Abstract
Discrepancies in the lowenergy quasiparticle dispersion extracted from angleresolved photoemission, scanning tunneling spectroscopy, and quantum oscillation data are common and have long haunted the field of quantum matter physics. Here, we directly test the consistency of results from these three techniques by comparing data from the correlated metal Sr_{2}RhO_{4}. Using established schemes for the interpretation of the experimental data, we find good agreement for the Fermi surface topography and carrier effective masses. Hence, the apparent absence of such an agreement in other quantum materials, including the cuprates, suggests that the electronic states in these materials are of different, nonFermi liquidlike nature. Finally, we discuss the potential and challenges in extracting carrier lifetimes from photoemission and quasiparticle interference data.
Similar content being viewed by others
Introduction
Strongly correlated electrons are at the root of some of the most mysterious quantum materials, including unconventional superconductors, strange metals, and heavy fermion materials^{1,2,3,4,5}. Most of the exotic phases of electronic matter in these systems emerge from collective behavior of the electrons. A universally accepted understanding of these systems is still lacking, and requires close cooperation between scientists using different theoretical and experimental methods. From the experimental side, many insights to date have come from spectroscopic techniques that probe the band structure and manybody renormalizations of electrons close to the Fermi level, including angleresolved photoemission (ARPES), scanning tunneling microscopy (STM), and quantum oscillations (QO), which are the focus of this article.
In the most widely used interpretations, spectroscopicimaging STM (SISTM) and ARPES probe the spectral function in real and reciprocal space^{6,7,8,9,10}. Quantum oscillations probe the Fermi surface area and the kaveraged cyclotron mass which can in turn be related to the pole of the spectral function at energies close to the Fermi level^{11}. There should thus be welldefined relations between the quantities measured by these three techniques^{12}.
Surprisingly though, several apparent contradictions between results based on these techniques can be found in the literature. Such contradictions can involve very fundamental properties of the electronic structure: for example, quantum oscillation studies on underdoped cuprate hightemperature superconductors claim the existence of Fermi surface pockets while STM and ARPES reported disconnected Fermi arcs^{13,14}. Similarly, the strength of gap inhomogeneities seen by STM in several unconventional superconductors appears to be inconsistent with gap broadening in ARPES spectra that average over large areas. These and other discrepancies between results of different techniques have previously been discussed in cuprate superconductors^{15,16,17,18}, heavy fermion systems^{19}, and topological insulators^{20}. However, it often remains unknown if these apparent differences are a consequence of some inherent limitations of the techniques or if they are due to challenges of data interpretation, also connected to the exotic nonFermiliquid nature of some of these systems. Given this lack of understanding, discrepancies are frequently attributed to the use of samples grown in different research laboratories or are ignored because of a lack of trust in one of the techniques.
With this article, we aim to test the consistency of data from ARPES, STM, and QO experiments by making an unbiased comparison on the same correlated electron material. The ideal candidate for such a comparison should be a quasitwodimensional (2D) metal in which electron correlations still play an important role, but without the mysteries associated with materials like unconventional superconductors. Ideally it should further be structurally similar to the cuprates, ruthenates, and iridates. Such a material could then act as a representative for the wider class of transition metal oxides, but in contrast to cuprates, ruthenates and iridates is well understood and simple enough that it can clearly be described within Fermi liquid theory. With this in mind, we chose Sr_{2}RhO_{4}, a layered perovskite that fulfills the conditions above.
Results & discussions
ARPES and QPI Fermi surface
In Figs 1 and 2, we compare Fermi surface data from the three techniques. Consistent with previous reports^{11,21,22}, the ARPES kspace map (Fig. 1a) shows two nearly circular contours that are backfolded to form three pockets; a holelike α pocket centered at Γ, a lensshaped electron pocket at M (β_{M}) and a squareshaped hole pocket at X (β_{X}). The backfolding is of structural origin and arises from a staggered rotation of the RhO_{6} octahedra around the caxis, which doubles the inplane unit cell. Hybridization with e_{g} states pushes the xy band of Sr_{2}RhO_{4} below the chemical potential, leaving a Fermi surface with outofplane xz/yz character, containing three electrons per Rh site^{11,22,23}. Despite the quasi1D hopping associated with the outofplane orbitals, the Fermi surface is nearly isotropic. This change arises from a strong level repulsion of states that would be degenerate in the absence of spin–orbit coupling^{24,25}. The marked anticrossing can be attributed to an enhancement of spin–orbit splittings in the presence of electronic correlations^{25,26,27}.
