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Quantum Monte Carlo study of lattice polarons in the
two-dimensional three-orbital Su–Schrieffer–Heeger model
Shaozhi Li 1,2 and Steven Johnston 1,3✉

The electron–lattice interaction gives rise to a rich set of phenomena in quantum materials. Microscopically, this interaction often
arises from the modulation of orbital overlaps; however, many theoretical studies neglect such couplings. Here, we present an exact
diagonalization and determinant quantum Monte Carlo study of a three-orbital Su–Schrieffer–Heeger (SSH) model, on a two-
dimensional Lieb lattice and in the negative charge transfer regime. At half-filling (one hole/unit cell), we observe a bipolaron
insulating phase with a bond-disproportionate lattice. This phase is robust against moderate hole doping but is suppressed at large
hole concentrations, leading to a metallic polaron-liquid-like state with fluctuating patches of local distortions. We also find an
s-wave superconducting state at large hole doping that primarily appears on the oxygen sublattice. Our work provides a non-
perturbative view of SSH-type couplings in two dimensions with implications for materials where such couplings are dominant.
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INTRODUCTION
Lattice dimerization, referring to an alternation of two lattice
constants, occurs in many quantum materials, including the
organic charge-transfer solids1–3, and perovskites systems like the
rare-earth nickelates RNiO3

4–6, and the high-temperature (high-Tc)
superconducting bismuthates Bi1−xKxBiO3 (BKBO)

7,8. Lattice dimer-
ization in one-dimension was initially described by the
Su–Schrieffer–Heeger (SSH) model1, in which the atomic motion
modulates the overlap integrals between neighboring atoms.
Recently, SSH-like models have attracted further attention due to
the fact that they can produce highly mobile polarons with light
effective masses9, generate robust phonon-mediated pairing10,
and even stabilize and control the location of a type-II Dirac
point11. SSH interactions are also believed to be dominant
mechanism for electron–phonon (e–ph) interactions in materials
like the high-Tc cuprates

12,13.
The SSH model has primarily been studied in one dimension

(1D)9,10,14–22. But it is also necessary to study this model in higher
dimensions in the context of materials like RNiO3 and BKBO. In this
work, we focus on BKBO and study how the SSH-type e–ph
interaction produces both insulating and superconducting states
as a function of doping. BKBO is in the so-called “negative charge
transfer” regime23–26, where holes self-dope from the cation to the
ligand oxygen atoms. The subsequent hybridization between the
cation and the oxygen atoms then leads to a sizable e–ph
interaction6,7, which may be further enhanced by correlations27,
and is believed to drive a high-temperature metal-to-insulator
(MIT) transition. Here, the insulating state has a dimerized (or
“bond disproportionated”) structure with expanded and collapsed
BiO6 octahedra alternating through the material, and pairs of
holes condensed into the molecular orbitals formed from the
ligand oxygen orbitals with A1g symmetry6,7,25,26,28,29 (see also
“Methods” section). The relevant model describing this situation is
a multiorbital SSH model; however, little is currently known about
the physics of such models due to a lack of suitable approaches
for studying them in dimensions higher than one.

To address this problem, we carried out a combined
determinant quantum Monte Carlo (DQMC) and exact diagaona-
lization (ED) study of a two-dimensional (2D) multiorbital model
with SSH-type interactions. In this case, our DQMC simulations are
made possible by the development of a fast update procedure for
local spacetime moves of the phonon fields (see “Methods”
section). Having BKBO in mind, we then deployed this approach to
study a three-orbital SSH model defined on a Lieb lattice whose
orbital basis consists of a Bi 6s orbital and O 2px and 2py orbitals. In
this case, we freeze the heavier Bi atoms into place and restrict
lighter O atoms to move along the bond directions, and study the
model using non-perturbative DQMC and ED. Further details
about the model, and the changes necessary for the DQMC
algorithm are provided in the “Methods” section and in the
supplementary materials (see Supplementary Note 1 for more
detailed results).

RESULTS
An overview of the phase diagram
An overview of the phase diagram inferred here is presented in
Fig. 1. Near half-filling (one hole/unit cell), we find that the system
is a bipolaronic charge-density-wave (CDW) insulator with a bond-
disproportionated structure, similar to what is observed in BKBO30.
Hole doping suppresses the insulating phase, giving way to a state
where the lattice distortions have short-range correlations. At high
doping levels, we find evidence for a metallic phase where holes
are strongly correlated with local structural distortions, forming a
polaron-liquid-like phase. Finally, at low temperatures, we find
s-wave superconducting tendencies that form primarily on the
oxygen sublattice. Our results are in qualitative agreement with
the phase diagram of the bismuthate superconductors and
provide theoretical support for a polaronic view of BKBO and
other negative charge transfer oxides. Our simulations are
performed in 2D, and quantitative differences may appear when
simulating larger systems for the same model in three-dimensions
(3D). But we believe that the underlying physics of the system
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should be the same in both cases. In what follows, we discuss the
numerical results leading to this phase diagram and what it means
for our understanding of quantum materials dominated by SSH-
type interactions.

