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The bulk-corner correspondence of time-reversal symmetric
insulators
Sander Kooi1, Guido van Miert2 and Carmine Ortix 1,2✉

The topology of insulators is usually revealed through the presence of gapless boundary modes: this is the so-called bulk-boundary
correspondence. However, the many-body wavefunction of a crystalline insulator is endowed with additional topological properties
that do not yield surface spectral features, but manifest themselves as (fractional) quantized electronic charges localized at the
crystal boundaries. Here, we formulate such bulk-corner correspondence for the physical relevant case of materials with time-
reversal symmetry and spin-orbit coupling. To do so we develop partial real-space invariants that can be neither expressed in terms
of Berry phases nor using symmetry-based indicators. These previously unknown crystalline invariants govern the (fractional)
quantized corner charges both of isolated material structures and of heterostructures without gapless interface modes. We also
show that the partial real-space invariants are able to detect all time-reversal symmetric topological phases of the recently
discovered fragile type.
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INTRODUCTION
The discovery of topological insulators has fundamentally
challenged our common classification of materials in terms of
electrical insulators and electrical conductors1,2. Topological
insulators are in fact materials that are insulating in their bulk
but allow for perfect conduction of electrical currents along their
surfaces. This macroscopic physical property is the immediate
consequence of the topological properties of the ground state of
the insulator: this is the essence of the so-called bulk-boundary
correspondence. In a topological insulator, the electrical conduc-
tion is protected against different detrimental effects since the
surface electronic modes have an anomalous nature. The chiral
states appearing at the edge of a quantum Hall insulator, for
instance, represent anomalous states since in a conventional one-
dimensional atomic chain it is impossible to find a different
number of left-moving and right-moving electrons3,4. The helical
edge states of quantum spin-Hall insulators5–9, as well as the
single Dirac surface states of strong three-dimensional topological
insulators10–15 violating the fermion doubling theorem, are other
prime examples of such anomalies.
When unitary spatial symmetries are taken into account,

additional topological crystalline phases can arise16–20. The non-
trivial topology of the system then guarantees the presence of
anomalous surface states appearing only on surfaces that are left
invariant under the protecting crystalline symmetry, and which
violate stronger versions of the fermion doubling theorem21.
Furthermore, crystalline symmetries can lead to a class of
insulating phases, dubbed higher-order topological insulators,
with conventionally gapped surface states but with anomalous
gapless states appearing on the hinges connecting two surfaces
related to each other by the crystalline protecting symmetry22–27.
The single Slater determinant describing the ground state of a

non-interacting crystalline insulator generally possesses additional
topological indices that are not immediately related to the
presence or absence of anomalous gapless surface states. For
instance, the electric polarization of an inversion-symmetric one-

dimensional atomic chain is either integer or semi-integer, with a
quantized value that does not depend upon microscopic details,
but is rather encoded in a gauge-invariant topological index28.
More recently, it has been shown that excess electronic charges
localized at various topological defects, such as dislocations, can
be (fractionally) quantized, thus representing yet other incarna-
tions of bulk quantities encoded in topological invariants29–34.
Quantized charges appearing at the corners and disclinations of
two-dimensional crystals have been very recently measured in
metamaterials35–37 and proposed to appear in recently synthe-
sized materials structures38. Together with the topological indices
dictating the presence of anomalous gapless surface modes, the
gauge-invariant bulk quantities governing the appearance of
quantized defect charges specify the entire observable topological
content of a crystal.
In systems with broken time-reversal symmetry this set of

crystalline topological invariants can be entirely expressed in
terms of the symmetry properties of the occupied single particle
Bloch states at the high-symmetry points of the Brillouin zone with
the addition of the Chern number. However, for the physically
relevant case of materials with spin–orbit coupling and time-
reversal symmetry eigenvalues-based schemes do suffer of
intrinsic limitations. Topological crystalline phases with robust
boundary modes may pass completely undetected39 using the
current classification schemes based on symmetry indicators40–44.
Likewise, the real-space invariants originally introduced in ref. 24
are insufficient to determine the quantized excess charges. This is
because Kramers’ theorem inevitably doubles the electronic
charges, making the real-space invariants partially, often com-
pletely, trivial. Progress can be made identifying (partial) Berry
phase29 invariants and/or using Wilson loops as topological
indices45–49 as exemplified by the bulk-dislocation charge
correspondence of rotation-symmetric two-dimensional crystals31.
This additional knowledge, however, does not completely
determine the (fractional) quantized electronic charges at the
crystal boundaries.
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Here, we overcome these hurdles by developing a strategy that
for two-dimensional time-reversal symmetric insulators in rotation
symmetric crystals is able to fully resolve this missing bulk-corner
correspondence. The crux of our analysis is the ability to
effectively deduplicate the real-space invariants of ref. 24, using
a computationally efficient framework that requires only the
knowledge of the Bloch wavefunctions throughout the Brillouin
zone. We show that the resulting partial real-space invariants
govern not only the quantized corner charges of insulators that
are deformable to atomic limit, but also determine the quantized
corner charges in heterostructures comprising topologically
distinct quantum spin-Hall insulators. Even more importantly,
the bulk-corner correspondence we formulate here allows the
detection of all topological states of the fragile type50,51 in time-
reversal symmetric crystals, in much the same way as the recently
introduced twisted bulk-boundary correspondence is able to
diagnose fragile phases in systems without spin–orbit
coupling52,53.
Before presenting our results, let us discuss in more detail the

intrinsic limitations of symmetry-based eigenvalue schemes in
detecting the (fractionally) quantized corner charges characteriz-
ing all time-reversal symmetric insulators that do not feature
metallic edge modes. Let us consider for simplicity a crystal with a
simple twofold rotation symmetry C2. At the high-symmetry
points in the Brillouin zone (BZ) Γ = (0, 0), X = (π, 0), Y = (0, π), and
M = (π, π), the C2 symmetry provides us with eight natural
numbers Γ±i, …, M±i, which denote the multiplicities of occupied
Bloch states with rotation eigenvalues ± i (from here onwards we
will consider systems of spin 1/2 fermions). These multiplicities,
taken by themselves, define proper integer invariants since they
can only change by bandgap closing and reopening processes.
However, the multiplicities at different momenta are not linearly
independent because of the presence of the compatibility
relations HSi + HS−i = NF with HS = Γ, X, Y, M and NF the number

of occupied bands. Even more importantly, the rotation symmetry
multiplicities do not correspond to any known physical
observable.
These shortcomings can, however, be overcome by construct-

ing the linear combinations of the multiplicities originally
introduced in ref. 24, recently dubbed real-space invariants52. For
a C2-symmetric insulator this approach gives rise to four
Z-numbers ν1a, …, ν1d in one-to-one correspondence with the
four C2-symmetric Wyckoff positions 1a, …, 1d [Fig. 1]. As a result,
we find a global Z4 classification, which is fully in agreement with
K-theory studies54. Moreover, the parities of these real-space
invariants dictate the values of the fractional part of the quantized
charge contained in corners measured with respect to C2-sym-
metric Wyckoff positions [Fig. 1]. For example, if ν1a is an even
(odd) integer then the corner charge Q1a measured with respect
Wyckoff position 1a is equal to 0 (1/2) mod 1, i.e.,
Q1a ¼ ν1a=2mod 1. Note that only the fractional part of the
corner charge represents a proper bulk value, as the possible
occurrence of in-gap corner modes affects the integer part. In
other words, we cannot distinguish between Q1a = 0 and Q1a = 1
from a topological point of view.
The above one-to-one correspondence between symmetry

labels (encoded in ν1x’s) and the fractional part of the quantized
corner charges is completely general and applies to all rotation-
symmetric two-dimensional crystals. Specifically, the corner
charges measured with respect to a special Wyckoff position with
a site symmetry group containing an n-fold rotation symmetry has
a fractional part quantized in multiples of 1/n, thereby defining a
Zn topological invariant. Beside the Z4

2 classification of C2-sym-
metric crystals discussed above, this leads to Z4 ´Z4 ´Z2

classification in fourfold rotation symmetric crystals and a
Z6 ´Z3 ´Z2 classification [Fig. 1a, d] with the invariants all
formulated in terms of symmetry labels [Supplementary Note I].

