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Vacancy defect control of colossal thermopower in FeSb2
Qianheng Du 1,2✉, Lijun Wu 1, Huibo Cao 3, Chang-Jong Kang 4, Christie Nelson5, Gheorghe Lucian Pascut4,6, Tiglet Besara 7,9,
Theo Siegrist7,8, Kristjan Haule 4, Gabriel Kotliar1,4, Igor Zaliznyak 1, Yimei Zhu1 and Cedomir Petrovic 1,2✉

Iron diantimonide is a material with the highest known thermoelectric power. By combining scanning transmission electron
microscopic study with electronic transport neutron, X-ray scattering, and first principle calculation, we identify atomic defects that
control colossal thermopower magnitude and nanoprecipitate clusters with Sb vacancy ordering, which induce additional phonon
scattering and substantially reduce thermal conductivity. Defects are found to cause rather weak but important monoclinic
distortion of the unit cell Pnnm→ Pm. The absence of Sb along [010] for high defect concentration forms conducting path due to Fe
d orbital overlap. The connection between atomic defect anisotropy and colossal thermopower in FeSb2 paves the way for the
understanding and tailoring of giant thermopower in related materials.
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INTRODUCTION
Thermoelectric materials exploit thermoelectric effect where
temperature difference is converted into electric power and vice
versa1,2. High operating temperatures are favorable for significant
figure of merit ZT= S2σT/κ, where T is temperature, S is thermo-
power, and σ (κ) are electrical (thermal) conductivities. When
operating temperatures are not high, material must maximize its
thermoelectric power factor (S2σ) where S provides considerable
contribution, whereas in cryogenic environment electronic corre-
lations could also be significant3–8.
The iron diantimonide is a correlated narrow-gap semiconduc-

tor9,10. It also features colossal thermopower S and highest known
thermoelectric power factor at cryogenic temperatures; whereas
both electronic diffusion and phonon-drag mechanism have been
proposed, reported maximum S values vary between 0.1 and
50mV K−1 and in some crystals quasi-one-dimensional (quasi-1D)
conductivity has been observed9,11–18. Interstitial Fe atoms in the
unit cell that create impurity states connected with phonon drag
have been postulated but never observed16. The connection with
fine details of crystal structure is not understood since, for
example, FeAs2 features an order of magnitude higher thermal
conductivity and should have higher thermopower within the
phonon drag mechanism when compared to FeSb2, but experi-
ments show S maxima about six times smaller in iron diarsenide14.
Atomic defects have been used to enhance high-temperature

thermoelectric performance by lowering phonon thermal conduc-
tivity in the figure of merit19,20. Defect optimization in semiconduc-
tors is important in a wide range of technology-enabling
materials21. In this work, for the first time, we present the direct
visualization of structural defects in iron diantimonide and we show
that colossal thermopower arises from Sb vacancies in the crystal
structure. Moreover, thermopower, quasi-1D conductivity, and
thermal conductivity are tunable by Sb defects and phase
separation clusters with Sb vacancies of several nanometer size.
Our results uncover hitherto unknown relation between crystal
structure and colossal thermopower, thus providing basis for the

comprehensive understanding of the nanostructural aspects related
to the colossal thermopower control in iron diantimonide.

