Abstract
One dimensional (1D) electronic system is a versatile platform hosting novel physics, such as charge density wave, SuSchriefferHeeger (SSH) topological state and solitons, TomonagaLuttinger Liquid etc. Here, we systematically study the surface electronic properties on layered compositiontunable compounds Nb_{2n+1}Si_{n}Te_{4n+2} (n = 1–5), which is predicted to be a nodalline semimetal when n = 1 (Nb_{3}SiTe_{6}). Via scanning tunneling microscopy/spectroscopy, we observe 1D chains formed on the surface of the compounds. We uncover that with the increasing of n, the distance between the chains becomes larger, and the 1D electronic state is developed in the compounds with n ≥ 3. Our firstprinciple calculations reveal that the nodalline in Nb_{3}SiTe_{6} and the 1D electronic state in the crystals with higher n in fact arise from the same bands, which are protected by the same nonsymmorphic symmetry. Furthermore, we can understand the evolution of the electronic states on these series of compounds with such complicated structures and compositions based on a simple SSH type picture. Our experiment demonstrates a tunable and unidirectional 1D electronic system, which offers a concrete platform for the exploration of intriguing 1D electron physics and will enrich the opportunity for future condensed matter physics, material science and nanotechnology researches.
Introduction
When electrons are confined into a onedimensional (1D) wire, many fundamentally important phenomena may emerge. For example, the electronphonon interaction can induce Peierls phase transition. Dimerization of the atomic lattice could lead to a topologically protected gap in the entire wire with a gapless solitonic excitation at the ends. Electron correlation in 1D metal may be understood by Bosonization method, which gives rise to a TomonagaLuttinger Liquid behavior. Despite the research interests, the experimental realization of a 1D system in real materials appears very difficult. Selfassembly growth of metal wires on semiconductor surface, e.g., In wires on Si(111), Au wires on Ge(111), have exhibited several significant progresses^{1,2,3,4,5,6,7,8}. However, it requires in situ growth environment and elaborate parameters control. Another practically successful material system is the 1D defects, such as step edges on quantum spin hall insulator or domain boundaries on 2D transition metal dichalcogenides^{9,10,11,12,13,14,15,16,17,18}. The main drawback of these systems is the directions of the wires are not uniformly distributed on the sample, which complicates their macroscopic transport property and hinders future device applications. IrTe_{2} features a strip like structures, and undertakes interesting phase transitions^{19,20,21}, but its structure is only stable in narrow temperature range. Therefore, an air and thermal stable, unidirectional and tunable 1D system is still yet to be achieved.
Compositiontunable compound is a class of thermally stable materials with a series of possible stoichiometry ratio. A famous example is the Ruddlesden–Popper phase, A_{n+1}B_{n}O_{3n+1}, where A and B are metallic elements, and O is oxygen^{22}. When n = ∞, the Ruddlesden–Popper phase becomes the wellknown perovskite structure ABO_{3}. In the RuddlesdenPopper series of strontium iridates, scientists found that the electron correlation and Mott transition evolves with the component ratio n^{23}. In other families of compositiontunable compounds, e. g. Sr_{n+1}Cu_{n}O_{2n+1+δ} or (BA)_{2}(MA)_{n−1}Pb_{n}I_{3n+1}, it has been found that the superconducting transition temperatures and the solar cell power conversion efficiencies are also remarkably influenced by n^{24,25}. The discovery of new family of compositiontunable compounds is always accompanied by a comprehensive understanding of substantial issues in physics, chemistry or material science.
Here, we reveal that the family of compositiontunable compounds Nb_{2n+1}Si_{n}Te_{4n+2} offers an ideal platform for studying 1D electrons. We show that the lowenergy electrons in these materials are confined in 1D chainlike structures and are gapless ensured by a nonsymmorphic crystal symmetry. Because these chains are intrinsic component of the crystal lattice, they share a fixed orientation. In addition, the 1D confinement can be readily tuned by changing n, which plays the role of spacing between neighboring chains in this context. As such, it overcomes the longstanding uniformity and tunability issues in realizing 1D electronic systems. Furthermore, the thermal and air stability natures of these materials will facilitate the future applications in 1D electronics.