Fig. 1 Bulk and corners of two-dimensional rotation-symmetric crystals. a Unit cells of rotation-symmetric crystals. The special Wyckoff
positions and their multiplicities are explicitly indicated. b Rotation-symmetric crystals in open-disk geometries. The red, blue, and gray
regions indicates bulk, edges, and corners, respectively. Note that when considering a reference C2-symmetric Wyckoff position, the corner
charge has to be summed over the adjacent corners not related by C2 symmetry in order to represent a quantized bulk quantity. c Zoom in of
the C4-symmetric corners with the two possible reference Wyckoff positions. d Table of the corner charge topological characterization for
C2; C4, and C6 symmetric systems.
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Even though the discussion above is informative from a purely
theoretical point of view and of relevance to metamaterial
structures, it has a limited value for the large number of insulating
materials which possess time-reversal symmetry. This is because
Kramers’ theorem dictates that the corner charges measured with
respect to a Cn-symmetric Wyckoff position must be quantized in
multiples of 2/n30,46. This clearly trivializes the Z4

2 topological
content of twofold rotation symmetric crystals, whereas it leaves
two residual Z2 topological invariants – corresponding to the
(semi)integer values of the corner charges relative to the Wyckoff
positions 1a and 1b [see Fig. 1] – in fourfold rotation symmetric
crystals and a Z3 ´Z3 classification in C6-symmetric crystals. The
doubling does not alter the classification of C3-symmetric corners,
thus implying that in threefold rotation-symmetric crystals real-
space invariants can be redefined even in time-reversal symmetric
conditions.
For evenfold rotation-symmetric corners, and this is key, the

trivialization of the corner charges is instead only apparent.
Kramers’ theorem not only engenders the doubling of the corner
charge quantum from 1/n to 2/n; it further guarantees that
microscopic details at the edge and corners of a finite size crystal
can only change the value of the corner charge by an even integer
rather than an integer. This can be immediately seen from the fact
that when created by local perturbations in-gap corner modes
have to come in pairs. In other words, now the cases Q1a = 0 and
Q1a = 1 are topologically distinct.
The fact that in time-reversal symmetric conditions the corner

charges modulo 2 are bulk quantities has a twofold effect. First, it
implies that from a corner-charge perspective the topological
crystalline characterization of rotation-symmetric insulators is the
one tabled in Fig. 1d even in the presence of time-reversal
symmetry. Second, and most importantly, the quantized corner
charges cannot be simply expressed in terms of the symmetry
eigenvalues: consider the simple case of a C2-symmetric insulator.
Time-reversal symmetry requires that all the integers Γ±i…M±i ≡
NF/2 rendering the real-space invariants [Supplementary Note I
and ref. 24] completely trivial. Furthermore, the quantized (partial)
Berry phases29 on the high-symmetry kx,y ≡ 0 lines of the BZ only
provide a Z2

2 classification that, as such, is not able to resolve the
quantized corner charges. A different approach would be to
explicitly construct Wannier functions respecting the crystalline
symmetries and subsequently compute the gauge-invariant
Wannier centers55. This requires however the use of a projection
procedure56 that can yield singularities if the chosen set of trial
atomic orbitals does not possess the symmetry properties of the
targeted symmetric Wannier functions. Additionally, the explicit
construction of symmetric Wannier functions is by definition not
applicable to fragile topological insulators which still possess
quantized corner charges.

RESULTS
Partial real-space invariants
Having established that in time-reversal symmetric conditions the
quantized values of the corner charges cannot be entirely read off
from the point-group symmetries eigenvalues or from Berry phase
indicators, we next derive the bulk-corner correspondence by
formulating crystalline topological invariants entirely different in
nature. Our approach can be decomposed into three steps: we
start from a particularly stringent set of assumptions that will be
partially relaxed in each consecutive step by employing the UðNFÞ
gauge degree of freedom of the many-body wavefunction. The
end product of this endeavor will be a formulation of crystalline
invariants that can readily be computed using standard numerical
methods.
Let us first notice that as long as we consider insulators whose

ground state can be described in terms of exponentially localized

Wannier functions, and thus adiabatically connected to an atomic
insulator, the formulation of the topological invariants governing
the quantized corner charges with time-reversal symmetry only
requires a bulk expression for the number of Wannier Kramers’
pairs centered at the special Wyckoff positions in the unit cell.
Such a formulation can be immediately achieved by considering a
simple subclass of time-reversal invariant insulators, i.e., systems
without sizable spin–orbit coupling. In this materials class, we can
naturally split the space of occupied Bloch states into two sectors
related to each other by time-reversal symmetry: sector I for spin-
up electrons, and sector II for the spin-down electrons. Impor-
tantly, choosing the spin quantization axis perpendicular to the
crystalline plane each sector enjoys the Cn rotation symmetry of
the lattice. This also implies that the fractional part of the corner
charge in each sector can be related to the real-space invariants
introduced in ref. 24 via QI;II

Nx ¼ mνI;IImx=n where m indicates the
multiplicity of the Wyckoff position mx with respect to which the
corner charge is measured. Moreover, time-reversal symmetry
guarantees that the corner charges associated to two channels are
equal, i.e., QI

1x ¼ QII
1x . As a result, the quantized corner charge of

time-reversal symmetric insulators are given by

Qmx ¼ 2QI
mx ¼

2m νImx

n
mod2: (1)

We naturally dub these integers partial real-space invariants in
analogy with the partial Berry phase. Although the partial real-
space invariants have been derived in the context of Wannier-
azible insulators, they apply equally well to topological states of
the fragile type. These recently discovered topological states
cannot be represented in terms of symmetric Wannier func-
tions50,51, but at the same time they do not feature gapless edge
states. Being insulating both in their bulk and along their edges,
they are characterized by quantized corner charges at Cn-sym-
metric corners. Furthermore, the hallmark of fragile phases is their
decay into an atomic insulating phase by a proper addition of
topologically trivial bands. The additivity of the corner charges
under band additions then engenders the validity of the partial
real-space invariants.
The absence of spin–orbit coupling considered so far provides

us with a natural splitting of the Bloch states in two sectors related
to each other by time-reversal symmetry and separately Cn-sym-
metric. However, taking advantage of the UðNFÞ gauge degree of
freedom that leaves the Slater determinant unchanged, such a
decomposition can be always achieved, even in systems with a
sizable spin–orbit coupling. The problem of determining the
corner charge therefore boils down to finding a continuous,
periodic, and rotation-symmetric gauge for two time-reversed
sectors, and subsequently computing the real-space invariants for
a single sector. There is, however, a small caveat. Namely, in our
derivation we have implicitly been assuming that the Chern
number per sector vanishes. This follows from the fact that the
real-space invariants from ref. 24 only apply to systems without
chiral edge states. Hence, by relying on precisely those invariants
we have to demand that the Chern numbers of each sector vanish,
i.e., CI ≡ CII ≡ 0. Note that this represents an additional constraint
on the gauge as time reversal symmetry only guarantees that CI +
CII ≡ 0.
Our second step consists in relaxing precisely this additional

constraint on the sector Chern numbers CI,II. To do so, we will
invoke the gauge invariance principle. More specifically, we will
modify the invariants such that their values are invariant under
residual gauge transformations, i.e., those transformations that
preserve the rotational and time-reversal symmetry constraints.
We can distinguish between two different flavors of residual
gauge transformations: small and large. Small residual gauge
transformations are defined as those gauge transformations that
can be smoothly deformed to the identity whilst preserving the
symmetry constraints. In particular, these small gauge
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transformations include gauge transformations that do not rotate
the two time-reversed sectors into each other. The invariance
under small gauge transformations does not pose additional
constraints on the partial real space invariants defined before: the
νImx ’s are already immune to these gauge transformations.
However, using that the sector Chern number CI is also invariant
under small residual gauge transformations we are entitled to
extend the definition of the invariants νImx to sectors with non-zero
Chern numbers. Indeed, this may be achieved with the following
linear combination:

νImx ! νImx þ αCI; (2)

with α constant whose value will be fixed upon requiring the
invariance under large gauge transformations. Before doing so, let
us remark that the right-hand side of the equation above is the
simplest expression that reduces to the original νImx ’s for vanishing
sector Chern number while being still additive. Next, we impose
the invariance under large gauge transformations to fix the value
of α. By definition large transformations are not deformable to the
identity (or at least not without breaking the symmetries in
between). Let us assume, similarly to ref. 7, that in the energy
spectrum there are no degeneracies other than those required by
time-reversal symmetry. In this case there is only one large gauge
transformation: it amounts to exchanging the time-reversed
channel labels I ↔ II in a n-th, pair of bands. It is straightforward
to see that the sector Chern number transforms according to CI !
CI � 2CI

n where C
I
n is the sector Chern number of the n-th pair. The

large gauge transformation clearly transforms also the sector
symmetry eigenvalues. Let us explicitly consider the case of a
twofold rotation symmetric crystal for which the zero Chern
numbers partial real space invariant

νI1a ¼ ΓIi þ
1
2
½ΓI�i � XI

�i � YI
�i �MI

�i�: (3)

Under the time-reversed channels exchange in the n-th pair of
band, each of the C2 eigenvalue multiplicities at the high
symmetry points of the BZ is modified according to HS± i !
HS± i ± i ζ InðHSÞ where ζ In is the twofold rotation symmetry
eigenvalue at HS = Γ, X, Y, M. This consequently implies that
νI1a ! νI1a þ i

P
HSζ

I
nðHSÞ=2 ¼ νI1a þ CI

n mod2 where in the last
equality we used the relation between the parity of the Chern
number and the C2 eigenvalues57. The knowledge of these
transformation properties enables us to define a modified partial
real space topological integer that remain invariant under large
gauge transformation by taking α = 1/2. Hence, the final
expression for the invariant νI1a reads

νI1a ¼
1
2
CI þ ΓIi þ

1
2
½ΓI�i � XI

�i � YI
�i �MI

�i �: (4)

Next, we explicitly verify the gauge invariance of the integer in the
equation above by discussing a paradigmatic microscopic model.
Consider a bilayer system consisting of two Kane–Mele models5

on a uniaxially strained honeycomb lattice, with the two models
differing only by the relative sign of the intrinsic spin–orbit
coupling strength λISO. Being the sum of two quantum spin-Hall
insulators, the bilayer system does not possess metallic edge
states, and therefore the bulk corner correspondence is well
posed. We first determine the partial real-space invariants by
decomposing the space of occupied Bloch states according to
their spin sz eigenvalues. Having chosen the sign of λISO opposite
in the two layers, each of the spin state has a vanishing Chern
number. Therefore, we can safely use the formulation of the
invariants in terms of the individual channel symmetry eigenva-
lues. It can be easily shown that the non-zero multiplicities of the
residual C2 rotation symmetry are ΓIi ¼ XI

i ¼ YI
i ¼ MI

�i ¼ 2. Conse-
quently, the partial real-space invariant of Eq. (4)νI1a ¼ 1 immedi-
ately predicts a quantized corner charge measured with respect to
the center of the unit cell Q1a ¼ νI1a mod2 ¼ 1mod 2. Next, we

employ a different decomposition wherein a channel is composed
by a spin state, say spin up, in the first layer and the opposite spin
state, spin down, in the second layer. This leads to different C2
multiplicities Γ±i = X±i = Y±i = M±i = 1 accompanied, however, by
a non-vanishing Chern number in the two sectors CI,II = ±2. The
C2-protected topological index, modulo 2, is independent of the
specific channel decomposition: Eq. (4) still verfies νI1a mod2 � 1.
This is sufficient to resolve the quantized bulk corner charges of a
twofold rotation symmetric insulator in time-reversal conditions
while relaxing the constraint on the section Chern numbers. Note
that these redefined partial real-space invariants [Table 1 and
Supplementary Note II for their expressions also in the C4;6 cases]
cannot be applied, per se, in systems with an odd channel Chern
number. These systems realize quantum spin-Hall insulators and,
in isolation, do not have a well-defined bulk-corner correspon-
dence because of their gapless edges.
Having at hand explicit expressions without constraints on the

channel Chern number immediately implies that the partial real-
space invariants can be computed if we are provided with a
continuous and periodic set of projectors
ρI;IIðqÞ ¼ P

m ΨI;II
m ð q!Þ�� �

ΨI;II
m ð q!Þ� ��, related to each other by time-

reversal symmetry and individually rotation symmetric. This is
different from the former construction of a set of smooth, periodic,
and symmetric Bloch waves ΨI;II

m ðqÞ�� �
throughout the entire Brillouin

zone, which necessitates individual Wannierazible channels. More
importantly, we can now employ our third step and relax the
constraint on the continuity, periodicity, and symmetry require-
ments on ρI,II(q). As before, let us consider for simplicity C2 crystals
and assume to have hypothetically found a set of continuous,
periodic, and rotation symmetric projectors ρI,II(q). First, we observe
that this is precisely equivalent to having a continuous, smooth and
periodic set of Bloch waves ΨI;II

m ð q!Þ�� �
in the effective Brillouin zone

EBZ = [0, π] × [−π, π] (see Fig. 2) such that

(i) the sewing matrix SC2ð q!Þ ¼ hΨα
mð� q!ÞjC2jΨβ

nð q!Þi is block-
diagonal along the two rotation symmetric high-symmetry
lines qx = 0, π;

(ii) the sewing matrix SC2Θð q!Þ ¼ hΨα
mð q!ÞjC2ΘjΨβ

nð q!Þi is block
off-diagonal in the entire EBZ. In particular the Bloch waves
in each channel can be redefined to satisfy
jΨII

mð q!Þi ¼ C2ΘjΨI
mð q!Þi, in which case the sewing matrix

SC2Θð q!Þα;βm;n ¼ σα;β
x δm;n with σx the first Pauli matrix and δm,n

the Kronecker delta.

We next use that since the Bloch waves along the boundary ∂EBZ
of the EBZ are smooth, periodic, and satisfy the symmetry

Table 1. Partial real-space invariants of rotation-symmetric two-
dimensional insulators.