A molecular orbital viewpoint
Before proceeding to our DQMC results, we present a simplified
molecular orbital analysis of a Bi2O4 cluster, which provides a more
transparent view of the physics. We refer the reader to ref. 25 for a
similar discussion of the 3D case from an ab initio perspective.
(Note that ref. 25 uses electron language whereas we use hole
language.)
The first step of our analysis is to expand the simple square unit

cell to allow for two distinct Bi 6s orbitals and four O 2p orbitals, as
indicated by the black dashed frame in Fig. 2. This expanded cell

defines the cluster after we apply periodic boundary conditions.
The two Bi 6s orbitals are denoted as s1 and s2. Next, we transform
the four ligand oxygen orbitals into a molecular orbital basis (see
“Methods” section). We also perform an analogous transformation
for the phonon operators. Fig. 3a–d indicate the phases of the
ligand 2pδ (δ= x, y) orbitals for each molecular orbital using ±
signs, and the black arrows indicate the displacement patterns of
the transformed phonon eigenmodes. The bond disproportio-
nated structure that forms in the model corresponds to a coherent
state of the optical xr;Ls phonon modes in this representation,
while the xr;Lx and xr;Ly modes form the basis for the acoustic
phonon modes.
We can glean several insights into the problem from this cluster

model. In the atomic limit (tsp= tpp= 0) and in the negative
charge transfer regime (ϵp < ϵs in hole language), the four
molecular orbitals are degenerate, as shown in Fig. 3e. This
degeneracy is lifted by the orbital overlaps: a nonzero tpp raises
(lowers) the onsite energy of the Ls (Ld) molecular orbital, while a
nonzero tsp hybridizes the Bi s and molecular Ls orbitals to form
bonding (sLs), nonbonding ðsLsÞ0, and antibonding ðsLsÞ� states.
Here, the energy of the bonding state is lowered by 2tsp relative to
the atomic values such that the two holes fill this state at half-
filling, as shown in Fig. 3f. This ground state charge distribution is
analogous to the one inferred for 3D bismuthates in ab initio
calculations25 and ARPES measurements26.
The impact of the e–ph coupling is also evident from the form

of the transformed Hamiltonian; holes hop between the Lγ
molecular orbital and the Bi sites while exciting phonon
eigenmodes with the same symmetry. At half-filling, the holes in
the (sLs) bonding state will, therefore, excite the breathing phonon
mode of the surrounding oxygen atoms. In an extensive system,
this coupling can lead to a static breathing distortion of the lattice
after a spontaneous symmetry breaking selects one of the Bi
sublattices as the center of the compressed plaquettes. Upon
doping, the additional holes will occupy the Ld and Lx,y orbitals,
where they couple to the orthogonal phonon modes. Since the
superposition of the individual modes determines the total
displacement of the oxygen atoms, the breathing distortion will
relax as the other modes are excited, even though the (sLs) holes
remain coupled to the xLs phonons.
To confirm this physical picture, we diagonalized the trans-

formed Hamiltonian HM on a Bi2O4 cluster and evaluated several
observables in the grand canonical ensemble with β= 14.56/tsp,
Ω= tsp, and μ was adjusted to set the particle number. When
diagonalizing this model, we included up to Nph= 5 quanta for
each phonon mode, which was sufficient to obtain converged
results for our choice of parameters.
Figure 4 summarizes the ED results. Figure 4a and b plot the

evolution of the hole density hn̂Lγ i on each molecular orbital, and
the displacement fluctuations of each eigenmode
δðxδÞ ¼ hx̂2Lδi � hx̂Lδi2, respectively, as a function of the hole
concentration. As expected, holes primarily occupy the Ls orbital at
half-filling. (The missing hole weight is split between the two Bi
sites and is not shown.) At the same time, the displacement of the
xLs mode fluctuates significantly, while the remaining eigenmodes
have fluctuations consistent with zero point motion. This behavior
is also reflected in the expectation value of the phonon numbers
(Fig. 4c), where the xLs mode is excited while the remaining
phonon modes are in their ground state. Note that we do not
observe a distortion hx̂Lsi≠ 0 due to the absence of any symmetry
breaking in the cluster; however, our DQMC simulations
performed on larger lattices do find such a state.
When additional holes are introduced they occupy the Ld, Lx,