Results
Overview of the crystals
Nb_{3}SiTe_{6} was synthesized about thirty years ago^{26}. Its isostructural phases, e.g., Ta_{3}SiTe_{6}, Nb_{3}GeTe_{6} and Ta_{3}GeTe_{6}, were also prepared^{27,28}. Scientists also recognized that this material in fact belongs to a family of compositiontunable compounds Nb_{2n+1}Si_{n}Te_{4n+2}, where n = 1 gives Nb_{3}SiTe_{6} and n = ∞ makes Nb_{2}SiTe_{4}^{26,27,28,29}. Unfortunately, not much attention has been paid on their physical properties until very recently. It was reported that enhanced electron coherence was achieved in atomically thin Nb_{3}SiTe_{6}^{30}. It was also predicted to possess nonsymmorphicsymmetryprotected topological nodalline in the bulk or monolayer forms^{31}, which was later probed by angleresolved photoemission spectroscopy and magnetotransport experiments^{32,33}. Since then, more and more researchers start to notice these compounds^{30,31,32,33,34}.
The entire class of the Nb_{2n+1}Si_{n}Te_{4n+2} compounds all features layered structure, with relatively weak van der Waals type bonding between the layers. In each layer, the Nb and Si atoms sit in same plane, which are sandwiched by two layers of Te atoms. The compound can be effectively viewed as Sidoped NbTe_{2}, because the value of n increases with the concentration of Si. The atomic structure of the compounds become complicated when n grows larger. Fortunately, the monolayer of the series can be constructed by three basic building blocks, which are named as a, b and c chains (Fig. 1a). a and b chains are both doped with Si, whose formula unit is NbSi_{1/2}Te_{2}, while the c chain is free of Si, i.e., it is simply NbTe_{2}. a and b chains are glide mirror partner to each and always stick together. Moreover, all chains possess the similar width of about 0.39 nm. The class of compositiontunable compounds Nb_{2n+1}Si_{n}Te_{4n+2} can thus be represented in this picture as (ab)_{n}c, or the chemical formula (Nb_{2}SiTe_{4})_{n}(NbTe_{2}). Remarkably, the glide mirror symmetry \(\tilde M_y = \{ M_y0\}\) is preserved in all monolayers regardless of n, whose significance will be discussed later.
We systematically measure a series of Nb_{2n+1}Si_{n}Te_{4n+2} compounds. Scanning tunneling microscopy (STM) images in Fig. 1b display obvious 1D chains morphologies on all samples. (The voltage dependent STM images can be found in Supplementary Fig. 1). The distances between adjacent chains are 1.21 nm, 1.96 nm, 2.77 nm, 3.57 nm, 4.39 nm, which are consistent with the theoretical lattice period (normal to the chains) of abc, (ab)_{2}c, (ab)_{3}c, (ab)_{4}c and (ab)_{5}c, whose width should be (2n + 1) × 0.39 nm. Furthermore, based on the observations, we uncover that the lowenergy electronic states (the bright lines in the figure) mainly come from the c chains, which are the Sifree NbTe_{2} chains. We will show that these are effectively 1D electrons for compositions with n ≥ 3.
After identifying the compositions of the samples, we pay attention to the electronic structures. We take differential conductance (dI/dV) spectra on top of the bright chains on each sample to reveal the local density of states (Fig. 1c). On the sample of n = 1, i.e., Nb_{3}SiTe_{6}, we observe a broad peak with peak position at 80 meV on its dI/dV spectrum. On the sample of n = 2, there are several peaks, but the main peak is located at the energy of 110 meV. On the samples with n ≥ 3, the three spectra present similar shapes, single pronounced sharp peaks located at 150 meV, 140 meV and 140 meV for n = 3, 4, 5, respectively. The origination of the peaks will be discussed latter.
Characterization of 1D electronic states
Impurities on a crystal might induce quasiparticle interferences (QPI), which has become a powerful method in modern condensed matter physics research^{9,35,36,37,38,39,40}. Here, we apply this method to study the development of 1D electronic state on the Nb_{2n+1}Si_{n}Te_{4n+2} compounds. On Nb_{3}SiTe_{6} (n = 1), we focus on a segment on a bright chain (c chain) between two point defects, which manifest themselves as dark points on the chain, as shown in Fig. 2a. We measure a series of positiondependent dI/dV spectra, i.e., dI/dV (x,V) map, along the target area. For this n = 1 case, the most obvious feature is the defects induced electronic states, and we don’t find clear 1D QPI signal in the region between the defects (Fig. 2b, c). Similar observations are made on the n = 2 composition. However, one notices that a weak 1D QPI pattern on the c chain starts to emerge on the dI/dV (x,V) and dI/dV (x,y) maps (see Supplementary Fig. 2).