C2 νI1a ¼ 1
2C

I þ ΓIi þ 1
2 ΓI�i � XI

�i � YI
�i �MI

�i

� �
νI1b ¼ 1

2C
I � 1

2 ΓI�i � XI
�i þ YI

�i �MI
�i

� �
νI1c ¼ 1

2 C
I � 1

2 ΓI�i þ XI
�i � YI

�i �MI
�i

� �
νI1d ¼ 1

2C
I � 1

2 ΓI�i � XI
�i � YI

�i þMI
�i

� �
C4 νI1a ¼ � 1

2 C
I þ �3ΓIeiπ=4 � 3

2 Γ
I
ei3π=4 � ΓIe�i3π=4 � 3

2

�
´ ΓIe�iπ=4 þ 3

2M
I
ei3π=4 þ 2MI

e�i3π=4 þ 3
2M

I
e�iπ=4 þ XI

�i

�
νI1b ¼ � 1

2 C
I þ 3

2 Γ
I
ei3π=4 þ 2ΓIe�i3π=4 þ 3

2 Γ
I
e�iπ=4

�
� 1

2M
I
ei3π=4 � 2MI

e�i3π=4 � 1
2M

I
e�iπ=4 � XI

�i

�
νI2c ¼ 1

2 C
I þ 1

2 ΓIei3π=4 þ ΓIe�iπ=4 �MI
ei3π=4 �MI

e�iπ=4

� �
C6 νI1a ¼ � 1

2 C
I þ �5ΓIeiπ=6 � 5

2 Γ
I
eiπ=2 � ΓIei5π=6 � 1

2 Γ
I
e�i5π=6

�
�ΓIe�iπ=2 � 5

2 Γ
I
e�iπ=6 þ 3

2M
I
�i þ 2KI

�1 þ 2KI
e�iπ=3

�
;

νI2b ¼ CI þ ΓIeiπ=2 þ ΓIei5π=6 þ ΓIe�iπ=2 þ ΓIe�iπ=6

�
�KI

�1 � KI
e�iπ=3

�
;

νI3c ¼ 1
2 C

I þ 1
2 ΓIeiπ=2 þ ΓIe�i5π=6 þ ΓIe�iπ=6 �MI

�i

� �
:
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constraints, the Chern number contribution to the partial real-
space invariants can be rewritten using Stokes’ theorem as the
contour integral of the Berry connection

1
2
CI � 1

2π

I
∂EBZ

d q!� Trð A!Ið q!ÞÞ; (5)

where we emphasize that the equation above is a true equality,
and does not have any integer ambiguity. Considering that the
multiplicities of the rotation symmetry eigenvalues are also
uniquely determined by the Bloch waves along ∂EBZ, one could
conclude that the computation of the partial real-space invariants,
e.g., Eq. (4), can be reduced to an effective one-dimensional
problem.
However, Eq. (5) constitutes a true equality only if the Bloch

waves in both time-reversed channels are continuous, periodic,
and symmetric throughout the entire effective Brillouin zone. If we
were to abandon this constraint, then the halved Chern number
CI/2 would be only determined modulo an integer that is
insufficient to determine, modulo 2, the partial real-space
invariants. To make further progress, let us consider the effect
upon the smooth Bloch waves in the entire EBZ of a UðNFÞ
transformation that preserves the block off-diagonal form of the
C2Θ sewing matrix. We will refer to this subset of unitary

transformations as UC2ΘðNFÞ. It can be shown that this group of
transformations constitutes a subgroup conjugate to the ortho-
gonal group OðNFÞ [see Supplementary Note III]. As a result, we
have that the homotopy classes of UC2ΘðNFÞ are the same as those
of the orthogonal group. Specifically, UðNFÞC2Θ consists of two
connected components:

π0ðUðNFÞC2ΘÞ ¼ Z2; (6)

corresponding to the subset of matrices with determinant equal
to +1 and −1. Moreover, as the first homotopy group of the
orthogonal group is non-trivial, we find that the same applies to
UðNFÞC2Θ. In particular, this yields:

π1ðUðNFÞC2ΘÞ ¼
Z if NF ¼ 2;

Z2 if NF > 2:

	
(7)

In other words, a map from a closed loop to our group of unitary
transformations is either characterized by a Z- or by a Z2-winding
number. Since the effective Brillouin zone boundary, ∂EBZ, defines
a closed loop, we can introduce the Z2-type winding number
WðUj∂EBZÞ. This Z2 winding number is of utmost importance since
it allows us to uniquely determine how the halved sector Chern
number, modulo 2, transforms under a UC2Θ transformation. We
can therefore introduce other partial real-space invariants that are
identical, modulo 2, to the expressions of Table 1 and thus
correctly capture the bulk-corner correspondence. For instance,
the analog of Eq. (4) can be written as

νI1a ¼ 1
2π

H
∂EBZd q!� Trð A!Ið q!ÞÞ þWðUj∂EBZÞ

þ ΓIi þ 1
2 ½ΓI�i � XI

�i � YI
�i �MI

�i�
(8)

Since the expression above is invariant under arbitrary gauge
transformations along the boundary of the effective Brillouin zone
that respect C2- and Θ-symmetry, the rotation-symmetric time-
reversed channels of periodic and smooth Bloch waves ΨI;IIð q!Þ
along the boundary of the effective Brillouin zone ∂EBZ can be
chosen completely independent of the Bloch waves χ I;IIð q!Þ in the
interior of the EBZ, provided they make the C2Θ sewing matrix
completely off-diagonal. We have therefore decomposed the task
of finding a continuous, periodic, and rotation-symmetric set of
time-reversed projectors ρI,II(q) into two simpler, and computa-
tionally possible problems. Namely, the construction of a
C2Θ-symmetric gauge within the EBZ, and the construction of a
C2 & Θ-symmetric gauge along the boundary ∂EBZ. The winding
number WðUj∂EBZÞ effectively reveals whether or not the gauge
along ∂EBZ can be matched with the gauge constructed within
the EBZ. All in all, the following steps need to be implemented in
order to compute the partial real-space invariants of a twofold
rotation-symmetric crystal with time-reversal symmetry:

(i) construct a continuous and periodic C2 & Θ-symmetric
gauge of Bloch waves Ψð q!Þ along ∂EBZ,

(ii) compute the partial Berry phase and the multiplicities of the
rotation-symmetry eigenvalues using Ψð q!Þ,

(iii) construct a continuous, but not necessarily periodic,
C2Θ-symmetric gauge for Bloch waves χð q!Þ within the
EBZ, and

(iv) compute the Z2- or Z-winding number of the overlap-
matrix Uð q!Þ ¼ hχ q!jΨð q!Þ� i along ∂EBZ.

Figure 2 sketches a computationally feasible strategy to perform
the four steps mentioned above. We refer the reader to the
Methods section for more details on the computational proce-
dures in twofold rotation-symmetric crystals and Supplementary
Note IV for the generalization to the case of C4- and C6-symmetric
crystals.

Fig. 2 Schematic overview of the procedure to construct a C2 and
Θ-symmetric gauge along the effective Brillouin zone. The gauge
at each point is represented by a portrait of Felix Bloch. The
C2Θ-respecting gauge transformations are rotations of Bloch’s
portrait, possibly followed by a reflection. a) Brillouin zone, with in
gray the effective Brillouin zone. b) Selection of C2- and Θ-symmetric
target Bloch states at the four high-symmetry points within EBZ. c) A
continuous gauge is obtained along the line connecting Γ and Y by
parallel transporting the target state at Γ in the direction of Y. d)
Topological mismatch between the parallel-transported states at Y
and the target Bloch states at Y. e) The topological mismatch at Y
reduces to a trivial mismatch upon redefining the target states at Y.
The redefinition is represented as a mirror operation on the portrait
of Bloch. f) The trivial mismatch is removed by a rotation that is
evenly spread out over the parallel-transported states along the line
connecting Y and Γ. g) Pictorial representation of continuous C2 and
Θ-symmetric gauge along the upper half of the effective Brillouin
zone boundary. h) Extension of the continuous C2- and Θ-symmetric
gauge along the entire effective Brillouin zone boundary. i–l)
Procedure to construct a C2- and Θ-symmetric gauge in the interior
of the EBZ by parallel transport.
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Relation to topological crystalline line invariants
We next discuss the relation between the partial real-space
invariants defining the bulk-corner correspondence and the
quantized partial polarizations – the so-called line invariants –
along lines in the Brillouin zone that are mirror, or equivalently
twofold-rotation, symmetric29,30. We recall that these Z2 invariants
can be written in a UðNFÞ invariant form that only requires a
periodic gauge from numerically obtained eigenstates30.
Let us consider, as before, the case of twofold rotation

symmetric crystal [we refer the reader to Supplementary Note V
for the C4;6 cases] and use that insisting on a gauge choice that
makes the two time-reversed channels C2 symmetric the
quantized partial polarization along the k2 = 0 (Γ − X) line of
the Brillouin zone (BZ) can be simply written as γI1 ¼ ΓIi þ XI

i
modulo an even integer. Likewise, the quantized partial polariza-
tion along the k1 = 0 (Γ − Y) line of the BZ reads γI1 ¼ ΓIi þ YI

i . Note
that the quantized partial polarization on the k1,2 = π, i.e., the Y −
M and the X − M lines respectively, are not independent since
they are related to the polarization γI1;2 via the Z2 topological
invariant νFKM originally introduced by Fu, Kane, and Mele6,7. It is
straightforward to show that the two independent Z2 line
invariants can be immediately expressed in terms of the partial
real-space invariants. Using that the latter are well-defined modulo
2 in a C2-symmetric crystal, and taking advantage of the
compatibility relations for the C2 symmetry eigenvalues HSi +
HS−i ≡ NF with HS = Γ, X, Y, M, we immediately find [Table 1] the
following equalities modulo 2