and Ly molecular orbitals, as expected based on the level diagram
shown in Fig. 3g. In this case, the Ld orbital has a larger hole
occupation due to the finite value of tpp. At the same time, δðxLd Þ,
δðxLx Þ, and δðxLd Þ also increase linearly and the expectation value
of the number of phonon quanta for these modes grows. Both the
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Fig. 1 The temperature–hole concentration (T− n) phase diagram
of the 2D three-orbital SSH model inferred from our results. We
observe charge-density-wave (CDW), superconducting (SC), and
polaronic metal phases. The solid square and triangular symbols
indicate the transition temperatures estimated for the CDW and SC
phases (see main text). The open circles indicate all points where
explicit DQMC calculations were performed. Here, we have scaled
temperature axis by a factor of 4.5 to be consistent with the phase
diagram of BKBO26.
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Fig. 2 The lattice structure of the three-orbital model.
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displacement fluctuations and the number of excited phonon
quanta are comparable for the four phonon modes once the hole
doping reaches hn̂i= 2.4 – 2.6. Finally, the introduction of addi-
tional holes slightly suppresses the magnitude of δðxLsÞ and the
total number of xLs modes.
Our ED calculations suggest that hole doping induces a

relaxation of the breathing distortion of the lattice that is
dominant at half-filling. However, it does so by exciting the
orthogonal phonon modes rather than by suppressing the
number of xLs quanta in the system. In this context, it is interesting
then to determine if the Ls holes and xLs modes can be viewed of

as a composite object (i.e., a polaron). We checked this idea in our
ED calculations by computing the expectation value of the
polaron hN̂pi and bipolaron hN̂bpi number operators (see the
“Methods” section). Figure 4d plots the doping evolution of
the hN̂pi and hN̂bpi. We find that the ground state has a significant
amount of polaron and bipolaron character, which persists to
higher doping levels. Our ED results strongly suggest that the
system hosts polaronic carriers, where holes occupying the Ls
molecular orbitals are bound to local xLs modes.
The molecular orbitals discussed here will of course form bands

in the extended system. Nevertheless, much of our analysis still
applies in this case. To illustrate this, Fig. 5 plots the non-
interacting band structure of our model in the insulating phase,
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where the dimerized structure has been introduced by modifying
the hopping integrals as tijsp ¼ tsp½1þ ð�1Þiþj ´ 0:3�. Figure 5a and
b provide fat band plots of the Ls and Ld molecular orbital weight,
respectively, while Fig. 5c plots the total and orbitally resolved
density of states (DOS). As can be seen in Fig. 5a, the occupied
band below the Fermi level (E= 0) at half-filling is the bonding
(sLs) band, which couples to the breathing motion of the lattice.
The first band above the Fermi level is mostly of Ld and Lx,y orbital
character, such that doped holes will predominantly couple to the
corresponding phonon modes.

DQMC simulations of an extended lattice
The molecular orbital picture presented in the previous section
provides an intuitive way of understanding the physics of the
model. With this in mind, we now turn to DQMC simulations on an
extended cluster with N= 4 × 4 Bi atoms (48 orbitals in total).
We first examine the insulating phase that forms at hn̂i ¼ 1.

Figure 6b–d show the lattice displacement correlation functions
hX̂r;x X̂0;xi; hX̂r;y X̂0;yi, and hX̂r;yX̂0;xi, as a function of position at
temperature ðβtspÞ�1 ¼ 0:1, which shows evidence of a static
bond disproportionated structure. For example, both hX̂r;xX̂0;xi
and hX̂r;yX̂0;yi alternate in sign following a checkerboard pattern
while hX̂r;y X̂0;xi alternates in sign along x- and y-directions but is
constant along the diagonal. These results are consistent with the
breathing distortion pattern sketched in Fig. 6a, as well as the
observed lattice distortion that appears in the insulating phase of
the bismuthates31–33.
Remaining at hn̂i ¼ 1, we now examine the temperature

evolution of this phase. Fig. 7a plots the conductivity weight σ

(β/2) and orbital-resolved spectral weight as a function of
temperature ðβtspÞ�1 (see section “Methods”). At high-
temperature σ(β/2) (black dots) initially increases as the tempera-
ture is lowered until reaching a maximum at ðβtspÞ�1 � 0:2 before
it rapidly falls off signaling the formation of an insulating state.
The orbital-resolved spectral weight βGγ,γ(r= 0, τ= β/2), where γ is
the orbital index, also reflects this behavior. Above (βtsp)

−1= 0.2,
βGs,s(r= 0, β/2) increases as temperature decreases while
βGpx=y ;px=y ðr ¼ 0; β=2Þ remains relatively flat. Below ðβtspÞ�1 ¼ 0:2,
however, the spectral weights of all three orbitals decrease rapidly
as the insulating state forms, signaling the removal of spectral
weight from the Fermi level.
The formation of charge order in the insulating phase can also

be observed in the charge susceptibility χCγ;γðqÞ. Figure 7b plots
the temperature evolution of χCγ;γðqÞ at q= (π, π), corresponding
to the real space ordering inferred from Fig. 6. Below
ðβtspÞ�1 ¼ 0:2, the charge correlations rapidly increase on the s
orbital, while there is little change in the signal on the p orbitals.
The transition temperature for the CDW can be estimated using
the temperature at which the correlation length equals the lattice
size (see Supplementary Note 3 for more detailed results). At half
filling, the transition temperature is about ðβtspÞ�1 ¼ 0:15. We
stress that such an estimate is likely an overestimate, as finite size
effects can be quite strong on small clusters34.
The behavior observed in Fig. 7 implies that the average density