RESULTS AND DISCUSSION
Sample characterization
We first fabricated several crystals from Sb melt using different
decanting methods, purity of raw elements, and crucibles (see
Supplementary Note 4 and Table 7). Then we picked two crystals:
one with expected high purity (S8) and the other with expected low
purity (S3). To shed light on the atomic-scale structure, we
performed high-resolution scanning transmission electron micro-
scopy (STEM) with a high-angle annular dark field (HAADF) detector
as its contrast is proportional to Z1.7 along the atom column, where
Z is the atomic number. Figure 1a, b show the STEM-HAADF images
taken from S3 and S8 crystals, respectively. The strong and weak
dots in the images correspond to Sb and Fe atoms, respectively.
The atomic arrangement in the images is consistent with the FeSb2
structure with Pnnm symmetry, as shown in the insets where the
atomic projections are embedded in the magnified image. Due to
the Z-contrast nature of the STEM-HAADF image, the peak intensity
of each dot can be used to count the atoms along the column22.
Higher peak intensity indicates more atoms along the column,
while weaker peak intensity indicates less atoms, thus more
vacancies along the column. It is seen that the peak intensity of Fe
is quite uniform in crystal S8 (Fig. 1b), indicating the relative
uniform distribution of Fe. However, the peak intensity of Fe varies
in crystal S3, e.g., there are less Fe in area I than that in area II, as
shown in the magnified image in the insets of Fig. 1a. We also
observe Sb intensity variation, indicating the variation of Sb
occupancies. The Sb occupancies or vacancies can be better
resolved by refining each Sb column peak with the second-order
polynomial function. Figure 1c, d shows the peak intensity maps of
Sb for crystals S3 and S8, respectively. There are four Sb atoms in a
FeSb2 unit cell. In crystal S3, the Sb peak intensity is the same in
some area (inset III in Fig. 1c), consistent with the Pnnm symmetry.
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In the other area, however, the Sb peak intensity changes
periodically and orders along Pnnm [010] direction, as shown in
the inset II in Fig. 1c, where two Sb peaks (orange squares) are
stronger than the other two Sb (green squares) within the unit cell.
This indicates the ordering of Sb vacancies and reduction of the
Pnnm symmetry in this area. In [100] projection, orange and red
spheres represent high and low Sb occupancy, respectively,
embedded in the inset II. The size of the phase separation clusters
with Sb vacancy ordering is about a few nanometers. These clusters
are similar to the nanoprecipitates observed in PbTe-AgSbTe2
system23,24. They induce additional phonon scattering, thus reduce
the thermal conductivity and phonon mean free path (MFP) of
crystal S3. For crystal S8, the Sb vacancy ordering is observed in
nearly all locations and also along [010] direction. In area IV (Fig. 1d),
two Sb peaks (orange) are stronger than the other two Sb (red).
While in the area V, one Sb peak (yellow square) is stronger than the
other three Sb (orange squares).
Sb vacancy ordering results in a Pnnm-forbidden peak observed

in single-crystal synchrotron X-ray diffraction (Fig. 1e–g) of crystal
S8, consistent with weak structural distortion observed in neutron
diffraction measurements (Fig. 1h–k). Neutron diffraction shows
the presence of weak (h,0,l), h+ l= odd and (0,k,l), k+ l= odd
type Bragg reflections, which are forbidden in Pnnm crystal
structure previously refined for the stoichiometric FeSb2

9,10,25. The
presence of these forbidden reflections hints that the symmetry of
the crystal lattice is lower. Comprehensive structural refinement
(Fig. 1h–k) and also Supplementary Note 1 and Tables 1–4 indicate

that one of the two Sb sites, which are equivalent in Pnnm space
group, shows displacive monoclinic distortions and site deficiency.
This induces change in the structural symmetry (Pnnm→ Pm),
making two Sb sites inequivalent, i.e., Sb1 site is fully occupied
while Sb11 site contains substantial number of vacancies that do
not change with temperature (Fig. 1l). We find that the Sb11 site is
0.82(2) occupied while both Fe sites are 0.94(2) occupied; the
chemical vacancies do not change with temperature, whereas
intensity of Pnnm-forbidden peaks at 300 K is 2/3 of that at 5 K
(see Supplementary Note 1 and Tables 1–4).

Electrical and thermal transport properties
Having established the presence of atomic vacancies, next we
focus on electrical and thermal transport properties of crystals S3
and S8 as well as of six additional crystals engineered to have
different defect content. Figure 2a–c presents electronic and
thermal transport difference among all eight iron diantimonide
crystals. Crystals S7 and S8 have about 1–2 order of magnitude
higher electrical resistivity when compared to crystals S1, S2, and
S3 in the temperature region 10–20 K (Fig. 2a). Moreover, crystals
S1, S2, and S3 have clear weak (semi)metallic resistivity in
60–300 K temperature region. Low-temperature thermopower
S shows large variation (Fig. 2b); ∣S∣ maxima change by several
orders of magnitude from S1 (14 μV K−1) to S8 (20 mV K−1). Figure
2c shows thermal conductivity κ vs temperature for all crystals.
The small κ(T) maxima are coincident with small thermopower,
consistent with phonon-drag mechanism15–17.