νI1b þ νI1d
� � ¼ νFKM � γI1

� �
;

νI1c þ νI1d
� � ¼ νFKM � γI2

� �
:

(9)

Here, we have used the relation between the Chern number of the
I, II channels and the Fu–Kane–Mele invariant: νFKM ¼ CI mod 2.
While partial real-space invariants uniquely determine the

topological crystalline line invariants, the opposite is not true.
More generally, the fact that the line invariants do not resolve the
bulk-corner correspondence can be seen by noticing that there is
a single constraint on the νI1x invariants modulo 2, namely

νI1a þ νI1b þ νI1c þ νI1d
� � ¼ ΓIi � ΓI�i ¼

NF

2
: (10)

This also implies that for an arbitrary NF number of occupied
bands, a C2- and Θ-symmetric insulator can be characterized by
three partial real-space Z2 indices, which, together with νFKM, form
a Z2 ´Z2 ´Z2 ´Z2 classification. This has clearly more topological
content than the Z2 ´Z2 ´Z2 characterization in terms of line
invariants and Fu–Kane–Mele invariants. Notice that the same
holds true also in crystals with fourfold- and sixfold-rotation
symmetries. This is simply because the corresponding Z4;6
quantized corner charges cannot be resolved by the Z2 quantized
polarizations.
To prove concretely that the topological crystalline line

invariants do not completely resolve the bulk-corner correspon-
dence let us introduce a fourfold rotation-symmetric atomic
insulating phase at NF = 4 using the model schematically shown in
Fig. 3. It can be thought of as being composed of two time-
reversed copies of the spinless model introduced in ref. 58 with
the two channels mixed by a spin–orbit coupling term.
Specifically, we couple site 1 and 2 by a term λiσx and site 3
and 4 by a term λiσy within the unit cell, and set λ= 0.3. At half-
filling, the insulating state realized for ∣t/t2∣ > 1 and ϕ = − π [see
Fig. 3a] has a simple decomposition in two channels with zero
Chern number and νI1a � 1; νI1b;2c � 0. This is consistent with the
explicit computation of the corner charge shown in Fig. 3c that
shows Q1a = 1 while Q1b = Q2c = 0. However, tuning the
parameters to ∣t/t2∣ < 1 and ϕ = π [see Fig. 3b], this model realizes
a different set of real-space invariants νI1b � 1; νI1a;2c � 0. And
indeed the charge density shown in Fig. 3d predicts Q1b = 1 while
Q1a = Q2c = 0. The change in charge density is however not
detected by the line invariants that are vanishing in both spaces,
i.e., γI1 � γI2 � 0. This is because the two insulating phases can be
described in terms of two Wannier Kramers pairs centered either
at the center 1a of the unit cell or at the 1b edge of the unit cell,
which clearly give the same partial polarizations.

Detecting the topology of quantum spin-Hall insulators
As mentioned above, the partial real-space invariants provide us
with the bulk-corner correspondence in crystals that are insulating
both in the bulk and along their edges. Therefore, they are ill-
defined when dealing with quantum spin-Hall insulators due to
the presence in the latter of helical edge states. This assertion,
however, is only true when considering crystalline systems in
isolation. Let us now instead consider one insulating system that is
completely surrounded by a second insulator59 as shown in Fig.
4a. For such a geometry, we define the corner charge of the
combined system as the sum of the charge in the corner of the
inner insulator and the charge in the L-shaped region of the
surrounding insulator adjoining the first corner region. In addition,
both regions will be measured with respect to a special Wyckoff
position in order to ensure quantization of the corner charge. In
the case of atomic and fragile topological insulators, inspection of
the corner charge in this geometry does not provide any
additional information. On the contrary, if the two insulators are
of the quantum spin-Hall type, by computing the combined
corner charge additional information on the crystalline topology
can be extracted.
We recall that from an edge perspective all quantum spin-Hall

insulators are topologically identical: the presence of the helical
edge states is mandated by the non-trivial value of the
Fu–Kane–Mele Z2 invariant. In Cn-symmetric crystals, however,
quantum spin-Hall phases can be additionally characterized by the

Fig. 3 Quantized corner charges are not uniquely determined by
Berry phases and crystalline symmetry eigenvalues. a) Sketch of
the Hamiltonian for one spin sector of the C4-symmetric system that
realizes an atomic insulating phase at half-filling with two electrons
at Wyckoff position 1a or b) 1b depending on the parameters. This
model is adapted from ref. 58. c) Behavior of the corner charge
density for the phase where two Kramers pairs are localized at 1a
and d) 1b as obtained by increasing the l × l corner region size. Note
that both phases have the same line invariants and symmetry
eigenvalues.
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quantized partial Berry phases, and they can be revealed by the
charge trapped at dislocation defects. As shown in ref. 39,
however, quantum spin-Hall phases in twofold rotation symmetric
crystals are endowed with an additional topological Z2 invariant,
which cannot be probed at these topological defects. We will now
show that the corner charge in the geometry of Fig. 4a is
diagnosed precisely by this crystalline topological index.
To prove the assertion above, we use the Kane–Mele model,

which, as before, will be considered on a uniaxially strained
honeycomb lattice to remove the additional threefold rotation
symmetry. Using the results of ref. 39, it can be shown that the
quantum spin-Hall insulating phase realized choosing the nearest
neighbor hopping amplitude t = 1 is topologically distinct from
the insulating phase realized choosing the opposite sign of the
hopping amplitude, even though the spin–orbit coupling λISO
remains unchanged. Moreover, the two states share the same
partial Berry phases and consequently cannot be discriminated by
analyzing the charge trapped at dislocations. When using the two
phases in the combined geometry of Fig. 4a, an explicit
computation of the quantized values of the corner charge [see
Figs. 4b–d] yields Q1a,1b,1c,1d = 1, as opposed to the result one
would get for a system composed of two quantum spin-Hall
insulators with equal crystalline topological indices, i.e.,
Q1a,1b,1c,1d = 0.
Even more importantly, the quantized corner charges can be

straightforwardly obtained using the bulk formulation of the
partial real-space invariants, whereas they cannot be read off from
the line invariants. For a Kane–Mele model on a strained
honeycomb lattice with the parameter set choice (t, λISO) =
(1, 1) the twofold rotation-symmetric channel with Chern number
CI = 1 is characterized by the following set of rotation symmetry
labels ΓIi ¼ XI

i ¼ YI
i ¼ MI

�i ¼ 1. In the Kane–Mele quantum spin-
Hall phase with (t, λISO) = (− 1, 1) the I channel with CI = 1 has
reversed rotation symmetry labels ΓI�i ¼ XI

�i ¼ YI
�i ¼ MI

i ¼ 1. As a
result, these two νFKM = 1 systems cannot be distinguished by the
values of the line invariants γI1 � γI2 � 0. However, the νI1x are
manifestly different. In fact, using the expressions listed in Table 1
the first Kane–Mele model has νI1a ¼ νI1b ¼ νI1c � 1 and νI1d ¼ 0
while these invariants are reversed by switching the hopping
amplitude sign, i.e.,νI1a ¼ νI1b ¼ νI1c � 0 and νI1d ¼ 1. Note that the
quantized corner charges in the heterostructure containing both

quantum spin-Hall insulators, Q1x ¼ ΔνI1x � 1, are consistent with
the direct real-space calculation of Fig. 4c, d.