Figure 1b, c shows an STM topography and a constant energy conductance layer, where spatial modulations attributed to quasiparticle interference are neatly resolved. The few atomic defects in the field of view clearly act as scattering centers for quasiparticles, creating the interfering standing wave patterns. The Fourier transform of the normalized conductance layer at the Fermi level E = 0 meV is shown in Fig. 1d. To mitigate the setup effect, we take the Fourier transform not of the conductance layers dI/dV(r,eV), but of the normalized conductance data, dI/dV(r,eV)/(I(r,eV)/V), where I(r,eV) is the tunneling current and V is the bias voltage (see discussion in the methods and Supplementary Fig. 1)^{28,29,30,31,32}. For the β band, we directly observe the STM ‘Fermi surface’ with wavevector q = 2k_{F}. More generally, we expect to observe features corresponding to scattering vectors q that connect points of high spectral weight in momentum space. For the present case, we can readily connect these q vectors with the Fermi surface measurement from ARPES. Interestingly, different scattering processes have different strengths. While some scattering processes are very clear, others are less visible or completely absent. Varying intensities or absences of scattering processes have been observed in other materials^{33,34,35} and can stem from the differences in the scattering process. For example, different QPI scattering intensities are expected from magnetic versus potential scattering or from broad coulombic potentials versus localized impurity potentials^{36,37,38,39,40}. In principle, theoretical tools exist to predict QPI intensities based on both the electronic structure of the material and the nature of the scattering potential^{36,37,38,39,40}. A comparison with such QPI simulations could allow us to learn more about the defect states in Sr_{2}RhO_{4}.
In Fig. 1e, we use the Fourier transform of the SISTM data discussed above to reconstruct the entire FS of Sr_{2}RhO_{4} from the QPI pattern. To this end, we first extract peaks in the data by fitting the intensity profiles in radial cuts (see Supplementary Fig. 2). We then obtain the fundamental β band in kspace by rescaling the q vectors by a factor of two. The backfolded β bands are obtained by translating the fundamental band by reciprocal lattice vectors determined from the STM topography. The α band is reconstructed by subtracting the interband vector q_{α–β} from the intraband scattering q_{β–β}. In Fig. 1e, we display in blue the data points derived in this way, and in gray the direct interband scattering vectors q_{α–β} that we used for the derivation. The identification of the gray scattering vectors as q_{α–β} is corroborated by the Fermi velocity we obtain for this vector (see below). The direct comparison of these contours with the ARPES Fermi surface shows good agreement for all Fermi surface pockets, as further illustrated in Supplementary Fig. 3.
Shubnikov–de Haas Oscillations
Next, we use QO to find the Fermi surface areas and quasiparticle masses. The inset of Fig. 2a shows a trace of quantum oscillations in the magnetoresistance at 0.1 K (Shubnikov–de Haas (SdH) oscillations). To extract Fermi surface information from the quantum oscillations measurement, we analyze the frequency components plotted in Fig. 2a. Seven closely spaced peaks are resolved, corresponding to seven frequencies between 0.9 and 1.3 kT. This might be surprising at first, as from our previous analysis we expect only three distinct Fermi surface pockets. We attribute the higher number of QO frequencies to two effects. Firstly, the finite interlayer hopping implies that the Fermi surface of Sr_{2}RhO_{4} is quasicylindrical, and thus has multiple extremal orbits per sheet. The characteristic signature of such a remnant 3D Fermi surface warping is an overall 1/cos(θ) field angle dependence of the frequencies (consistent with quasi2D electronic structure) with small splittings that disappear for certain angles, as observed in Fig. 2b. The quasi2D nature of the quasiparticle band structure is confirmed directly by photonenergydependent ARPES measurements (Fig. 2c) probing the Fermi surface along k_{z}. Secondly, the ARPES measurements resolve a small splitting in the βband along ГM. This small degeneracy lifting can be attributed to the doubling of the unit cell along the caxis and is reproduced by LDA + U + SO band structure calculations^{25}. Hence, there are four primary frequencies up to the measured outofplane angle of 40°. We can then use multiple facts to constrain the band assignments: (i), Following ARPES and STM data, the extremal orbit areas increase in size from the α (hole), β_{M} (electron), and β_{X} (hole). (ii), The total electron count should be three electrons per Rh atom. (iii), The experimental specific heat γ can be calculated in the 2D approximation from:
where N_{A} is Avogadro’s number, k_{B} is Boltzmann’s constant, a is the tetragonal lattice parameter (3.857 Å), and ħ is Planck’s constant. (iv), Following the ARPES data, the β_{M} band should be split leading to two frequencies.