Fig. 1 Atomic defects in FeSb2 and crystal structure distortion. a, b STEM-HAADF image of crystal S3 (a) viewed along Pnnm [100] direction
and crystal S8 viewed along Pnnm [001] direction (b). The insets are the magnified images from areas I and II in a (areas IV and V in b) with the
Pnnm [100] in a (Pnnm [001] projection in b) projection of the structure embedded. Scale bar 2 nm. The contrast is approximately proportional
to Z1.7 along the atomic column, thus the dots with strong and weak contrast correspond to Sb and Fe column, respectively. Red and green
spheres represent Sb and Fe, respectively. c, d Sb peak intensity maps refined from a and b, respectively. Each square represents an Sb column
with intensity increasing in black–blue–green–orange–yellow–white order. The insets are magnified maps from areas II to V. Note that the
smooth Sb peak intensity oscillation from top to bottom in b and d could be attributed to thickness variation. e–g Synchrotron X-ray
diffraction scans of crystal S8. H is the Miller index of the diffraction from (H00). Pnnm-forbidden peak is observed at [100] wavevector (f),
about 3 orders of magnitude weaker than nearby Bragg peaks. Pnnm (h, i) and Pm (j, k) unit cell refinements obtained in single-crystal neutron
diffraction experiment on low thermopower crystal, confirming structural distortion. l Pm unit cell of FeSb2 induced by atomic defects. Central
octahedral atom Fe (dark) is surrounded by Sb (light). The defects are preferably on Sb11 atomic sites (white arrow-marked light balls).
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In what follows, we focus on the deviation from the ideal
1:2 stoichiometry. The contribution of different relaxation
processes to τ and their difference among investigated crystals
in the simplest form can be assessed from:

τ�1 ¼ τ�1
B þ τ�1

I þ τ�1
U

¼ ν
L þ Aω4 þ Bω2Te�

θD
T

(1)

where τB, τD, and τU are the relaxation times for boundary
scattering, impurities or defect scattering, and Umklapp processes,
respectively26–28. The L, A, and B are fitting parameters in the fit of
the experimental lattice thermal conductivity using Callaway
model (Fig. 2d):

KL ¼ kB
2π2νs

kB
_

� �3

T3
Z θD

T

0

τx4ex

ðex � 1Þ2 dx
(2)

In this model, x ¼ _ω
kBT

is dimensionless, ω is the phonon frequency,
kB is the Boltzmann constant, �h is the Plank constant, θD is the
Debye temperature, and νs is the velocity of sound. Fit parameters
are listed in Table 1. Since Umklapp scattering processes are of
importance at high temperature, we mainly focus on parameters A

and L. In crystals S5, S6, S7, and S8 with large phonon MFP, surface
scattering is more important when compared to S1, S2, S3, and S4
where the impurity scattering processes are much stronger as
inferred from A (Table 1), which features inverse scaling with τ. The
decrease of MFP in the investigated crystals is clearly related to
the defect scattering of phonons.
We note that, in the Callaway model, the parameter τB= L/ν

represents the relaxation time determined by boundary scattering.
The L is the phonon MFP at low temperature in the boundary
scattering regime29, which is different from grain size. For the rod-
like sample with the square cross-section and infinite length, it
depends on the side dimension only. For the finite length and
rectangular cross-section, there are correction factors, i.e., it not
only depends on two side dimensions but also on their ratio and
sample length29,30.
From the data collected on crystal S3 (Fig. 1h–k) and

Supplementary Table 3, the refined crystal stoichiometry is
Fe0.93Sb1.83. STEM-HAADF image simulations (Fig. 2e–n) show
Fe0.93Sb1.83 for crystal S3 (in good agreement with neutron
refinement) and Fe0.95Sb1.85 for crystal S8

22.

Fig. 2 Relationship between the defect content and transport properties. Temperature dependence of the a electrical resistivity,
b thermopower, and c thermal conductivity for the investigated iron diantimonide crystals with different defect content (see text). d Thermal
conductivity <50 K. The solid lines show the fitting by Callaway model. e [100] projection of crystal S3 with green and red spheres
representing Fe and Sb atoms. The occupancy of Fe is 0.93. The occupancy of Sb at the row indicated by blue arrow lines is 0.85 (small
spheres), while that indicated by brown arrow lines are 0.98 (large spheres). f Magnified image from area II in Fig. 1a. g Sb peak intensity map
refined from f. h Simulated image calculated based on multislice method with frozen phonon approximation using structure model in e. i Sb
peak intensity map from h. From the simulation, the contrast at Sb site changes with the occupancy of Sb, e.g., the contrast of Sb at the row
indicated by blue arrow lines is weaker than that at the row indicated by brown arrow lines. j [001] projection of crystal S8. The occupancy of
Fe is 0.95. The occupancy of Sb at the row indicated by blue arrow lines is 0.88, while that indicated by brown arrow lines is 0.97. k Magnified
image from area IV in Fig. 1b. l Sb peak intensity map refined from k. m Simulated image based on structure model in j. n Sb peak intensity
map from m. From the simulation, the contrast at Sb site changes with the occupancy of Sb, e.g., the contrast of Sb at the row indicated by
blue arrow lines is weaker than that at the row indicated by brown arrow lines. o, p present composition of all the investigated crystals in
a–c. A is the fitting parameter in Callaway model as discussed in the main text.
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Next, from the thermal conductivity fits (Table 1), we note
differences among crystals due to defect scattering, given by
parameter A in the Callaway model. From the changes in
parameter A, we estimate the defects content, i.e., the stoichio-
metry of all investigated crystals by assuming linear relation
between defect scattering and defect concentration. The results
are shown in Fig. 2o, p and in Table 1. The relative stoichiometry
ratio of Sb:Fe differs from the ideal stoichiometric 2:1 in all crystals
in linear manner, albeit with differences that are <2.3 atomic %.
Thermally activated resistivity >50 K (Fig. 2a) stems from the