Quantized corner charges as a probe of fragile topology
Next, we will show that the partial real-space invariants represent
a powerful diagnostic tool to detect fragile topological phases. As
mentioned above, the absence of gapless edges guarantees that
topological fragile phases do possess quantized corner charges
that are in a one-to-one correspondence with the partial real-
space invariants. In the following, we will derive an inequality that
the set of partial real-space invariants necessarily satisfies if the
insulator is an atomic one. Consequently, a violation of this
inequality indicates that the system must be a fragile topological
insulator as long as its edges are insulating.
Let us first introduce for each special Wyckoff position the

positive integer quantities directly related to the partial real-space
invariants νImx ¼ νImx mod ðn=mÞ. The νImx ’s can be immediately
related via an exact equality to the quantized part of the corner
charges, namely Qmx ¼ 2νImxm=n. Even more importantly, for an
insulating phase adiabatically connected to an atomic limit the
νImx represent lower bounds for the number of exponentially
localized Wannier functions with center of charge coinciding with
the special Wyckoff positions Nmx � 2 νImx . Furthermore, the total
number of electrons in the unit cell satisfies NF ≥ ∑m × Nmx where
the sum runs over all the special Wyckoff positions in the unit cell
of the rotation symmetric crystal. Combining these two inequal-
ities allows us to derive the following condition fulfilled by a
generic atomic insulating phase NF �

P
2m ´ νImx . Insulating

phases for which this inequality is violated do not allow an
adiabatic deformation to an atomic limit, and hence correspond to
fragile topological insulators. We can encode this criterion in a
discriminant

DCn ¼ NF �
X

2m ´ νImx ; (11)

where, as before, the sum runs over all special Wyckoff positions in
the unit cell of the rotation-symmetric crystal. A negative value of
DCn implies the existence of a topological obstruction in
deforming the insulating phase to an atomic limit, and
consequently a fragile topological nature. We remark that the
criterion for the topological non-triviality of a fragile phase cannot
be read off from the values of the partial real-space invariants

Fig. 4 Quantized corner charges in quantum spin-Hall heterostructures. a) Schematic of a C2 QSH system embedded in another QSH
system with periodic boundary conditions. The edge and corner regions of the interface are colored blue and red, respectively. b)
Corresponding charge density for the QSH systems discussed in the text. c) Behavior of the corner charge as a function of the l × l corner
regions size. d) Zoom in of the charge density, depicting the two corners and the regions used to calculate the corner charges.
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taken by themselves. It is instead stored in a single Z2 invariant
corresponding to the sign of the discriminant DCn .
We now demonstrate the diagnostic capability of this

discriminant, and consider a concrete realization of a fragile
phase in a C4-symmetric crystal. The model is schematically shown
in Fig. 5a and is defined on a square lattice, with each-unit cell
hosting one s-like and one d-like orbital. Besides conventional
nearest-neighbor hoppings we have also included fairly strong
long-range hopping processes. At half-filling both the bulk and
the edges of this system are completely insulating [see
Supplementary Note VI], which implies that the corner charges
are well-defined and quantized. Explicit computation of the corner
charges in the open geometry of Figs. 5b–d yields the following
results: Q1a = 3/2, Q1b = 1, and Q2c = 0. This is in agreement with
the computation of the bulk partial real-space invariants that can
be easily performed decomposing the time-reversal invariant
insulator in two time-reversed Chern insulator with channel Chern
number CI,II = ±4 [see Supplementary Note VI]. Using the
expression for the real-space invariants listed in Table 1, we
indeed find νI1a ¼ 3, νI1b ¼ 2, and νI2c ¼ 0. Moreover, since at half-
filling only one pair of Kramers related bands are occupied, i.e., NF

= 2, we have that the discriminant DC4 ¼ �8, thus signaling a
fragile topological insulating nature.
We corroborate this finding by verifying the hallmark of fragile

topological insulators—the decay into an atomic insulating state
by addition of certain topologically trivial electronic bands.
Consider, for instance, the addition of a single Kramers’ related
pair of bands. To preserve the fourfold rotation symmetry, the
added atomic bands will either correspond to a localized Wannier
Kramers’ pair centered at the origin of the unit cell 1a, or at the

corner of the unit cell 1b. In the latter case, we find that νI1b ¼ 3
whereas νI1a;2c remain unaffected. This increase in the corner
charge Q1b is exactly compensated by the change of NF = 2→ 4 in
the discriminant DC4 that consequently remains negative indicat-
ing that the system is not trivialized. Let us now consider the
addition of a Wannier Kramers pair localized at 1a. This implies
that νI1a is modified according to νI1a ¼ 3 ! 0 while the other
topological crystalline invariants remain unchanged. This conse-
quently implies a change in the discriminant DC4 ¼ �8 ! 0,
which verifies the decay of the fragile topological insulator into a
conventional atomic insulator.
It is important to point out that in a C4 (C6) symmetric crystal the

presence of the twofold rotation symmetry allows one to
simultaneously define also a DC2 discriminant [see Supplementary
Note VII]. A negative value of this discriminant automatically
implies a negative value for DC4 (DC6 ). However, the converse
needs not to be true. This is verified, for instance, in the model of
Fig. 5a where an electron pair is added at the 1b corner of the unit
cell. The fourfold rotation discriminant DC4 ¼ �8 implies fragile
topology whereas the C2 specific discriminant DC2 identically
vanishes and on the contrary would signal an atomic insulator.
This property implies that the fragile topology of this model
cannot be seen using diagnostic tools specifically designed for
twofold rotation symmetric systems, as for instance, the Wilson-
loop based indices developed in refs 45,60,61. Furthermore, the fact
that the fragile topology relies purely on the fourfold rotation
symmetry, implies that a structural orthorhombic distortion also
yields an electronic topological phase transition to an atomic
insulating phase.

Fig. 5 Fragile topological phases and their quantized corner charges. a) Schematic drawing of the hopping parameters for one spin sector
of the C4 symmetric fragile topological insulator model. b) Charge density of a C4 symmetric fragile topological insulator for a square sample
of 60 by 60 unit cells. c) Charge density of the lower left corner. The sum of the charge in the red and green areas give the corner charges Q1a
and Q1b, respectively. d) Corner charges as a function of the size of the summed region l. The corner charges exponentially go to the values of
1.5 and 1. Charge density is calculated for t1 = 0.25, t2 =−0.4, t3 = 0.55, t4 =−0.35, t5=−0.56, t6= 0.125, t7= 0.25.
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Finally, we point out that in C2-symmetric crystals all insulating
phases are atomic for NF ≥ 6: this is because νI1x ¼ 0; 1 and
consequently the discriminant has an upper bound for an even
number of Kramers’ related pairs of bands DC2 � NF � 8 while for
an odd number of pairs of bands DC2 � NF � 6. On the contrary,
the existence of C4-protected fragile topological phases is not
limited to systems with two occupied pairs of Kramers’ related
bands. If starting out from the model in Fig. 5a we would consider
the addition of two Wannier Kramers’ pairs centered at the two
Wyckoff positions 2c, the change in NF = 2 → 6 would be exactly
compensated by the increase in νI2c ¼ 0 ! 1 that leaves the
discriminant unaltered.

