figure 9a shows that
there is a narrow range of Δ values for which ΔU is finite, giving
rise to a weakly first-order phase transition. Remarkably, however,
we find that there exists a value Δ ≈ 73 K for which ΔU vanishes
(blue circle in Fig. 9a), causing the Ehrenfest classification of the
transition to change from first to second order69. This value of Δ
therefore corresponds to a second-order critical point at the end
of a line of first-order phase transitions.
We can verify whether the deviation of the experimental

CexpðTÞ from CΔ is consistent with a small reduction in Δ(T) by

Fig. 8 Fits to the electronic specific heat. a The measured
electronic specific heat CexpðTÞ of URu2Si2 (data points from ref. 49,
after having subtracted γHO; see Methods) at different externally
applied values of the magnetic field, as indicated. Alternating blue,
red, and olive lines (color scheme maintained in subsequent panels)
represent interpolations of CexpðTÞ data points (black symbols),
while black lines indicate fits of CΔ given by Eq. (3) to CexpðTÞ made
up to a temperature Tmax, beyond which an exponential form no
longer fits the data. To show the degree of departure, the fitted lines
are extrapolated beyond Tmax. b A comparison of Δ values (pink
squares) obtained from fits of CΔ to CexpðTÞ at different magnetic
fields with Δ values (blue circles) obtained by setting ΔU= 0 in Eq.
(13). The black dashed line represents ΔðBÞ ¼ ΔðB ¼ 0Þ � ½g�effσ�μBB,
which is the expected behavior should Δ be reduced in a magnetic
field by Zeeman splitting with g�eff ¼ 2.6 and Δ(B= 0)= 84 K. The
inset shows nf values (open pink squares) obtained from fits of CΔ to
CexpðTÞ in (a). All error bars refer to the standard error of the mean.

Fig. 9 Vanishing latent heat. a Change in latent heat ΔU of the
phase transition between the paramagnetic and hidden-order
phases as a function of Δ according to Eq. (13), determined by
setting FHO= FP. For large Δ, a finite latent heat causes the transition
to be of first order (brown solid line). This is the case for the value of
Δ= 84 K (solid pink square) obtained from an Arrhenius plot made
for the regime T≪ To in Fig. 4. However, at a smaller value of Δ ≈
73 K, ΔU vanishes causing the transition to become of second order
(filled blue circle). At smaller values of Δ, the free energies can no
longer be made to intersect at T= To (dotted brown line). b A
comparison of the temperature-dependent Δ(T) (brown line)
estimated for B= 0 using Eq. (14) and the value of Δ (blue circle)
consistent with a second-order end point, identified by setting
ΔU= 0 in Eq. (13). Yellow shading indicates where the hidden-order
phase exists. Cyan shading illustrates schematically the possible
region where phase coexistence due to inhomogeneities of
fluctuations is observed.
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comparing the result (brown line in Fig. 9b) of the integral

ΔðTÞ � ΔC �
Z

0

ðCexp � CΔCÞ
nf R

T
ΔC

� �
e
ΔC
T dT (14)

(derived in the Methods, under the assumption that the deviation
of Cexp from the fitted CΔ is caused solely by a small reduction in
Δ) with the value Δ= 73 K at To(B= 0) (blue circle in Fig. 9b)
estimated by setting ΔU= 0 in Eq. (13). Consistency between
these two estimates at To strongly suggests that the HO transition
in URu2Si2 lies close to a critical point. We further find that Δ(T)
estimated using Eq. (14) exhibits a similar temperature-dependent
change to that obtained in point contact spectroscopy measure-
ments up to To

32,33.
On repeating the above analysis at different values of the

applied magnetic field (see Fig. 10b and Methods) in Fig. 8a, we
always find the same ≈10 K small difference between the values
(pink squares in Fig. 8b) of Δ obtained from fits of CΔ to the heat
capacity tail (see Fig. 8a) and the values (blue circles in Fig. 8b)
compatible with a second-order critical point in Eq. (13). Since the
blue circles collapse to zero before the pink squares on
approaching the critical field B0 in Fig. 8b, we can now understand
why the transition becomes of first order at B0.
We have therefore identified an intriguing situation where a

critical point can be realized in which a discontinuity occurs in Δ
that coincides with a vanishing (or nearly vanishing) change in the
latent heat, giving rise to an unconventional second-order phase
transition. The condition for observing a second-order transition
may be further relaxed if the separation in temperature between
the points at which ΔU and ΔF vanish is less than the width of the
phase transition, or in the presence of inhomogeneities or
fluctuations(see Methods)35. Our finding of a critical point has
the potential to shed light on prior reports of a pseudogap in
URu2Si2