intrinsic energy gap; however, the resistivity shoulder in the region
of Smax around 10 K is a fingerprint of the in-gap impurity states
that couple to phonon drag16,18,31,32. Magnetoresistance (MR) is
strong in the temperature range where such states are dominant
in electronic transport; a single in-gap band gives only one peak in
MR16. High-thermopower crystals S6 and S8 show one MR peak
but in low-thermopower crystals S1 and S3 a broad MR is
observed (Fig. 3a), suggesting a rather broad distribution of
multiple in-gap states16. A low-temperature Curie tail present in
crystal S3 (Fig. 3b) implies higher low-temperature magnetic
moment associated with low Sb purity33, consistent with
importance of Sb defects. Figure 3c shows heat capacity of all
crystals. We observe a trend of the slope change associated with
Debye temperature. In general, vacancy formation energy is
related to Debye temperature: TD ¼ C E1=2v

M1=2Ω1=3, where C is a
constant, Ev is the vacancy formation energy, and M and Ω are
atomic mass and volume, respectively34,35. Low vacancy formation
energy is consistent with higher number of vacancies for low
thermopower crystals (e.g., S3) when compared to high-
thermopower crystals (e.g., S8). Results are summarized in
Supplementary Note 2 and Table 5.
The Pnnm FeSb6 octahedra are edge-sharing along the shortest

lattice parameter 3.194Å. Closer inspection of Pm unit cell shows
that the Sb11 atomic sites (Fig. 4a) are also separated by the lattice
parameter length 3.194Å along the edge-sharing octahedral
direction. However, weak metallic conductivity at high tempera-
ture for low-thermopower crystals (Fig. 2a) is along the
orthogonal, 6.536Å lattice parameter direction where distance
of Sb11 to Fe is shorter (b-direction in Fig. 4a)9,36. This is consistent
with TEM-observed vacancy order direction (Fig. 1a–d) and quasi-
1D conductivity in optics37,38. Occupancy of Fe d orbital (dn)
translates into different unit cell parameter along the d orbital
overlap. Higher (lower) occupancy corresponds to larger (shorter)
unit cell parameter39,40. Detailed comparison of crystals S3 and
S8 shows longer b lattice parameter in S3 (see Supplementary
Note 3 and Table 6), implying differences in Fe d orbital
occupation. A picture emerges where Sb11 vacancy defects create
Fe-derived conducting in-gap states due to short Fe–Sb11
hopping distance (Fig. 4a). Low vacancy formation energy, i.e.,
higher vacancy content in low-thermopower crystals such as S3

(Fig. 3c), promotes stronger quasi-1D Fe d orbital overlap due to
the absence of Sb along [010], weak metallicity, and
metal–insulator transition on cooling12.

Band structure calculations
GW+DMFT calculations (see Supplementary Note 5) show that
bands associated with quasi-1D dispersion along 6.536Å are Fe
derived: bottom of the conduction band is dominated by Fe xy
orbital, whereas top of the valence bands is dominated by Fe xz/yz
bands38. First-principle calculation results (Fig. 4b–h) confirm that
structure distortion to the Pm space group is energetically
favorable in Sb-deficient Pnnm FeSb2 unit cell. However, the Sb
vacancies also induce Fe dangling bonds that might influence
electronic structure through conducting impurity band at the
Fermi level for high Sb defect concentration.
To explore how Sb atom vacancy and its ratio affect the

electronic structure of FeSb2, we studied two cases of Sb vacancy
ratios: one and two Sb vacancies in a 2 × 2 × 3 super-cell of FeSb2.
To simulate the experimental situation, we only consider Sb
vacancies at the Sb11 site. Hence, Sb vacancies for both cases

Fig. 3 The signature of in-gap impurity states. a Magnetoresis-
tance of low-thermopower (S1, S3) and high-thermopower crystals
(S6, S8). b Comparison of magnetic susceptibility of crystals S3 and
S8. c Low-temperature heat capacity for all the investigated crystals.