on the O sublattice remains uniform above and below the MIT
transition, while a density modulation forms on the Bi sites. We
confirm this picture in the inset of Fig. 7b, which plots the equal
time Bi–Bi charge density along the high symmetry directions of
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the cluster, where we find a clear (π, π)-density modulation. The
fact that the charge order signal appears in the Bi orbital
component can be understood once one recognizes that all of the
oxygen orbitals in the system are equivalent, even in the bond
disproportionated structure. In this case, the breathing distortions
increase the hybridization between the Ls orbital and one of the Bi
s orbitals at the expense of the other, creating a density
modulation on the two Bi sites. From a charge disproportionation
point of view, however, the density modulation shown in the inset
of Fig. 7b corresponds to a charge transfer of only ~0.1 holes
between the two Bi sites.
Next, we study effects of hole doping on the MIT at fixed

temperature ðβtspÞ�1 ¼ 0:1. Figure 8a plots σ(β/2) as a function of
filling, where it increases upon hole doping until hn̂i � 1:5, and
after which it levels off within error bars, indicating metallic
behavior. Moreover, we also find evidence for the formation of
mobile polarons in this region, where holes are bound to local
breathing distortions of the oxygen sublattice. This behavior can
be seen by examining the polaron operator p̂ðrÞ ¼ x̂r;Lsðn̂r;s þ n̂r;LsÞ,
which is analogous to the operator considered during our ED
analysis. Figure 8b plots the doping evolution of the number of
polarons given by 1

N

P
rhp̂ðrÞi, where it decreases as additional

holes are introduced but remains nonzero even at the largest
dopings. We conclude that a finite number of polarons are present
in the system at all dopings, which are formed from holes in the Ls
orbitals and local breathing phonons.
Considering our DQMC and ED results, we suggest that the

suppression of long-range polaron and bipolaron correlations with
hole doping should be induced by introducing other phonon

modes rather than directly suppressing the breathing phonon
mode. We also note that the orbital character and electronic
structure of BaBiO3 computed with ab initio methods share many
similarities to the plot shown in Fig. 5. This fact suggests that our
analysis can be extended to the bulk 3D material.
To explore the doping evolution of polarons in real space, we

measured the staggered polaron correlation function
hχPðrÞi ¼ ð�1Þrxþry hp̂ðrÞp̂ð0Þi, which is plotted in Figs. 9a–d for
selected hole concentrations. At half filling, 〈χP(r)〉 is positive for all
r, indicating that the polarons are frozen into a long-range (on the
length scale of the cluster) two-sublattice order, consistent with
the patterns inferred from Figs. 6 and 7. With increasing hole
concentrations, 〈χP(r)〉 decreases at the larger distances, indicating
an overall relaxation of the bond disproportionated structure but
the persistence of short-range correlations. Such behavior may be
indicative of nanoscale phase separation35,36; however, studies on
large clusters will be needed to clarify this issue. Finally, in the
high doping region, where the system is metallic (e.g. hn̂i>1:44),
the correlations become very short-ranged and extend up to one
or two lattice constants at most. The observation of a finite
number of polarons at high doping, but with short-range structure
in real space is consistent with the proposal that a significant
number of holes remain in the Ls orbitals, where they locally excite
the breathing modes of the lattice, creating a polaronic metallic
phase with fluctuation local breathing distortions.
We also examined the doping evolution of bipolarons in the

system by measuring the bipolaron number, defined as
1
N

P
rhĝðrÞi, where ĝðrÞ ¼ x̂r;Lsðn̂r;s;" þ n̂r;Ls ;"Þðn̂r;s;# þ n̂r;Ls ;#Þ, and

the staggered bipolaron correlation function hχBPðrÞi ¼
ð�1Þrxþry hĝðrÞĝð0Þi, as a function of doping. When computing
the latter quantity, we considered the signal on the Bi site by
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keeping only the terms proportional to n̂r;s;"n̂r;s;#. (This simplifica-
tion is necessary due to the many number of terms generated by
the Wick contraction of the product of ĝðrÞ operators. The fact that
we see excess charge density on the Bi sites at the center of a
breathing distortion provides some justification for this
simplification).
Figure 8b plots the doping evolution of the bipolaron number

operator. As with the polaron number, it is largest near half-filling
and decreases slowly with doping. At large hole concentrations,
however, it is still finite, suggesting that a significant number of
bipolarons are present in the system. The staggered bipolaron
correlation function is plotted in Fig. 9e–h. At hn̂i ¼ 1, the
bipolaron correlations are clear and long-ranged on the scale of
the cluster. This result supports the interpretation that the
insulating phase is a static bipolaron lattice. As the hole
concentration increases, we find that the bipolaron correlations
are entirely suppressed at all length scales, while a finite number
of bipolarons are present in the system, as indicated in Fig. 8b.
These results can again be easily understood if the metallic phase
is a polaron liquid.
This scenario raises questions regarding possible superconduc-