Clear signals for 1D electronic state have been found for samples with n ≥ 3. In Figs. 3 and 4, one observes clear 1D QPI patterns in the dI/dV (x,V) maps for regions on the c chain between two point defects. By a fast Fourier transform (Fig. 3c), we resolve the scattering vectorenergy dispersion, which indicates a holelike band structure. Furthermore, in Fig. 3d, our dI/dV (x,y) maps taken at various voltages clearly show that the standing waves propagate along the NbTe_{2} chain and thus prove that these are confined 1D electronic states. The 1D character becomes more and more pronounced with increasing n. In Fig. 4 for n = 5, we discern a typical “particle in a box” like 1D QPI pattern. This trend of enhanced 1D character with n can be intuitively understood. Because the 1D states come only from the NbTe_{2} chains, the a and b chains which are inactive can be viewed as spacers between the NbTe_{2} chains (see details in Supplementary Fig. 3). When spacer is narrow, the electrons can hop around the NbTe_{2} chains hence still have a 2D character (although highly anisotropy). With increasing spacer width, the coupling is suppressed and the electrons become more and more confined into the 1D chain. Moreover, on our samples, we have not found any domains with different orientations of the chains, in contrast to the previously reported pseudo1D material systems. This is simply because that the 1D (NbTe_{2}) chain is an intrinsic component of the crystal structure, in contrast to the artificially constructed atomic wires or extrinsic defect lines/boundaries.
Discussions
We performed firstprinciple simulations on the monolayers of the Nb_{2n+1}Si_{n}Te_{4n+2} compounds with n = 1, 2 and 3. We find many of the observations can be qualitatively understood. Furthermore, we also uncover that the spinorbit coupling (SOC) is not significant in our case (Supplementary Fig. 4) and thus neglect it in the calculation. In Fig. 5a–c, we compare the calculated band structure. One observes that there is a twofold band degeneracy (nodal line) at the Brillouin zone boundary along the XM line. This degeneracy is connected with the nonsymmorphic \(\tilde M_y\) symmetry, because its combination with time reversal symmetry T satisfies \(\left( {T\tilde M_y} \right)^2 =  1\) on XM, leading to a protected double degeneracy on this path. The lowenergy states are dominated by the two bands that cross on XM. By analyzing the charge density distribution for these states (see Fig. 5d–f), we confirm that they are mainly distributed on the c (NbTe_{2}) chains, and mostly from the Nb sites. Furthermore, the dispersion of the band along XM (and also ΓY) is quite small, and it gets flattened out with increasing n. For n = 3, the dispersion along XM becomes almost completely flat. This confirms that the lowenergy states become localized in the x direction, forming 1D states that can only propagate along the chain direction. We have also identified that the β bands are also originated from c chains, while γ and δ bands are located on the b and c chains (see details in the Supplementary Figs. 5–7). Our simulated STM images also prove that the states close to the Fermi level are located on NbTe_{2} chains (Supplementary Fig. 8). We agree that the simulation of the 3D crystal will generate an exact result. However, when n in the material Nb_{2n+1}Si_{n}Te_{4n+2} increases, the number of atoms in one unitcell becomes very large. The simulation turns out to be very time consuming. Fortunately, we find the simulation of 2D layer gives rise to a good approximation, especially when we are more concerned about the issue of intrachain hopping and interchain hopping. On the other hand, STM is only sensitive to the surface of a material (at most the first few atomic layers). The configuration for the surface atoms (the coordination, environment, etc.) is drastically different from atoms in the bulk, but is more similar to that in the 2D setup. It is rationalized by the simulated STM images (in Supplementary Fig. 8) based on 2D model which corroborates our experimental data.
The 1D electrons confined in the NbTe_{2} chain can be captured by a simple SSH like model. As mentioned, the lowenergy states are mainly from the Nb atoms in the NbTe_{2} chain, which forms a zigzag chain with two sites per unit cell (labeled as Nb_{1} and Nb_{2}), which just resembles the case for the SSH model^{41}. Hence, we can write down the 1D model
where i labels the unit cell, t and t’ denote the intracell and intercell hopping amplitude respectively, and c^{†} (c) are electron creation (annihilation) operator. Here, the \(\tilde M_y\) dictates that the two sites Nb_{1} and Nb_{2} are equivalent such that t = t’ (see Supplementary Fig. 9). Therefore, the spectrum is gapless with \(E_ \pm \left( k \right) = \pm 2t\cos \left( {\frac{k}{2}} \right)\), which captures the band dispersion observed in Fig. 3. Near zero energy, the dispersion is linear, of 1D Dirac type. It would also be interesting if \(\tilde M_y\) can be broken with dimerization formed along the chain, such as if we are able to use a STM tip to manipulate adatoms periodically on top of different bonds between Nb atoms, such that t and t’ no longer equal. Then a topological gap of \(2t  t{^\prime}\) can be opened in the spectrum, and there may appear topological zero energy mode at the end of the chain. These can be interesting topics to pursue in future studies.