Table 1. Fitting parameters of the Callaway model for the thermal conductivity and the stoichiometry for all the samples (see text).

Sample no. A L B Sb composition Fe compsition Stoichiometry Normalized stoichiometry EDX

S1 14.30(0.45) 5(1) 10.5(1.0) 1.782(1) 0.883(1) Fe0.883Sb1.782 FeSb2.018 FeSb2.07
S2 4.71(0.09) 10(1) 3.3(0.3) 1.829(1) 0.929(1) Fe0.929Sb1.829 FeSb1.969
S3 4.60(0.20) 5(1) 6.0(0.5) 1.830 0.930 Fe0.93Sb1.830 FeSb1.968 FeSb2.10
S4 4.25(0.08) 10(1) 3.9(0.3) 1.832(1) 0.932(1) Fe0.932Sb1.832 FeSb1.966
S5 0.99(0.07) 40(3) 7.0(0.7) 1.848(1) 0.948(1) Fe0.948Sb1.848 FeSb1.949 FeSb1.95
S6 0.66(0.04) 37(3) 7.5(0.6) 1.849(1) 0.949(1) Fe0.949Sb1.849 FeSb1.948
S7 0.57(0.03) 85(5) 2.9(0.3) 1.850(1) 0.950(1) Fe0.950Sb1.850 FeSb1.947 FeSb2.03
S8 0.55(0.05) 100(5) 3.1(0.3) 1.850 0.950 Fe0.950Sb1.850 FeSb1.947

Note: error bars for EDX are: S1: ±0.07, S3: ±0.03, S5: ±0.05, and S7: ±0.02. And the units in Callaway model fit for A, L, and B are 10−43 s3, 10−5 m, and 10−18 s
K−1, respectively.
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occupy the Sb11 site only, and they correspond to 91.7 and 83.3%
of Sb11 occupancy, respectively, where the case of two Sb
vacancies is close to the experimental Sb11 occupancy, 82% at T
= 300 K. For the case of one Sb vacancy, there is only one
symmetrically non-equivalent configuration for introducing one
Sb vacancy at the Sb11 site in the 2 × 2 × 3 super-cell. On the other
hand, for the case of two Sb vacancies, there are seven
symmetrically non-equivalent configurations. We have considered
all of the seven configurations and found that the configuration
with two Sb vacancies is the most energetically stable (Fig. 4b).
From now on, we only focus on the most stable configuration for
each Sb vacancy ratio.
Figure 4i, j shows the density of states of the most stable

configurations for both Sb vacancy ratios. The Sb vacancies give
rise to Fe dangling bonds that lead to metallic impurity bands at
the Fermi level. The impurity bands have a dominant d orbital
character of Fe possessing the dangling bonds. We would like to
note that the density-functional theory calculation with the
modified Becke–Johnson exchange potential method gives a
clear bulk gap of ~0.25 eV in FeSb2 without any vacancies. As
depicted in Fig. 4j, the case of two Sb vacancies shows broader
bandwidth of the metallic impurity band than that of one Sb
vacancy, indicating that, as the Sb vacancy ratio increases, the
metallic impurity band is more dispersive. The case of one Sb
vacancy does not show the quasi-1D conductivity. Therefore, we
conclude that larger Sb atom vacancy content induces more
anisotropy in the electronic structure and triggers the quasi-1D
conducting path.
Now, we turn our attention to the thermoelectric power of

FeSb2. In the experiment, the maximum value of thermoelectric
power decreases as the energy of vacancy formation is lowered,
i.e., with higher number of vacancies (Figs. 2b and 3c). This is
consistent with a two-band model study with an ionized impurity

donor state41. Hence, the increased Sb atom vacancies lower
thermoelectric power, in agreement with the STEM-HAADF study.
It would be of interest to investigate point defects and atomic
structure of other marcasite materials with high-thermopower
values, such as CrSb2

42,43.
In summary, we have achieved point defect control of

thermoelectricity and have directly observed atomic structure of
colossal thermopower material iron diantimonide. Sb defects
induce monoclinic distortion and generate the in-gap states with
Fe 3d orbital character, which, for sufficiently high number of
defects, result in nanoprecipitates with Sb vacancy ordering and
quasi-1D conducting path. Our study demonstrates the potential
of low-level atomic defects to control thermopower magnitude
and quasi-1D electronic conduction. This paves the way toward
computational predictions of colossal thermopower induced by
atomic point defect engineering.