tivity. We, therefore, computed the pair field susceptibility χscγ .
Since χscpx and χscpy are the same, we use χscp to denote pairing on the
O atoms. Here, we find that the s-wave pairing is dominant, which
is perhaps not surprising given that pairing is mediated solely by
the e–ph interaction. Figure 10 plots χscγ as a function of
temperature at hn̂i ¼ 1:59, and compares it against the dominant
charge correlations χC(π, π/2) at this doping. All three suscept-
ibilities increase with decreasing temperature, but χscp dominates
below ðβtspÞ�1 � 0:04. The superconducting Tc can be crudely
estimated by fitting the inverse pairing susceptibility data with a
functional form ðχscÞ�1 ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T � T c

p
. This functional form captures

the rapid variation in ðχscÞ�1 expected as T→ Tc
34, while other

functional forms such as linear extrapolation would not. Extra-
polating ðχscp Þ�1 to zero (as shown in the inset), yields Tc ≈ 382 K
[ðβtspÞ�1 � 0:0158]. As with the CDW, we stress that this value is
artificially high, due to the large value of Ω used in our calculations
and likely finite size effects. Nevertheless, our results provide

evidence that the bipolaronic-rich metallic phase has a super-
conducting ground state. The pairing susceptibility is suppressed
slightly at lower hole dopings, suggesting the presence of a
superconducting dome.

DISCUSSION
We have introduced a quantum Monte Carlo approach for
studying bond phonons with SSH-type e–ph couplings in higher
dimensions. While our approach has broad applications to many
materials, we have used it to study a 2D three-orbital SSH model in
the negative charge transfer regime. We obtained a phase
diagram consistent with the bismuthate high-Tc superconductors.
At half filling, we find a bond disproportionated state. Upon
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Fig. 9 The evolution of (bi)polaron correlations as a function of hole concentration. a–d Staggered polaron correlation function 〈χP(r)〉 and
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hole-doping, this state gives way to a polaron-liquid-like state with
short-range correlations, consistent with proposals for nano-scale
phase separation or strongly fluctuating lattice polarons in doped
BKBO35–40. We also find s-wave superconducting tendencies,
which primarily form on the oxygen sublattice. It would be
interesting to contrast our results with those obtained from an
effective single band model to fully gauge the importance of the
oxygen orbitals.

METHODS
Model
The unit cell for our multiorbital SSH model contains one Bi 6s orbital and
the oxygen 2px,y orbitals oriented along each of the Bi–Bi bond directions,
as shown in Fig. 1a. In what follows, the unit cells are indexed by r= nxa+
nyb, where a= (a, 0), b= (0, a) are the primitive lattice vectors along x- and
y-directions, respectively, a is the Bi–Bi bond length (and our unit of
length). In addition, δ; δ0 ¼ ±x, ±y will be used to identify the oxygen
atoms surrounding each Bi.
In the SSH model, the atomic displacements modulate the hopping

integrals between the Bi and O atoms as tspðQδ � αûr;δÞ, where we have
introduced the shorthand ûr;x ¼ X̂r;x , ûr;�x ¼ X̂r�a;x , ûr;y ¼ X̂r;y , and
ûr;�y ¼ X̂r�b;y . The Hamiltonian is written as H= Hel+ Hlat+ Hint, where

Hel ¼ �tsp
P

hr;δi;σ
Qδs

y
r;σpr;δ;σ þ h:c:

� �
þ tpp

P
hr;δ;δ0 i;σ

Qδ;δ0p
y
r;δ;σpr;δ0 ;σ

þP
r;σ

ðϵs � μÞn̂sr;σ þ ðϵp � μÞðn̂pxr;σ þ n̂
py
r;σÞ

h i
;

(1)

Hlat ¼
X
r

P̂
2
r;x

2M
þ KX̂

2
r;x þ

P̂
2
r;y

2M
þ KX̂

2
r;y

0
@

1
A (2)

Hint ¼ αtsp
X
hr;δi;σ

ûr;δs
y
r;σpr;δ;σ þ h:c:

� �
: (3)

Here, 〈…〉 denotes a sum over nearest-neighbor atoms, and the operators
syr;σðsr;σÞ and pyr;δ;σðpr;δ;σÞ create (annihilate) spin σ holes on the Bi 6s and O
2pδ orbitals, respectively. To simplify the notation, we have introduced
shorthand notation pr,−x,σ= pr−a,x,σ and pr,−y,σ= pr−b,y,σ. The operators
n̂sr;σ ¼ syr;σsr;σ and n̂pαr;σ ¼ pyr;α;σpr;α;σ are the number operators for s and pα
(α= x, y) orbitals, respectively. Finally, ϵs and ϵp are the onsite energies; μ is
the chemical potential; tsp and tpp are the Bi–O and O–O hopping integrals
in the cubic crystal; and α is the e–ph coupling constant. The phase factors
are Qx=Qy=−Q−x−Q−y= 1, and Q±x,±y=Q±y,±x=−Q±x,∓y=−Q∓y,±x= 1.
The motion of the O atoms is described by the atomic displacement
(momentum) operators X̂r;α (P̂r;α). Here, M is the oxygen mass and K is the
coefficient of elasticity between each Bi and O atom, and each O is linked
by springs to its neighboring Bi atoms. Thus, bare phonon frequency is
Ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2K=M
p

.