Having the theoretical analysis in mind, we are able to understand the QPI and dI/dV features. Figure 3c shows a holetype quasiparticle dispersion, which dispersion maximum is located at 150 meV above the Fermi level. We attribute the QPI feature to the interband scatterings in the hole branch of the 1D SSH type energy band. Therefore, the dispersion of the QPI resembles the dispersion of the energy band, which is also consistent with the simulation on monolayer Nb_{7}Si_{3}Te_{14}, e.g., the hole branch along ΓX line in the Fig. 5c. Moreover, the band maximum gives rise to a high local density of state and generates the peaks at the energies in the dI/dV spectra being measured on the c chains, just as shown in Fig. 1cn ≥ 3. Furthermore, we now know that electronic state of the complicated Nb_{2n+1}Si_{n}Te_{4n+2} compounds in fact can be understood by a very simple picture. The monolayer of the crystals is constructed by a buddle of 1D chains with Dirac type dispersions, which Dirac point is protected by the glide mirror symmetry. If the chains are far from each other, e. g. on the compounds with larger n, the hopping between adjacent chains are neglectable, the sample will exhibit real 1D behavior. When the chains are closer, the interchain hopping will be turned on. However, the glide mirror symmetry still forces the bands to be doubly degenerate on the zone boundary, the Dirac nodes will change to a dispersed nodal line on the XM line.
In summary, we experimentally discover a tunable and unidirectional 1D electronic system on the family of Nb_{2n+1}Si_{n}Te_{4n+2} compounds. Based on theoretical analysis, we predict that the monolayers of Nb_{2n+1}Si_{n}Te_{4n+2} compounds host various novel physics, e.g., topological nodal line semimetal state and 1D Dirac electrons. It provides ample opportunities for the scientists working in condensed matter physics, material sciences and nanotechnologies.
Methods
Experiment
Single crystals were grown by using Te as flux. Starting materials Nb (Powder, 99.99%, Alfa Aesar), Si (Lump, 99.9999%, Alfa Aesar) and Te (Lump, 99.999%, Alfa Aesar) were mixed in an Arfilled glove box at a molar ratio of Nb: Si: Te = 3: 1: 30. The mixture was placed in an alumina crucible, which was then sealed in an evacuated quartz tube. The tube was heated to 1100 °C over 10 h and dwelt for 20 h. Then, the tube was slowly cooled down to 800 °C at a rate of 2 °C h^{−1} followed by separating the crystals from the Te flux by centrifuging. Shiny crystals with the size of 2 × 2 mm^{2} were obtained on the bottom of the crucible.
We carry out our measurements in an Unisoku 1600 scanning tunneling microscopy system. The Nb_{2n+1}Si_{n}Te_{4n+2} compounds were cleaved in ultrahigh vacuum at room temperature and transferred in situ to the STM head whose temperature is ~ 4.8 K. dI/dV grids were obtained by measuring one complete dI/dV spectrum on each point of a map. Lockin amplifier, with modulation voltage of 5 mV, is used to get the dI/dV signals.
Theory
We performed firstprinciples calculations using Vienna ab initio simulation package^{42,43} with the projector augmented wave method^{44}. The PerdewBurkeErnzerhoftype^{45} generalized gradient approximation was used for the exchangecorrelation functional. The cutoff energy was set to 400 eV, and a 12 × 8 × 1 Γcentered kpoint mesh was used for the Brillouin zone sampling. The convergence criteria for the energy and force were set to be 10^{–5} eV and 0.01 eV Å^{−1}, respectively. For the monolayer materials, a vacuum layer with a thickness of 20 Å was taken to avoid artificial interactions between periodic images. We don’t consider spinorbit coupling in our simulations.
Data availability
The data that support the findings of this study are available from the corresponding authors upon reasonable request.
References
Snijders, P. C. & Weitering, H. H. Colloquium: electronic instabilities in selfassembled atom wires. Rev. Mod. Phys. 82, 307–329 (2010).