METHODS
Crystal synthesis
Single crystals of FeSb2 were grown as described before9,10,12, albeit with
different starting purity of Fe and Sb and with variable methods of crystal
decanting from Sb liquid. Whereas within one single batch thermopower
values ∣Smax∣ exhibit variations, especially for low-purity starting materials
such as Fe 99.5% and Sb 99.99% and lower, the use of high-purity starting
materials, such as Fe 99.997% and Sb 99.9999%, elimination of quartz wool
in excess Sb decanting and use of filter screw-top crucibles developed for
flux crystal growth above the quartz melting point44 reduces the variation.
This produces FeSb2 crystals with about 5–20mV K−1 thermopower peak
within single batch. On the other hand, we note that, among different
batches with variable starting materials purity and decanting method, ρ(T)
and S(T) measured on same crystal exhibit close correspondence to values
presented in Fig. 2 in the main text.

Fig. 4 Pm space group and corresponding band structure calculation. a Crystal structure of FeSb2 in the Pm space group. Note that Sb-
deficient Sb11 atomic site are apical for Fe1, whereas they are within octahedral plane for Fe2. Bond distances to Fe1, Fe2, and Sb1 are shown
in nm. Sb11 atomic sites are separated by the unit cell distance along Pmc axis (3.194Å), whereas they are closer to Sb1 sites along the b-axis
(2.878Å). b–h Different arrangements of two Sb vacancies in the supercell and their energetics. The arrangement consistent with the Pm
space group has the lowest energy, in agreement with the experiment. Projected density of states for i one and j two Sb vacancies. Notice that
the antimony vacancy gives rise to an iron impurity band.
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Transport, thermal, and magnetic measurements
Crystals were oriented using a Laue camera and cut along the b-axis for
magnetization, resistivity, and thermopower measurement in a Quantum
Design MPMS-5 and PPMS-9.

Scanning tunneling microscopy
STEM-HAADF imaging and electron diffraction were performed using the
double aberration-corrected JEOL-ARAM200CF microscope with a cold-
field emission gun and operated at 200 keV. The images are filtered in
frequency space by applying periodic mask to remove noise.

X-ray and neutron diffraction
Synchrotron single-crystal X-ray diffraction was performed at NSLS-II
beamline 4-ID, using a photon energy of 11.44 keV with an incident beam
intensity of 3 × 1012 photons s−1. Single-crystal neutron diffraction was
performed at the HB3A four-circle diffractometer (FCD) equipped with a
two-dimensional Anger camera detector at the High Flux Isotope Reactor
at the Oak Ridge National Laboratoray. Neutron wavelength of 1.005Å was
used from the bent perfect Si-331 monochromator45. Room temperature
laboratory single-crystal X-ray diffraction was performed at NHMFL
Tallahassee using an Oxford Diffraction Xcalibur 2 charge-coupled device
FCD with graphite-monochromated Mo Kα radiation.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.

Received: 10 August 2020; Accepted: 22 December 2020;

REFERENCES
1. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with

thermoelectric systems. Science 321, 1457–1461 (2008).
2. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7,

105–114 (2008).
3. Heremans, J. P. Introduction to cryogenic solid state cooling. Proc. SPIE 9821,

98210G (2016).
4. He, J., Kanatzidis, M. G. & Dravid, V. P. High performance bulk thermoelectric via a

panoscopic approach. Mater. Today 16, 166–176 (2013).
5. Hébert, S. et al. Searching for new thermoelectric materials: some examples

among oxides, sulfides and selenides. J. Phys. Condens. Matter 28, 013001
(2016).

6. Tomczak, J. M., Haule, K. & Kotliar, G. Signatures of electronic correlations in iron
silicide. Proc. Natl Acad. Sci. USA 109, 3243–3246 (2012).

7. Palsson, G. & Kotliar, G. Thermoelectric response near the density driven Mott
transition. Phys. Rev. Lett. 80, 4775–4778 (1998).