34, which has further been argued35 to account for the

continued observation of a gap in point contact spectroscopy
measurements over a range of temperatures above To

32,33. The
small difference we find in internal energy between the HO and
paramagnetic phase at T > T0 further implies that the amplitude of
fluctuations of Δ needed for producing a pseudogap is
significantly smaller than that required for a BCS-like gap35 (see
Methods).

DISCUSSION
We return to the crucial question in URu2Si2 of whether a
symmetry within the HO phase is broken and whether this is
responsible for the observed second-order phase transition.
Several observations indicate the second-order phase transition
into the HO phase of URu2Si2

4,5 to have an unconventional origin.
The ratio of the gap magnitude is several times larger than that in
the BCS theory36–39, while the magnitude of the gap is weakly (if
at all) suppressed with increasing temperature. Moreover, the pre-
factor of the quasiparticle excitations in the specific heat indicates
highly degenerate features in the electronic density of states
comprising two electrons per formula unit, which are too large to
have arisen from Fermi surface nesting (see Methods)23,25–28. The
large number of states involved suggests instead that the HO
phase primarily concerns an electronically driven phase transition
in which a hybridization gap between the conduction and f-
electron states develops, as has also been inferred from tunneling
and neutron scattering experiments29–33. Such a scenario differs
from that where the amplitude of a broken symmetry order
parameter varies continuously at the transition temperature36–39.
Evidence for an electronic phase transition that modifies the

core occupancy of the 5f-electron states is provided by the phase
boundary having an elliptical form, closely resembling that found
in valence transition systems51–53, and by significant anomalies in
the lattice45–48. Pauli paramagnetic limiting of this phase further
implies that the electronic excitations retain their spin and charge
quantum numbers throughout the HO phase and across the
transition, both in weak and strong magnetic fields. Similarities in
the magnitude and anisotropy of the quasiparticle g-factor to that
previously observed suggest that these are the same quasiparti-
cles that are responsible for the observed quantum oscilla-
tions54,56 and that undergo pairing to produce a superconducting
state at low temperatures55,56,68.
While the near temperature-independence of the electronic

structure prior to a discontinuous phase transition with increasing
T and the elliptical form of the phase boundary are characteristic
features of a first-order transition of the type seen in valence
transition systems51–53, a first-order phase transition is found to
exist only at the high magnetic field extremity of the phase
boundary74, where the transition temperature goes to zero. The
single most significant factor that distinguishes URu2Si2 from
conventional valence transition systems is a semimetallic low
temperature phase hosting a large gap in the electronic density of
states. At finite temperatures, the robustness of the hybridization
gap with increasing temperature is shown to lead to a situation in
which the entropy of the quasiparticle excitations increases
exponentially with increasing temperature—the experimental
signature of which is an exponential tail in the specific heat that
spans a wide range in temperature and continues up to the phase
transition temperature4,5. We show that, by suppressing the latent
heat at the transition, the entropy of these excitations has the
effect of driving the otherwise discontinuous transition toward a
critical point. The combined results and arguments here point to
an almost perfect concealment of a first-order transition—turning
it continuous in all experimental observables, a condition that
could change the way we understand a broad variety of
condensed matter systems where order parameters have yet to
be identified or where reported broken symmetries cannot easily
be reconciled with the magnitude of the excitation gap1.