Parameters
We adopted tsp= 2.08, tpp= 0.056, ϵs= 6.42, and ϵp= 2.42 (in units of eV),
which were obtained from DFT calculations of BaBiO3

7. We also adopted
Ω ¼ ffiffiffi

2
p

tsp and α= 4a−1. For these parameters, the DQMC calculations

give 1
N

P
rhX̂r;xi ¼ 1

N

P
rhX̂r;yi ¼ 0 and 1

N

P
rhX̂

2
r;xi ¼ 1

N

P
rhX̂

2
r;yi ¼

0:57ða=4Þ2 ¼ 0:0356a2 at half-filling, indicating that the oxygen atoms
do not cross the bismuth atoms during the DQMC sampling. Our
parameters are therefore in a physically reasonable region. (Here, we are
limited to large Ω by long autocorrelation times41). Finally, our DQMC
calculations are carried out on a square lattice with N= 4 × 4 Bi atoms (48
orbitals in total).

Transformation to the molecular orbital basis
The molecular orbital basis can be obtained after expanding the unit cell to
allow for two distinct Bi 6s orbitals and four O 2p orbitals, as shown in Fig. 2.

The molecular orbital basis is then obtained by defining

Lr;s;σ ¼ 1
2
ðpr;x;σ þ pr;y;σ � pr;�x;σ � pr;�y;σÞ (4)

Lr;d;σ ¼ 1
2
ðpr;x;σ � pr;y;σ � pr;�x;σ þ pr;�y;σÞ (5)

Lr;x;σ ¼ 1ffiffiffi
2

p ðpr;x;σ þ pr;�x;σÞ (6)

Lr;y;σ ¼ 1ffiffiffi
2

p ðpr;y;σ þ pr;�y;σÞ: (7)

(The Ls and Ld operators correspond to the A1g and Eg orbitals in ref. 25.) It is
also useful to define oxygen displacement operators in the new basis as

x̂r;Ls ¼
1
2
ðûr;x þ ûr;y � ûr;�x � ûr;�yÞ (8)

x̂r;Ld ¼
1
2
ðûr;x � ûr;y � ûr;�x þ ûr;�yÞ (9)

x̂r;Lx ¼
1ffiffiffi
2

p ðûr;x þ ûr;�xÞ (10)

x̂r;Ly ¼
1ffiffiffi
2

p ðûr;y þ ûr;�yÞ; (11)

with analogous definitions for the momentum operators.
After introducing the new basis and applying periodic boundary

conditions, the Hamiltonian HM for the Bi2O4 cluster is HM ¼ HM
elþ

HM
lat þ HM

int, where

HM
el ¼ �2tsp

P
σ

sy1;σLs;σ � sy2;σLs;σ þ h:c:
� �

þ ðϵs � μÞP
σ

n̂s1σ þ n̂s2σ
� �

þðϵp � μÞ P
σ;α¼x;y

n̂Lασ þ ðϵp þ 2tppÞ
P
σ
n̂Lsσ þ ðϵp � 2tppÞ

P
σ
n̂Ldσ

(12)

HM
lat ¼

X
γ

1
2M

p̂2Lγ þ Kx̂2Lγ

� �
(13)

HM
int ¼ αtsp

X
γ;σ

x̂Lγ sy1;σLγ;σ þ sy2;σLγ;σ þ h:c:
� �

: (14)

Here, the sums on γ are taken over γ= s, d, x, y and n̂Lγσ ¼ Lyγ;σLγ;σ .
The polaron N̂p and bipolaron N̂bp number operators for the

transformed cluster Hamiltonian are defined as

hN̂pi ¼ hðn̂s1 þ n̂Ls Þx̂Ls � ðn̂s2 þ n̂Ls Þx̂Ls i (15)

and

hN̂bpi ¼ hðn̂s1" þ n̂Ls" Þðn̂s1# þ n̂Ls# Þx̂Ls � ðn̂s2" þ n̂Ls" Þðn̂s2# þ n̂Ls# Þx̂Ls i: (16)

These operators measure the combined presence of holes in the (sLs)
bonding orbital together with a compression of the ligand oxygen. (The
same quantities are also measured in our DQMC calculations [see Fig. 8b].)
The minus sign in front of the second terms accounts for the fact that a
compression of the O atoms around the second Bi site corresponds to a
negative displacement of the xLs mode as we have defined it.