8. Koshibae, W. & Maekawa, S. Effects of spin and orbital degeneracy on the ther-
mopower of strongly correlated systems. Phys. Rev. Lett. 87, 236603 (2001).

9. Petrovic, C. et al. Anisotropy and large magnetoresistance in the narrow-gap
semiconductor FeSb2. Phys. Rev. B 67, 155205 (2003).

10. Petrovic, C. et al. Kondo insulator description of spin state transition in FeSb2.
Phys. Rev. B 72, 045103 (2005).

11. Bentien, A. et al. Colossal Seebeck coefficient in strongly correlated semi-
conductor FeSb2. Eur. Phys. Lett. 80, 17008 (2007).

12. Jie, Q. et al. Electronic thermoelectric power factor and metal-insulator transition
in FeSb2. Phys. Rev. B 86, 115121 (2012).

13. Sun, P. et al. Huge thermoelectric power factor: FeSb2 versus FeAs2 and RuSb2.
Appl. Phys. Express 2, 091102 (2009).

14. Sun, P. et al. Narrow band gap and enhanced thermoelectricity in FeSb2. Dalton
Trans. 39, 1012–1019 (2010).

15. Tomczak, J. M. et al. Thermopower of correlated semiconductors: application to
FeAs2 and FeSb2. Phys. Rev. B 82, 085104 (2010).

16. Battiato, M., Tomczak, J. M., Zhong, Z. & Held, K. Unified picture for the colossal
thermopower in FeSb2. Phys. Rev. Lett. 114, 236603 (2015).

17. Takahashi, H. et al. Colossal Seebeck effect enhanced by quasi-ballistic phonons
dragging massive electrons in FeSb2. Nat. Commun. 7, 12732 (2016).

18. Matsuura, H., Maebashi, H., Ogata, M. & Fukuyama, H. Effect of phonon drag on
Seebeck coefficient based on linear response theory: application to FeSb2. J. Phys.
Soc. Jpn. 88, 074601 (2019).

19. Biswas, K. et al. Strained endotaxial nanostructures with high thermoelectric
figure of merit. Nat. Chem. 3, 160–166 (2011).

20. Kim, T. K. et al. Strain-mediated point defects in thermoelectric p-type bismuth
telluride polycrystalline. Nano Energy 55, 486–493 (2019).

21. Walsh, A. & Zunger, A. Instilling defect tolerance in new compounds. Nat. Mater.
16, 964–967 (2017).

22. LeBeau, J. M., Findlay, S. D., Allen, L. J. & Stemmer, S. Standardless atom counting
in scanning transmission electron microscopy. Nano Lett. 10, 4405–4408 (2010).

23. Hsu, K. F. et al. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high
figure of merit. Science 303, 818–821 (2004).

24. Ke, X. et al. Microstructure and a nucleation mechanism for nanoprecipitates in
PbTe-AgSbTe2. Phys. Rev. Lett. 103, 145502 (2009).

25. Hägg, G. X-ray Studies on the Binary Systems of Iron with Nitrogen, Phosphorus,
Arsenic, Antimony and Bismuth (Almqvist & Wiksell, Uppsala, 1929).

26. Wang, K., Hu, R., Warren, J. & Petrovic, C. Enhancement of the thermoelectric
properties in doped FeSb2 bulk crystals. J. Appl. Phys. 112, 013703 (2012).

27. Callaway, J. Model for lattice thermal conductivity at low temperatures. Phys. Rev.
113, 1046–1051 (1959).

28. Onn, D. G. et al. Some aspects of the thermal conductivity of isotopically enriched
diamond single crystals. Phys. Rev. Lett. 68, 2806–2809 (1992).

29. Inyushkin, A. V. et al. Thermal conductivity of high purity synthetic single crystal
diamonds. Phys. Rev. B 97, 144305 (2018).

30. McCurdy, A. K., Maris, H. J. & Elbaum, C. Anisotropic heat conduction in cubic
crystals in the boundary scattering regime. Phys. Rev. B 2, 4077–4083 (1970).

31. Sun, P. et al. Highly dispersive electron relaxation and colossal thermoelectricity
in the correlated semiconductor FeSb2. Phys. Rev. B 88, 245203 (2013).

32. Takahashi, H., Okazaki, R., Yasui, Y. & Terasaki, I. Low-temperature magnetotran-
sport of the narrow-gap semiconductor FeSb2. Phys. Rev. B 84, 205215 (2011).