Fig. 10 Comparison of ΔU and Δ estimates. a A comparison of the
estimated change in internal energy ΔU(T) (lines) integrated using
Eq. (12), should the transition be of weakly first order, with ΔU(T=
To) (open squares) at the transition estimated using Eq. (13). b A
comparison Δ(T) (lines) estimated using Eq. (14), should the upturn
in Cexp be caused by a temperature-dependent gap, with Δ at the
transition (open circles) obtained by setting ΔU= 0 in Eq. (13). All
error bars refer to the standard error of the mean.
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METHODS
Possible indirect evidence for broken translational symmetry
While there may also be a separate gap related to a broken translational
symmetry order parameter, this gap does not appear to contribute
significantly to the point contact spectroscopy, nor to the excitations in the
heat capacity or the spin susceptibility, and therefore appears unlikely to
be the main driver of the phase transition at To. URu2Si2 is known to
become antiferromagnetic with a doubled unit cell under pressure1,23,
giving rise to a possible situation analogous to those in UPd2Al3

75 and U
(Pt1−xPdx)3

76 in which hybridized bands (and possibly a hybridization gap)
coexist with large moment antiferromagnetism. In URu2Si2, photoemission
and quantum oscillation studies have reported evidence for Fermi surface
nesting also to exist within the ambient pressure HO phase23,25–28. The
proposed nesting within the HO phase, however, pertains to small sections
of Fermi surface for which the number of gapped states24 is one or two
orders of magnitude smaller than the gapped states we identify to be
responsible for the quasiparticle excitations in specific heat measurements.
An alternative possibility is that the small Fermi surface pockets are the
pre-existing product of a Kondo semimetallic ground state, and that the
antiferromagnetism observed under pressure is secondary. The Fermi
surface pockets in URu2Si2 are sufficiently small and different in size and
small in number, that there is a reasonably large probability for them not
to intersect each other upon halving the Brillouin zone, in which case they
would be expected to remain largely unchanged on entering the
antiferromagnetic phase. Interpretations of quantum oscillations are also
constrained by the fact that whereas ambient pressure quantum oscillation
experiments can be used to infer the shapes of the Fermi surface pockets,
this has not been done under pressure23.

Specific heat background subtraction
Following the procedure outlined in previously published specific heat
measurements49,57, the phonon contribution is obtained from measure-
ments of ThRu2Si2 (see Fig. 2). After subtracting the phonon component,
the remaining heat capacity is assumed to be electronic in origin. At B= 0,
the exponential contribution to the heat capacity is observed to extend
down to ≈6 K, below which the specific heat is observed to have a residual
contribution C(T) ≈ γHOT.
In order to extract the form of Cexp attributable to excitations within the

HO phase, γHOT needs to be subtracted. This was initially done by
subtracting a constant γHO from the measured C/T5. More recent heat
capacity studies have shown that γHO increases slowly with decreasing
temperature. Moriya and Takimoto77 and van Dijk et al.57 attributed this
behavior to spin fluctuations, originating from the close proximity of URu2Si2
to an antiferromagnetic ground state. Throughout the manuscript, we have
assumed γHO(T) to have the form determined by van Dijk et al. (see Fig. 2).

Alternatives to a hybridization gap at T > To
Given the finding of a Fano line shape at T > To in scanning tunneling
microscopy measurements on URu2Si2

29,30, which is generally considered
to be consistent with a lattice of locally screened Kondo impurities, we
might expect the electronic contribution to C/T to have the form of a
Schotte–Schotte anomaly78. A Zeeman-split Schotte–Schotte anomaly has
been shown to provide a good approximation to the evolution of C/T over
a wide range of magnetic fields in the sister heavy fermion compound
CeRu2Si2 and at B > 40 T in URu2Si2

79. The various phase transitions in
URu2Si2 prevent us from verifying whether a Schotte–Schotte anomaly
describes the paramagnetic phase for B < 40 T and T > To, however. We
therefore make the simplifying assumption that Δγ and Δχzz are constants
in Eq. (6)—an approximation that appears to be valid up to ≈25 K in Fig. 2a.

Free energy contribution ΦΔ from gap excitations
While the ΦΔ term gives a prominent contribution to the specific heat
C4 ¼ �T ∂2Φ4

∂T2
within the HO phase, its overall contribution to the free

energy is smaller by a factor (Δ/T)2, making its contribution only a small
fraction of Uo. Nevertheless, the question remains as to whether ΦΔ causes
a discernible departure of the phase boundary from the elliptical form. To
test this, in Fig. 3b we plot ΦΔ (using the fitted parameters nf and Δ in Fig.
8) as a function of the reduced temperature T/To(B), finding it to reach a
similar value Φ ≈ 1.5 ± 0.1 Jmol−1 at the phase boundary at nearly all values
of the magnetic field. The largest deviation occurs for the highest magnetic
field datapoint at 32 T, but the fact that no corresponding deviation is
observed in Fig. 5 suggests that the deviation in Fig. 3b points to the

source of the error originating from the fitting of CΔ over a short range of T
at the highest magnetic field. The differences in the values of ΦΔ at the
transition appear to be too small to cause a significant departure of the
phase diagram from the elliptical form.