DISCUSSION
In short, we have introduced the gauge-invariant crystalline
topological indices that govern the quantized corner charges
present in two-dimensional rotation symmetric insulators with
time-reversal symmetry. We dubbed these topological integers
partial real-space invariants. They cannot be expressed in terms of
Wilson loop invariants, partial Berry phases or symmetry-based
indicators: their computation requires a completely different
approach that we have developed throughout our work. Beside
defining the bulk-corner correspondence of conventional band
insulators adiabatically connected to an atomic limit, the partial
real-space invariants can be used to unveil the crystalline topology
of quantum spin-Hall insulators, and represent a unique tool to
diagnose the recently discovered topological phases of the fragile
type in time-reversal symmetric crystals. The bulk-corner corre-
spondence formulated in this work is capable of detecting all
fragile topological phases in systems with spin-orbit coupling and
time-reversal symmetry.

METHODS
C2 & Θ-symmetric gauge along the effective BZ boundary
In order to construct a continuous, C2- and Θ-symmetric gauge along the
boundary of the effective Brillouin zone, we develop a procedure inspired
by the parallel-transport procedure developed in ref. 62. The procedure
can be divided in three steps and is sketched in Fig. 2.
Step 1: At the four high-symmetry momenta HS ∈ {Γ = (0, 0), Y = (0, π),

M = (π, π)X = (π, 0)} we pick NF Bloch states χt:s:ðHSÞj i in a gauge that is C2
and Θ-symmetric. In the following, we refer to these states at the high-
symmetry points of the EBZ as target states. We point out that such a set of
states can be easily constructed by diagonalizing the C2 symmetry
operator.
Step 2: Having selected the target states at the four high-symmetry

points in the Brillouin zone, we next need to find a continuous gauge that
joins the target states along the upper half of ∂EBZ while simultaneously
preserving the off-diagonal structure of the C2Θ sewing matrix. Let us first
consider the line connecting Γ − Y, and define an equally spaced mesh
q!j ¼ ð0; qj;yÞ with j = 0, …, μ such that q0,y = 0 and qμ,y = π. We initialize

the parallel transported states by defining the NF states at Γ as jχp:t:ð q!0Þi :
¼ jχt:s:ðΓÞi: We can then define the parallel transported states over the
entire mesh using the following iterative procedure: starting from the
parallel-transported states jχp:t:ð q!jÞi, we uniquely determine the parallel-

transported states at jχp:t:ð q!jþ1Þi by requiring the overlap matrix

Mð q!j ; q
!

jþ1Þ ¼ hχp:t:ð q!jÞjχp:t:ð q!jþ1Þi to be Hermitian and with only
positive eigenvalues. This can be accomplished by employing a singular
value decomposition. Starting from an arbitrary gauge at q!jþ1, we write

the overlap matrix fMð q!j ; q
!

jþ1Þ ¼ hχp:t:ð q!jÞjχð q!jþ1Þi as fM ¼ VΣWy ,
with V and W unitary matrices and Σ a postive real diagonal matrix. The
parallel-transported states are defined by the unitary transformation of the
χð q!jþ1Þ
�� �

states as jχp:t:ð q!jþ1Þi ¼ WVyjχð q!jþ1Þi: This guarantees that the
modified overlap matrixM ¼ VΣVy is Hermitian and positive. This iterative
procedure can be repeated until we have arrived at (0, π) = Y. Moreover,
the parallel transport procedure ensures that the block diagonal form of
the C2Θ sewing matrix, or equivalently the constraint

jχIIp:t:;mð q!jÞi ¼ C2Θjχ Ip:t:;mð q!jÞi, is satisfied along the entire line [this is
shown in Supplementary Note VIII].
This, however, is not yet the end of the story: by definition, the parallel

transported states at Γ coincide with the target state. The same, however,
does not hold true at the Y point: the parallel-transported states jχp:t:ðYÞi
will generically not be equal to the target states selected at Y. In order to
correct this, we can in principle apply a residual gauge transformation
Uð q!jÞ to rotate the parallel-transported states

jχp:t: q!ji ! Uð q!jÞjχp:t:ð q!jÞi



. Specifically, the residual gauge transforma-

tion should interpolate between the identity matrix at Γ and M�
Y ¼

hχt:sðYÞjχp:t:ðYÞi� at Y. With a continuous and smooth residual gauge
transformation, this is only possible if the identity matrix and M�

Y belong
to the same connected component of the subgroup UðNFÞC2Θ . Put
differently, the determinant of M�

Y has to be +1. Assuming the
determinant is instead equal to −1, we cannot use any residual gauge
transformation to connect our target states at Γ and Y. However, in this
case we have the freedom to redefine the target states selected at Y, by
exchanging a single state from sector I with its Kramers partner in sector II.
This will switch the sign of the M�

Y determinant and eventually allow to
interpolate our target states. In concrete terms, we will apply the following
residual gauge transformation: jχð q!jÞi ! expðqj;y log ðM�

YÞ=πÞjχð q!jÞi: To
ensure that the states transformed with this additional residual gauge
transformation still obey the symmetry constraint
jχIIp:t:;mð q!jÞi ¼ C2Θjχ Ip:t:;mð q!jÞi, we take the logarithm that takes values
within the Lie algebra of UðNFÞC2Θ . Specifically, denoting the eigenvalues
and eigenvectors of M�

Y by eiθj and vj, with j = 1, …, NF, one can express
this logarithm as log ðM�

YÞ ¼
P

j iθjvjv
y
j ; where we require that θj ∈ (− π, π),

and for simplicity we have assumed that all of the eigenvalues are distinct.
With this, we finally obtain a continuous gauge along the line connecting Γ
and Y, which gives as output the C2-symmetric time-reversed target states
selected at Γ and Y while simultaneously keeping the block off-diagonal
structure of the C2Θ symmetric sewing matrix. Next, we repeat the above
steps along the line connecting Y and M, and the line connecting M and X,
to find our continuous, smooth, and symmetric gauge along the upper half
of ∂EBZ.
Step 3: Finally, we need to extend the gauge found at Step 2 to the entire

boundary of the effective Brillouin zone. Let us first consider the line
connecting Γ and − Y = (0, − π). We can define χð q!Þ�� �

for − π < qj,y < 0 as
follows:

χαmð q!jÞ
�� �

:¼ � expðqj;yðYα
m � ΓαmÞ=2ÞΓαmC2 χαmð� q!jÞ

�� �
; (12)

where Yα
m and Γαm denote the C2 eigenvalues of the target states at Y and Γ,

respectively. Note that the prefactor � expðqj;yðYα
m � ΓαmÞ=2ÞΓαm ensures

that the gauge in the negative half of ∂EBZ matches the gauge in the
positive half. Next, we can implement this procedure in an analogous way
along the line connecting X and − M = (π, − π). The gauge along the line
connecting Y and M in the lower half can be instead simply taken to be
equal to the section connecting Y and M in the upper half.

Computing the Berry phase and C2 symmetry labels
With our continuous and C2 & Θ–symmetric gauge along the effective
Brillouin zone boundary in our hands, we can straightforwardly compute
the (partial) Berry phase contribution as well as the multiplicities entering
the νI1x expressions of the topological invariants. To compute in particular
the Berry phase contribution let q!j with j = 0, …, μ parametrize the mesh
along the effective Brillouin zone boundary. Then, using the gauge found
in the previous step, we haveI

∂EBZ
d q!� Trð A!Ið q!ÞÞ ¼

X
j

Im log det MI q!j ; q
!

jþ1

� �� �� ��
; (13)

with MIð q!j ; q
!

jþ1Þm;n
¼ hχ Imð q!jÞjχ Inð q!jþ1Þi the overlap matrix between

states at adjacent momenta. Note that this expression does return the
Berry phase for the gauge that we have constructed, i.e., the equality is a
true equality (not modulo 2π).