Yeom, H. W. et al. Instability and charge density wave of metallic quantum chains on a silicon surface. Phys. Rev. Lett. 82, 4898–4901 (1999).
Crain, J. N. & Pierce, D. T. End states in onedimensional atom chains. Science 307, 703–706 (2005).
Zeng, C. et al. Chargeorder fluctuations in onedimensional silicides. Nat. Matter 7, 539–542 (2008).
Blumenstein, C. et al. Atomically controlled quantum chains hosting a Tomonaga–Luttinger liquid. Nat. Phys. 7, 776–780 (2011).
Cheon, S., Kim, T.H., Lee, S.H. & Yeom, H. W. Chiral solitons in a coupled double Peierls chain. Science 350, 182–185 (2015).
Do, E. H. & Yeom, H. W. Electron quantization in broken atomic wires. Phys. Rev. Lett. 115, 266803 (2015).
Lee, G., Shim, H., Hyun, J.M. & Kim, H. Intertwined solitons and impurities in a quasionedimensional chargedensitywave system: In/Si(111). Phys. Rev. Lett. 122, 016102 (2019).
Drozdov, I. K. et al. Onedimensional topological edge states of bismuth bilayers. Nat. Phys. 10, 664–669 (2014).
Pauly, C. et al. Subnanometrewide electron channels protected by topology. Nat. Phys. 11, 338–342 (2015).
Sessi, P. et al. Robust spinpolarized midgap states at step edges of topological crystalline insulators. Science 354, 1269–1273 (2016).
Tang, S. et al. Quantum spin Hall state in monolayer 1T’WTe_{2}. Nat. Phys. 13, 683–687 (2017).
Reis, F. et al. Bismuthene on a SiC substrate: a candidate for a hightemperature quantum spin Hall material. Science 357, 287–290 (2017).
Liu, H. et al. Dense network of onedimensional midgap metallic modes in monolayer MoSe_{2} and their spatial undulations. Phys. Rev. Lett. 113, 066105 (2014).
Barja, S. et al. Charge density wave order in 1D mirror twin boundaries of singlelayer MoSe_{2}. Nat. Phys. 12, 785–756 (2016).
Jolie, W. et al. TomonagaLuttinger liquid in a box: Electrons confined within MoS_{2} mirrortwin boundaries. Phys. Rev. X 9, 011055 (2019).
Chen, P. et al. Large quantumspinHall gap in singlelayer 1T′ WSe_{2}. Nat. Commun. 9, 2003 (2018).
Ugeda, M. M. et al. Observation of topologically protected states at crystalline phase boundaries in singlelayer WSe_{2}. Nat. Commun. 9, 3401 (2018).
Hsu, P. J. et al. Hysteretic melting transition of a soliton lattice in a commensurate charge modulation. Phys. Rev. Lett. 111, 266401 (2013).
Li, Q. et al. Bond competition and phase evolution on the IrTe_{2} surface. Nat. Commun. 5, 5358 (2014).
Chen, C. et al. Surface phases of the transitionmetal dichalcogenide IrTe_{2}. Phys. Rev. Lett. 95, 094118 (2017).
Ruddlesden, S. N. & Popper, P. The compound Sr_{3}Ti_{2}O_{7} and its structure. Acta Crystallogr. 11, 54–55 (1958).
Moon, S. J. et al. Dimensionalitycontrolled insulatormetal transition and correlated metallic state in 5d transition metal oxides Sr_{n+1}Ir_{n}O_{3n+1} (n = 1, 2, and∞). Phys. Rev. Lett. 101, 226402 (2008).
Hiroi, Z., Takano, M., Azuma, M. & Takeda, Y. A new family of copper oxide superconductors Sr_{n+1}Cu_{n}O_{2n+1+δ} stabilized at high pressure,. Nature 364, 315–317 (1993).
Tsai, H. et al. Highefficiency twodimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).
L, J., Badding, M. E. & DiSalvo, F. J. Synthesis and structure of Nb_{3}SiTe_{6}, a new layered ternary niobium telluride compound. J. Alloy Compd. 184, 257–263 (1992).
Evain, M., Van der Lee, A., Monconduit, L. & Petricek, V. Modulated structure of TaSi_{0.414}Te_{2}: sandwich stacking in the MA_{x}Te_{2} (M = Nb, Ta; A = Si, Ge; 1/3 < x < 1/2) Series. Chem. Mater. 6, 1776–1783 (1994).