DQMC simulations
DQMC computes the expectation value of an observable Ô in the grand
canonical ensemble hÔi ¼ Z�1Tr Ôe�βH

	 

, where Z ¼ Tr e�βH

	 

is the

partition function42. Details of the DQMC algorithm can be found in
refs. 42–44. Here, we outline the parts of the algorithm that need to be
modified for the SSH model.
DQMC divides the imaginary time interval [0, β] into L discrete steps of

length Δτ= β/L such that the partition function can be rewritten using the
Trotter formula Z ¼ Tr e�ΔτLHð Þ � Tr e�ΔτHint e�ΔτKð ÞL , where K= Hel+ Hlat

contains the non-interacting terms of the Hamiltonian and Hint contains
the e–ph interaction. The Trotter approximation neglects terms of order
OðΔτÞ2, which is controllable as Δτ→ 0. Next, the trace over the phonon
momenta and bilinear Fermion operators can be performed analytically to
yield a result expressed as a product of matrix determinants44 and an
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integral over the remaining lattice displacements

Z ¼
Z

dXx

Z
dXye�SlatΔτ det M"

	 

det M#

	 

: (17)

Here, ∫dXx and ∫dXy are shorthand for multidimensional integrals over the
displacements Xr,x,l and Xr,y,l defined at each oxygen site and time slice l.
The matrix Mσ is defined as Mσ= I + Bσ(L)Bσ(L− 1) ⋯ Bσ(1), where I is an

N × N identity matrix and BσðlÞ ¼ e�ΔτHint e�ΔτHel . (Each Bσ(l) is an N × N
matrix and independent of spin.) Note that Hint has off-diagonal terms in
orbital space due to the nature of the SSH interaction, unlike the case of
the Holstein model where it is a diagonal matrix. The lattice contribution to
the action is defined as

Slat ¼ KX2
r;x;l þ KX2

r;y;l þ
M
2

Xr;x;lþ1 � Xr;x;l

Δτ

� �2

þM
2

Xr;y;lþ1 � Xr;y;l

Δτ

� �2

: (18)

The integrals over the displacements are evaluated using the
Metropolis–Hastings algorithm.
Most observable quantities can be expressed in terms of the single

particle equal time Green’s function Gσ(τ). For an electron propagating
through field configurations {Xr,x,l} and {Xr,y,l}, the Green’s function at time
τ= lΔτ is given by

GσðlÞ½ �ij ¼ hT̂ τci;σðτÞcyj;σðτÞi ¼ I þ AσðlÞ½ ��1
ij ; (19)

where Aσ(l)= Bσ(l) ⋯ Bσ(1)Bσ(L) ⋯ Bσ(l + 1), T̂ τ is the time ordering
operator, and i, j are combined orbital and site indices. The determinant of
Mσ is related to the Green’s function Mσ ¼ det ½GσðlÞ��1 and is
independent of l.

Efficient updates of the phonon fields
Equation (19) shows that the Green’s function Gσ(l + 1) can be obtained
from Gσ(l) using the identity Gσðl þ 1Þ ¼ Bσðl þ 1ÞGσðlÞB�1

σ ðl þ 1Þ. This
observation forms the basis for an efficient single-site Sherman–Morris
updating scheme42. The DQMC algorithm starts by computing the Green’s
function on time slice l= 0 using Eq. (19). A series of individual updates are
then proposed by sweeping through the sites (r, α= x, y) proposing
updates Xr;α;l ! X 0

r;α;l ¼ Xr;α;l þ ΔXr;α;l while holding the other phonon
fields {Xr0≠r;α0≠α;l } fixed. These updates are accepted with probability
p ¼ minð1; RÞ, where

R ¼ e�ΔτðSlat ½fX 0
r;α;lg��Slat ½fXr;α;lg�Þ det½M0

"� det½M0
#�

det½M"� det½M#� ;
(20)

and M0
σ and M0

σ correspond to matrices computed with the new and old
phonon field configurations, respectively. Note that the product
det½M"�det½M#� is positive definite for the model considered here, and
there is no Fermion sign problem.
After updating a field, the corresponding Bσ(l) matrix must also be

updated as BσðlÞ ! B0σðlÞ ¼ e�ΔτH0
int e�ΔτHel ¼ e�ΔτðHintþVÞe�ΔτHel , where V

contains the terms in Hint arising from the change in the phonon field. V is
a symmetric matrix with only four non-zero elements of the form

V ¼

..

. ..
. ..

.

� � � 0 αt0spΔXr;l 0 � � �
� � � αt0spΔXr;l 0 αt0spΔXr;l � � �
� � � 0 αt0spΔXr;l 0 � � �

..

. ..
. ..

.