Departures of CΔ from Cexp approaching To
While the accuracy of fitting CΔ in Fig. 8 is likely to be reduced in strong
magnetic fields due to a reduction in the temperature range, the degree of
departure of the experimental specific heat Cexp from a simple exponential
form becomes significantly more pronounced. We consider two possible
sources of the departure of Cexp from CΔ. Latent heat change at a weakly
first order transition: in the case of a first-order phase transition, a fit of CΔ
given by Eq. (3) to the specific heat data in Figs. 2 and 8a is expected to
apply everywhere, except very close to the transition where the latent heat
ΔU causes an upturn in the heat capacity. There, we expect an integration
of the heat capacity minus the fit to yield a change in internal energy (ΔU
(T) in Eq. (12)) that is the same as the difference in internal energy between
the phases given by Eq. (13). We verify this not to be the case in Fig. 10a.
Change in Δ near a second-order phase transition: the alternative

possibility is that ΔU is tuned to zero near the transition, causing the
Ehrenfest classification of the transition to become of second order. One
way this can happen is if Δ(T) falls with increasing temperature as is, for
example, reported to occur in point contact spectroscopy measurements32.
Since the strength of hybridization is generally weakened as the lattice
spacing a between f-electron sites increases, the increase in the lattice
parameter a accompanying the transition into the high temperature
paramagnetic phase could be one possible factor in causing the transition
to become of second order. In this case, we would expect the reduction in
Δ(T) with increasing T to be responsible for the upturn in the specific heat
close to the transition temperature.
To estimate the effect of a temperature-dependent gap Δ(T) on C, we

reduce Eq. (2) to a more approximate form

Φ0 � �nf RTe
�ΔðTÞ

T

(given that e�
ΔðTÞ
T � 1), from which we obtain

C � nf Re�
Δ
T 1þ Δ2

T2
þ ∂Δ

∂T 1� Δ
T

� �		

�T ∂2Δ
∂T2

þ ∂Δ
∂T

� �2
 (15)

after double differentiation. Assuming the limits Δ/T≫ 1 and Δ/T≳ ∂Δ/∂T,
we obtain the approximate result

C � CΔ � nf RTe
�Δ

T
Δ

T
∂Δ

∂T

� �
; (16)

which we rearrange to yield Eq. (14), from which Δ(T) can be estimated
numerically (lines in Fig. 10b).
Meanwhile, the smallest permissible equilibrium value of Δ is that

corresponding to an end point in Fig. 9a. We determine this value by
setting ΔU= 0 in Eq. (13)—yielding an equation

SΔðΔ; ToÞ ¼ Sexp (17)

that can be solved for Δ(To(B)), the results of which are plotted in Fig. 10b
(circles). Here, To(B) refers to the value of the transition temperature in a
magnetic field. Consistency between the value of Δ(T) at To(B) (i.e., the
highest temperature limit of the lines in Fig. 10b) estimated using Eqs. (16)
and (14) and that obtained independently for a second-order end point by
solving Eq. (17) suggests that Δ(T) retains a near constant value until close
to the transition, but then ultimately falls by ≈10 K to produce a second-
order end point. For smaller values of Δ, the free energy curves (e.g., that in
Fig. 7b) given by Eq. (6) cannot be made to intersect at T= To(B). Only
fluctuations of Δ are therefore possible once T > To(B), and their existence is
strongly suggested by the near-degeneracy in the free energy curves in
this regime. This is also the same regime in which a pseudogap or
crossover is observed in spectroscopic experiments32–34,59.