Van der Lee, A. et al. A superspace approach to the modulated structures of MA_{x}Te_{2} (M = Nb, Ta; A = Si, Ge; 1/2< x < 1/3), exemplified by NbGe3/7Te2. J. Phys. Condens. Matter 6, 933–944 (1994).
Monconduit, L. et al. Synthesis, crystal and electronic structure of a new ternary layered compound: Nb_{2}SiTe_{4}. Comptes Rendus Acad. Sci. Ser. II 316, 25–34 (1993).
Hu, J. et al. Enhanced electron coherence in atomically thin Nb_{3}SiTe_{6}. Nat. Phys. 11, 471–476 (2015).
Li, S. et al. Nonsymmorphicsymmetryprotected hourglass Dirac loop, nodal line, and Dirac point in bulk and monolayer X_{3}SiTe_{6} (X = Ta, Nb). Phys. Rev. B 97, 045131 (2018).
Sato, T. et al. Observation of band crossings protected by nonsymmorphic symmetry in the layered ternary telluride Ta_{3}SiTe_{6}. Phys. Rev. B 98, 121111(R) (2018).
An, L. et al. Magnetoresistance and Shubnikov–de Haas oscillations in layered Nb_{3}SiTe_{6} thin flakes. Phys. Rev. B 97, 235133 (2018).
Naveed, M. et al. Magnetotransport and Shubnikovde Haas oscillations in the layered ternary telluride topological semimetal candidate Ta_{3}SiTe_{6}. Appl. Phys. Lett. 116, 092402 (2020).
Zheng, H. et al. AtomicScale visualization of quantum interference on a Weyl semimetal surface by scanning tunneling microscopy. ACS Nano 10, 1378–1385 (2016).
Zheng, H. & Hasan, M. Z. Quasiparticle interference on typeI and typeII Weyl semimetal surfaces: a review. Adv. Phys. X 3, 1466661 (2018).
Zhu, Z. et al. Quasiparticle interference and nonsymmorphic effect on a floating band surface state of ZrSiSe. Nat. Commun. 9, 4153 (2018).
Nie, X.A. et al. Robust hot electron and multiple topological insulator states in PtBi_{2}. ACS Nano 14, 2366–2372 (2020).
Schirone, S. et al. A. Spinflip and elementsensitive electron scattering in the BiAg_{2} surface alloy. Phys. Rev. Lett. 114, 166801 (2015).
Chang, K. et al. Standing waves induced by valleymismatched domains in ferroelectric SnTe monolayers. Phys. Rev. Lett. 122, 206402 (2019).
Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyaeetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).
Kresse, G. & Hafner, J. Ab initio moleculardynamics simulation of the liquidmetal–amorphoussemiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio totalenergy calculations using a planewave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Blöchl, P. E. Projector augmentedwave method. Phys. Rev. B 50, 17953–17979 (1994).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Acknowledgements
We thank J. Zhang for the helpful discussion. We acknowledge the financial supports from NSFC (Grants No.11674226, No. 11790313, No. 11574202, No. 11874256, No. 11521404, No. 11874258, No. U1632102, No. 11861161003, and No. 11674226) and from National Basic Research Program of China (Grants No. 2019YFA0308601, No. 2016YFA0300403 and No. 2016YFA0301003), Singapore Ministry of Education AcRF Tier 2 (MOE2017T22108), additional support from a Shanghai talent program and the project supported by Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01)
Author information
Authors and Affiliations
Contributions
H.Z. and J.F.J. supervised the project. Z.Z. did the STM measurement with the help of X.A.N., H.K.X., X.Y., D.D.G, S.W., Y.Y.L. and C.L.S.L., S.A.Y. and Y.Y. did the simulations. M.Y. grow the crystals with the help of Y.S., Z.Q.M. and N.X. All authors discussed the result and contributed to the paper writing. Z.Z. and S.L. contributed equally to this work.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Zhu, Z., Li, S., Yang, M. et al. A tunable and unidirectional onedimensional electronic system Nb_{2n+1}Si_{n}Te_{4n+2}. npj Quantum Mater. 5, 35 (2020). https://doi.org/10.1038/s4153502002380
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s4153502002380
This article is cited by

Transport measurement of fractional charges in topological models
npj Quantum Materials (2023)

Bulkinterface correspondence from quantum distance in flat band systems
Communications Physics (2022)

Observation of dimensioncrossover of a tunable 1D Dirac fermion in topological semimetal NbSixTe2
npj Quantum Materials (2022)