2
6666666664

3
7777777775
: (21)

To efficiently calculate the new B0σðlÞmatrix, we make the approximation
B0σðlÞ � e�ΔτVBσðlÞ, which introduces an error on the order of the Trotter
error and is valid when Δτ is small. The matrix e−ΔτV is then computed as
e−ΔτV= Pe−ΔτDPT, where P is the orthogonal transformation that diag-
onalizes V, and D is a diagonal matrix with only two non-zero elements
½D�11 ¼ � ffiffiffi

2
p

αt0spΔXr;l and ½D�NN ¼ ffiffiffi
2

p
αt0spΔXr;l . The B0σðlÞ matrix can then

be written as B0σðlÞ ¼ Pe�ΔτDPTBσðlÞ ¼ PðI þ ΔÞPTBσðlÞ; where [Δ]ij= 0

except ½Δ�11 ¼ e
ffiffi
2

p
αt0spΔXr;l � 1 and ½Δ�NN ¼ e�

ffiffi
2

p
αt0spΔXr;l � 1.

Using these approximations, the Green’s function can be efficiently
updated after accepting a change in the phonon field using

G0
σðlÞ ¼ I þ A0σðlÞ

	 
�1 ¼ I þ PðI þ ΔÞPTAσðlÞ
	 
�1 ¼ GσðlÞ PT þ ΔQ

	 
�1
PT ;

(22)

where Q= PT[I −Gσ(l)]. Due to the sparsity of matrix Δ, ΔQ has only two

non-zero rows

ΔQ ¼

Δ1;1Q1;1 Δ1;1Q1;2 � � � Δ1;1Q1;N

0 0 � � � 0

..

. ..
. ..

. ..
.

0 0 � � � 0

ΔN;NQN;1 ΔN;NQN;2 � � � ΔN;NQN;N

2
6666664

3
7777775

¼
Δ1;1 0

..

. ..
.

0 ΔN;N

2
664

3
775 ´

Q1;1 Q1;2 � � � Q1;N

QN;1 QN;2 � � � QN;N

� �

¼ uw;

(23)

where u and w are N × 2 and 2 × N matrices, respectively. Using the
Woodbury matrix identity and Matrix determinant lemma, the updated
Green’s function is given by

G0
σðlÞ ¼ GσðlÞ I � Pu I2 þ vPwð Þ�1v

	 

; (24)

and the acceptance ratio is given by

Rσ ¼ det I2 þ wPu½ �; (25)

where I2 is a 2 × 2 identity matrix. Evaluating these expressions involves O
(N2) operations, as opposed to computing the updated Green’s function
from scratch using Eq. (19), which has a computational cost of O(N3). This
update scheme is efficient but it relies on the approximation
B0σðlÞ � e�ΔτVBσðlÞ. Benchmarks for this approximation are provided in
the supplementary materials (see Supplementary Note 1) (see Supple-
mentary Material for more detailed results). In general, we find that the
approximate fast update reproduces the exact solution with comparable
error bars for Δτ values that are typical of most DQMC calculations.

Block updates
We periodically performed block updates of the phonon fields to reduce
the autocorrelation time. In this case, we follow the procedure given in
ref. 43.

Measurements
The conductivity weight is defined as σðβ=2Þ ¼ β2

π Λxxðq ¼ 0; τ ¼ β=2Þ45,
where Λxxðq; τÞ ¼

P
rĥjxðr; τÞ̂j

y
xð0; 0Þieiq�r is the current–current correlation

function and

ĵxðr; τÞ ¼ �itsp
X

δ;σ
Qδ � αûr;δ
� �

syr;σpr;δ;σ � h:c:
� �

þ itpp
X

δ;δ0 ;σ
Qδ;δ0p

y
r;δ;σpr;δ0 ;σ ;

(26)

is the current operator, with phase factors Qδ (as before) and Q±x,±y=
−Q±y,±x=−Q±x,∓y=Q∓y,±x= 1. At low temperature, the conductivity
weight is a proxy of the conductivity. More relevant results are shown in
the Supplementary Note 2 (see Supplementary Material for more detailed
results).
A measure of the superconducting and charge ordering tendencies can

be obtained from the orbitally resolved charge χCγ0γðqÞ and super-
conducting pair-field χscγ susceptibilities, where γ is an orbital index. The
charge susceptibility is defined as

χCγ0γðqÞ ¼
1
N

Z β

0
dτhn̂q;γ0 ðτÞn̂q;γð0Þi; (27)

where q is the momentum, τ is the imaginary time, n̂q;γ ¼
P

i;σe
iq�ri n̂ri ;γ;σ ,

and ri is the lattice vector. Similarly, the pair-field susceptibility in the s-
wave channel is given by

χscγ ¼ 1
N

Z β

0
dτhΔγðτÞΔy

γð0Þi; (28)

where Δs= ∑rsr,↑sr,↓ and Δpδ ¼
P

rpr;δ;"pr;δ;# .
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