Changes in internal energy
In the case of a BCS order parameter, we would expect Uo ¼
1
2DðεÞðkBΔÞ2 � 3

2π2 ΔγΔ
2 (noting that Δ is expressed in degrees kelvin),

from which we estimate Uo ≈ 73 Jmol−1. The fact that this is much larger
than the actual value of Uo ≈ 8 Jmol−1 in Fig. 7b again reinforces our prior
finding that the observed gap does not originate solely from states at the
Fermi surface. An alternative scenario in the case of a hybridization

N. Harrison et al.

8

npj Quantum Materials (2021)    24 Published in partnership with Nanjing University



transition is that Uo is the consequence of a difference in energy between
competing electronic configurations (possibly with different numbers of 5f
electrons confined to the atomic core), and Δ= 84 K is determined
independently by V. If Δ does at some point change, then one would
expect the dependence of Uo on Δ to be parabolic to lowest order, so that
Uo ¼ Uo;0 � U0ðΔ� Δ0Þ2, where U0 � 3

2π2 Δγ and Uo,0 is the low tempera-
ture value valid for Δ= Δ0; here, Δ0 refers specifically to the value of Δ
determined from lower temperature fits in Fig. 4.

Fluctuations and pseudogap formation
Owing to the likely discontinuous nature of the change in Δ, an interesting
situation arises in which fluctuations can cause phase coexistence to occur
at a second-order phase transition. One possible source of fluctuations or
inhomogeneities is the proximity to the antiferromagnetically ordered
phase under pressure35, which has already been shown to give rise to a
tiny volume fraction of antiferromagnetic order within the HO phase1.
Indeed, one of the more unusual discoveries in recent spectroscopy
experiments32–34,59 in URu2Si2 is the emergence of what appears to be a
coexistence region, pseudogap, or crossover at temperatures T > To, which
also has the unusual property (depending on the experimental technique)
of the gap maintaining a finite amplitude on passing through T= To,
despite the phase transition. The discontinuous change in Δ that we have
identified implies that fluctuations can give rise to regions with a full gap
amplitude (73 ≤ Δ ≤ 84 K) coexisting with regions with an absent hybridiza-
tion gap in the paramagnetic state (see Methods). Such a scenario is made
likely by the very small difference in free energy between the fully gapped
HO state and the paramagnetic state (see Fig. 7b) over a range of
temperatures T > To. The normal state maximum at ~22 K in Fig. 2a is
indeed consistent with a heavily broadened gap of ~73 K.
By considering a BCS-like order parameter, Haraldsen et al.35 were able

to simulate a pseudogap, but with the caveat that the amplitude σΔ of the
order parameter fluctuations was required to be ≈60% of Δ, bringing into
question the viability of a sharp phase transition in URu2Si2. In the present
work, the extreme sensitivity of the transition to small changes in Δ means
that a pseudogap over a substantial region of T can be realized with
fluctuations that are only a small fraction of Δ. Gap fluctuations of
amplitude σΔ produce a statistical broadening of the HO free energy of size

σΔF � σΔ ´
∂ΦΔ

∂Δ

����
���� � nf RσΔ

e�
Δ
T

1þ e�Δ
T

: (18)

We find that σΔ/Δ= 5% is all that is required for σΔF to become
comparable to the ≈0.5 Jmol−1 difference in free energy between the
curves at T ~ 20 K in Fig. 7b.
Given the lattice changes at the transition, fluctuations would further be

expected to affect the lattice dynamics of URu2Si2. Thermal expansion
measurements have previously shown that the HO and paramagnetic
phases have different values of the c/a ratio (the ratio of the c-axis to the a-
axis lattice parameters)45,46,48, implying that this ratio is coupled to the
strength of the hybridization and Δ. Fluctuations of Δ within the
pseudogap region are therefore likely to lead to a considerable softening
of the crystalline lattice with respect to the A1g mode. A lattice softening of
this nature has recently been reported in resonant ultrasound spectro-
scopy experiments80, although the existing interpretation has assumed
strictly localized 5f electrons—in effect, neglecting the extreme sensitivity
of the f-electron core occupancy and hybridization strength to volume
changes and lattice distortions. Because it preserves the fourfold symmetry
of the lattice, the A1g mode is the only one (other than a change in volume)
that couples to the degree of delocalization of the 5f electrons (and
thereby the strength of Δ) uniformly across all sites.
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