Constructing a C2Θ-symmetric gauge in the effective BZ
In order to obtain a continuous C2Θ-symmetric gauge in the effective
Brillouin zone, we employ again a parallel transport procedure We initialize
our procedure by selecting at the lower-left corner of the effective Brillouin
zone, the �Y ¼ 0;�πð Þ point, a set of Bloch states such that the
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C2Θ-constraint jχ IIp:t:;mð q!jÞi ¼ C2Θjχ Ip:t:;mð q!jÞi is obeyed, see Fig. 2i. Next,
we use the iterative parallel transport procedure in the q̂y -direction to
obtain a C2Θ-symmetric gauge along the left edge of the effective Brillouin
zone, see Fig. 2j. We thereafter use each point along this line as a starting
point to iterate the parallel transport of these Bloch states into the
q̂x-direction. This is illustrated in Fig. 2k, d. Upon completion of these steps,
we find a continuous C2Θ-symmetric gauge in the entire effective
Brillouin zone.

Computing the Z2 winding number of UC2ΘðNFÞ
To show how to compute the winding number of the overlap matrix
U ¼ hχð q!ÞjΨð q!Þi, we recall that as shown in Supplementary Note III the
group of C2Θ-preserving gauge transformations is conjugate to the
orthogonal group. It is also instructive to remember that the logarithm of a
non-zero complex number z = ρeiθ, with ρ 2 Rþ and θ 2 R is a multi-
valued function: the logarithm log ðzÞ is only well-defined up to integer
multiples of 2πi. A simple way to define a proper single-valued function is
to require the imaginary part of the logarithm to take values in the open
interval (− π, π]. One refers to such a logarithm as the principal logarithm.
We can now analogously define the principal logarithm of an element of

the special orthogonal group. First, we consider for simplicity the special
orthogonal group in two dimensions. Let M ∈ SO(2), and denote its two
eigenvectors as v1 and v2, with corresponding eigenvalues eiθ1 and eiθ2 .
Since M is a real unitary matrix, the following relation must hold
eiθ2 ¼ e�iθ1 . Moreover, the eigenvectors v1 and v2 are related to each
other by complex conjugation (in the rare event that θ = 0, π this might
require a basis transformation). It is therefore natural to define the principal
logarithm of the matrix M as follows:

log ðMÞ :¼ iθ1v1v
y
1 þ c:c: ¼ θ1X1;with θ1 2 ð�π; π�; (14)

and where c. c. denotes the complex conjugate. In this way, we can
transform the multi-valued logarithm into a single-valued function as long
as θ1 ≠ π. In fact, for θ1 = π there is an intrinsic ambiguity in the definition
of the principal logarithm since we could freely replace v1 by v2. We can
however remedy to this ambiguity by requiring that in the expression for
the principal logarithm v1: = (1, +i)T. With this, we can conclude that there
is a one-to-one mapping between SO(2) and U(1). In particular, this implies
that their fundamental homotopy groups coincide:
π1ðSOð2ÞÞ ¼ π1ðUð1ÞÞ ¼ Z. We can straightforwardly determine the
Z-number associated to an element of SO(2) on a loop by counting the
number of times n+ the logarithm crosses its branch cut clockwise, and
subtracting to it to number of times n− the branch cut is crossed anti-
clockwise. In practice, one counts the number of times that the principal
logarithm makes a sudden jump by +2πiσy and the number of times it
jumps by −2πiσy. Note that n+ and n− are individually not invariant, as an
anti-clock wise crossing can annihilate a clock-wise crossing.
We next generalize the results above to SO(N) with N > 2, assuming for

simplicity N to be even. Using the sorted real Schur decomposition
discussed in ref. 63, we can group the eigenvectors and eigenvalues into N/
2 pairs v2j−1 and v2j, and corresponding eigenvalues e± iθj . With this, we
thereafter define the principal logarithm as:

log ðMÞ :¼
XN=2
j¼1

iθjv2j�1v
y
2j�1 þ c:c: ¼

XN=2
j¼1

θjX j ; (15)

where Xj is a skew-symmetric matrix with hhXi ; Xjii ¼ Tr XT
i Xj

� � ¼ 2δi;j , and
θj ∈ (− π, π] for j = 1, …, N/2. Precisely as for the SO(2) case, the principal
logarithm is uniquely defined as long as θj ≠ π ∀ j. However, in this case we
cannot resolve the ambiguity if one of the angles θj = π. This difference
can be understood as follows. A n-dimensional rotation with n > 2 can be
represented as for the two-dimensional case with pairs of oriented planes,
here given by Xj, and corresponding angles θj. In the two-dimensional case,
it is possible to resolve the ambiguity for θ = π, since the orientation of a
two-dimensional plane can be globally specified. This does not hold for
higher-dimensional rotation because the oriented planes can be rotated.
Such a detail has major consequences for the fundamental homotopy
group of SO(N) for N > 2. Namely, we can no longer distinguish between a
logarithm that crosses the branch cut in a clock-wise or anti clockwise
direction. Instead, we can only consider the total number of crossings n,
which is a quantity determined up to multiples of two since, as mentioned
above crossings can be annihilated in pairs. Put in simple terms, the
fundamental group of SO(N) is given by Z2 if N > 2.
We now present an explicit numerical recipe to determine whether or

not a loop in SO(N) is null-homotopic. Assume that we are given a set set of

orthogonal matrices M(i) with i = 1, …, L, satisfying the constraint ∥M(i) −
M(i + 1)∥ ≪ 1. Furthermore, we require that the set of matrices form a
closed loop, i.e. M(L) = M(1). As a first step, we compute the principal
logarithm for each of the L matrices, ensuring that log ðMðLÞÞ ¼ log ðMð0ÞÞ
to respect the periodicity. We can compute the principal logarithm using
the following Python code:

import numpy as np
from scipy.linalg import schur, eigvals, expm
def principalLog(M):
"""
:input M: special orthogonal matrix of even

dimension Nf
:output X0: skew-symmetric matrix of dimension N x N, s.

t. exp(X0)=M, and X0 = theta_i � X_i, with theta_iin [-pi,
pi]"""

T, Z = schur(M)
sort_real_schur(Z, T, 1.,0,inplace=True)
Nf = len(M)
X0 = np.zeros((Nf,Nf))
for i in range(Nf//2):
u = Z[::, 2 � i : 2 � i + 1]
v = Z[::, 2 � iþ 1 : 2 � iþ 2]
x =u � v:T� v � u:T
theta = np.arctan2(T[ 2 � i, 2 � i+1], \
T[ 2 � i, 2 � i])
X0 += theta � x:copyðÞ
return X0
Here, we used the function sort_real_schur, an implementation of the

real Schur decomposition of ref. 63, which can be found at https://gist.
github.com/fabian-paul/14679b43ed27aa25fdb8a2e8f021bad5.
Having computed the principal logarithms, we next need to count the

total number of branch cut crossings. To this end, we construct a function
that returns the number of crossings between two nearby orthogonal
matrices. Specifically, it uses that for two nearby orthogonal matrices
k log ðMðiÞÞ � log ðMði þ 1ÞÞk2 � n ´ 8π2, with n the number of crossings
in between. Typically n will be equal to 0 or 1. This can be implemented in
Python as follows:

def crossingIndicator(M1,M2):
"""M1 and M2 two nearby orthogonal matrices.

Returns n if n 2x2 blocks of the Schur decomposi-
tion cross the branch-cut of the logarithm.

"""
L1 = principalLog(M1)
L2 = principalLog(M2)
delta = L2-L1
k = np.linalg.norm(delta/(2*np.pi),ord=,-

fro,)**2/2
k = round(k)
return k
Finally, we need to sum the number of crossing over all neighboring

points along the mesh. Here, we can use the following function:
def Z2(listM):
"""listM is a list of orthogonal matrices M(i).
Returns the parity of the number of times the

branch-cut is crossed"""
nu = 0
for i in range(len(listM)-1):
nu+= crossingIndicator(listM[i],listM[i+1])
nu+=crossingIndicator(listM[-1],listM[0])
return nu
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