Combining these conditions, we draw the conclusion that α corresponds to the lowest frequency (0.93 kT, corresponding to 1.934 electron/Rh, see methods), β_{M} to the two middle frequencies (average 1.068 kT, 0.152 electrons/Rh), and β_{X} to the highest frequency (1.288 kT, 0.908 electrons/Rh). The calculated \(\gamma = 17.4 \pm 0.8\) mJ/Rh mol K^{2} then agrees with the directly observed value of 17.7 ± 0.7 mJ/Rh mol K^{2 }^{22}, and the total electron count is 2.994 electrons per Rh. A quantitative comparison of the Fermi surface volumes extracted from ARPES, QO, and STM based on this assignment can be found in Table 1. QO amplitudes also yield the Dingle temperatures (1.5 K for the α pocket,1.5 K for the β_{M} pocket, and 1.9 K for the β_{X} pocket), which can be related to the mean free path of the electrons. We refer to the literature for a detailed discussion on the challenges of such an interpretation^{41}.
Quasiparticle dispersion
We now turn our attention to the lowenergy dispersion. In Fig. 3, we show constant energy layers for selected energy levels and the energy–momentum dispersion along the two highsymmetry directions for both ARPES and SISTM. These data confirm that β_{M} is an electron pocket while α and β_{X} are holelike. The ARPES data also reproduce the splitting of the β band along ΓM observed in Fig. 2. The STM dispersion plots show several features that are not observed by ARPES. These can all be assigned to different β–β intraband and α–β interband scattering vectors translated by reciprocal lattice vectors. The q vector which is most clearly resolved by STM along both highsymmetry directions arises from β–β intraband scattering. Comparing its dispersion with the βband measured by ARPES, we find quantitative agreement along ΓX, where both techniques lead to measured Fermi velocities v_{F} = 0.55 eVÅ. Along ΓM, where band structure calculations find a small splitting in the Fermi surface, our ARPES data resolves both bands and shows that they have slightly different dispersion with Fermi velocities of 0.57 and 0.77eVÅ, respectively, compared to v_{F} = 0.70 eVÅ extracted from the STM dispersion. The lack of a noticeable splitting in the STM dispersion cannot be explained by insufficient momentum resolution, suggesting that it is due to a vanishing STM matrix element for one of the bands.
In order to extend this comparison to QO, we look at the quasiparticle cyclotron masses m*. These masses can be deduced for individual Fermi surface pockets from the temperature dependence of the quantum oscillation amplitudes using the Lifshitz–Kosevich formula (Supplementary Fig. 4). For a 2D Fermi surface, they can also be calculated without any approximations from the full mapping of the lowenergy quasiparticle band structure obtained by STM and ARPES, using \(m^ \ast = \frac{{\hbar ^2}}{{2{\uppi}}}\frac{{{\mathrm{d}}A_{{\mathrm{FS}}}}}{{{\mathrm{d}}E}}\) (2) where A_{FS} is the Fermi surface volume. To this end, we extract the areas of the pockets not only at the Fermi energy, but at a few constant energy layers within a small window. The linear fits of these areas shown in Fig. 4 yield the effective masses of the different pockets. We note that the slope dA_{FS}/dE decreases strongly near the chemical potential in the ARPES data while no such effect is observed in STM. This change of slope is a known artifact arising from the combination of a Fermi cutoff and finite energy resolution. For the quantification of m*, we thus exclude a narrow energy range around E_{F} from the ARPES data. Table 1 shows the values of the effective masses obtained by STM, ARPES, and QO measurements. Knowledge of m* and the Fermi surface area also allows a sheetaveraged Fermi velocity to be calculated from QO data as v_{F} = ħ(A/π)^{1/2}/m* (3). These values are also shown in Table 1 for comparison with STM and ARPES.
Lifetime analysis
Finally, we discuss the extraction of peak widths in the ARPES and STM data, which can in principle be related to quasiparticle lifetimes. Here, the two techniques face rather different challenges. In simple systems, like Sr_{2}RhO_{4} studied here, the measured photoemission intensity appears to represent the spectral function. For a sufficiently linear band, the imaginary part of the selfenergy (which is equal to half the inverse lifetime in a Fermi liquid) can thus be obtained from the width W_{k} of the momentum distribution curves (MDC) as Σ”(k, ω) = W_{k} (ω) v(ω)/2 (4), where v(ω) is the slope of the dispersion at the same energy. In practice, the main difficulty is the treatment of the effective resolution of ARPES measurement. ARPES peak widths measured at stateoftheart instruments are rarely limited by the instrumental energy and momentum resolution but contain a variety of other contributions that are notoriously hard to quantify. These include in particular broadening from the finite integration over perpendicular momenta, structural mosaicity in the probed area and the oftenunknown quality of the surface. Additional broadening can occur from work function inhomogeneities of and around the sample which cause uncontrolled electric fields that degrade the resolution of the electron optics. Finally, in an energy range of ~ dE/2, where dE is the effective energy resolution, the MDC peak position starts to deviate noticeably from the intrinsic quasiparticle pole, which prohibits a modelfree analysis of very lowenergy dispersions and selfenergies. STM does not suffer from these experimental difficulties. However, it is not always clear to what extent the tunneling spectra reflect A(r, ω). In particular the socalled setup effect, the dependence of the tunneling spectra on the lateral variation of the tip–sample distance, which itself is defined by the setup current and voltage, can cause complications. In many cases, the setup effect can be mitigated by taking ratios between different quantities as we do here, but then the interpretation of the resulting data is less straight forward. In addition, analyzing selfenergies from STM data can be complicated when different q vectors overlap, especially for complex Fermi surfaces. We also note that a unique reconstruction of the spectral function from STM data is not always possible. Perhaps most importantly, one has to consider the scattering mechanism, which can strongly influence lineshapes and linewidths^{36,37,38,39,40}. For this reason, only few attempts have been made to extract lifetimes from STM data^{42,43,44,45}.