33. Takahashi, H., Yasui, Y., Terasaki, I. & Sato, M. Effects of ppm-level imperfection on
the transport properties of FeSb2 single crystals. J. Phys. Soc. Jpn. 80, 054708 (2011).

34. Mukherjee, K. Monovacancy formation energy and Debye temperature of close-
packed metals. Philos. Mag. 12, 915–918 (1965).

35. March, N. H. Vacancy formation energy and Debye temperature in close packed
metals. Phys. Lett. 20, 231–232 (1966).

36. Hu, R. et al. Colossal positive magnetoresistance in a doped nearly magnetic
semiconductor. Phys. Rev. B 77, 085212 (2008).

37. Perucchi, A. et al. Optical investigation of the metal-insulator transition in FeSb2.
Eur. Phys. J. B 54, 175–183 (2008).

38. Homes, C. C. et al. Unusual electronic and vibrational properties in the colossal
thermopower material FeSb2. Sci. Rep. 8, 11692 (2018).

39. Hull, G. W. & Hulliger, F. CuSe2, a marcasite type superconductor. Nature 220,
257–258 (1968).

40. Hulliger, F. in Structure and Bonding, Vol. 4 83–229 (Springer, Berlin, 1968).
41. Kang, C. J. & Kotliar, G. Study for material analogs of FeSb2: material design for

thermoelectric materials. Phys. Rev. Mater. 2, 034604 (2018).
42. Sales, B. C. et al. Transport, thermal, and magnetic properties of the narrow-gap

semiconductor CrSb2. Phys. Rev. B 86, 235136 (2012).
43. Du, Q., Guzman, D., Choi, S. & Petrovic, C. Crystal size effects on giant thermo-

power in CrSb2. Phys. Rev. B 101, 035125 (2020).
44. Petrovic, C., Canfield, P. C. & Mellen, J. Y. Growing intermetallic single crystals

using in situ decanting. Philos. Mag. 92, 2448–2457 (2012).
45. Chakoumakos, B. et al. Four-circle single-crystal neutron diffractometer at the

high flux isotope reactor. J. Appl. Crystallogr. 44, 655–658 (2011).

ACKNOWLEDGEMENTS
Work at Brookhaven National Laboratory is supported by the Office of Basic Energy
Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy
under Contract No. DE-SC0012704 (Q.D., L.W., I.Z., Y.Z., and C.P.) and as a part of the
Computational Materials Science Program (C.-J.K., G.L.P., K.H., and G.K.). This research
used resources at the High Flux Isotope Reactor, a DOE Office of Science User Facility
operated by the Oak Ridge National Laboratory. This research used beamline 4-ID of
the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of
Science User Facility operated for the DOE Office of Science by Brookhaven National
Laboratory under Contract No. DE-SC0012704. A portion of this work was performed at
the National High Magnetic Field Laboratory, which is supported by National Science
Foundation Cooperative Agreement No. DMR-1644779 and the State of Florida.

AUTHOR CONTRIBUTIONS
C.P. designed research. Q.D. and C.P. made crystals. Q.D. carried out transport,
magnetization, and thermal measurements and analysis with C.P. TEM measurement
and analysis was done by L.W. and Y.Z. C.N. performed synchrotron X-ray diffraction
measurement. H.C. and I.Z. carried out neutron diffraction measurements and solved

Q. Du et al.

6

npj Quantum Materials (2021)    13 Published in partnership with Nanjing University



new structure with input from L.W. and Y.Z. T.B. and T.S. carried out laboratory single-
crystal measurements. C.-J.K., G.L.P., K.H., and G.K. carried out first-principle
calculations. C.P. supervised the project and wrote the paper with Q.D. and with
input from L.W., I.Z., C.-J.K., and G.K. The manuscript reflects contribution and ideas of
all authors.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41535-020-00308-z.

Correspondence and requests for materials should be addressed to Q.D. or C.P.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

Q. Du et al.

7

Published in partnership with Nanjing University npj Quantum Materials (2021)    13 

https://doi.org/10.1038/s41535-020-00308-z
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Vacancy defect control of colossal thermopower in FeSb2
	Introduction
	Results and discussion
	Sample characterization
	Electrical and thermal transport properties
	Band structure calculations

	Methods
	Crystal synthesis
	Transport, thermal, and magnetic measurements
	Scanning tunneling microscopy
	X-ray and neutron diffraction

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