Despite these difficulties, an analysis of the MDC’s along the ΓX direction shown in Fig. 5a–c clearly shows an energy dependence of the quasiparticle lifetime in fair agreement with the expectations for a Fermi liquidlike metal. In a Fermi liquid, we expect the imaginary part of the selfenergy to be a quadratic function at low energy, Σ”(ω) = Aω^{2} (5), where A is a material specific prefactor. To compare our results with the expectation, we plot the linewidths and selfenergies extracted from ARPES and STM data as a function of energy in Fig. 5d, e (for a comparison of the individual ARPES and STM spectral lines, see Supplementary Fig. 6). Indeed, our results are consistent with a quadratic dependence on energy. Further, the absolute scale of the measured selfenergy is of the same order than what is obtained for Sr_{2}RhO_{4} with dynamical mean field theory (DMFT)^{46,47} calculated for a generic twodimensional Fermi liquid using the random phase approximation^{48,49,50,51}. We note that the agreement holds for an energy range that is a significant fraction of the Fermi energy, which is roughly 400 meV for the β band when defined in the parabolic band approximation as E_{F} = ħ^{2}A_{FS}/2πm (6). This is encouraging for further lifetime investigations: given a good understanding of both the resolution for ARPES and the scattering process for STM, both techniques have the potential to bring insight into energy and momentumdependent correlation effects in electronic matter of quantum materials.
We show SISTM results of Sr_{2}RhO_{4} and extract its Fermi surface and lowenergy dispersion, and present a quantitative comparison of the STM quasiparticle interference data with ARPES and QOs. Our data here reveals the previously unknown band structure above the Fermi level, and quasiparticle lifetimes for Sr_{2}RhO_{4}. We show that Fermi surface volumes agree among the three techniques within ~1% of an electron for all pockets, while quasiparticle masses exhibit a relative variation of ~30%. We consider these values to be characteristic for the precision that can realistically be obtained in favorable cases with these three techniques, and therefore conclude that for the oxide Sr_{2}RhO_{4}, STM, ARPES, and QO can extract the same information regarding Fermi surface and lowenergy dispersion. The relevance of our study goes beyond Sr_{2}RhO_{4}: our data suggest that apparent disagreements in the literature on cuprates do not arise from the intrinsic structural complexity of oxides but are likely a consequence of our limited understanding of materials with nonFermi liquid electronic states and the applications of the techniques to such samples, especially ones with significant spatial inhomogeneity.
Methods
Sample preparation
Our singlecrystal samples were grown in a Crystal Systems four mirror image furnace using a flux feeding floating zone method. Dried SrCO_{3} and Rh_{2}O_{3} (3 N) were ground together in a 1:0.575 ratio, pelletised, and calcined at 1000 °C in flowing O_{2} atmosphere for 24 h. Rods were hydrostatically pressed using the usual methods and sintered at 1100 °C for 2 h in flowing O_{2}. The growth conditions in the image furnace were 100% O_{2} gas at 10 bar pressure, growth speed of 10 mmhr^{−1} and a counter rotation of 30 rpm. Subsequently, the crystals were annealed 1150 °C under flowing oxygen for 2 weeks, as described elsewhere^{22}.
The surfaces studied by STM and ARPES have been obtained by cleavage in ultrahigh vacuum.
Quantum oscillations
Quantum oscillations measure lowenergy characteristics of the electron fluid in an applied magnetic field. The oscillations, caused by the Landau quantization from the magnetic field, give precise information on the size of the Fermi pockets and the effective masses of the electrons. Quantum oscillations are a true bulk probe that is generally not influenced by surface effects but they are very sensitive to disorder in the crystals and require highquality samples to be observed. Furthermore, they also require high magnetic field and low temperatures to suppress the quasiparticle–quasiparticle scattering and the interpretation is not always simple as little information is given about the loci, shape, and type (electron or hole) of the Fermi pockets. When a strong magnetic field B is applied to the sample, the Landau quantization of quasiparticle orbits leads to an oscillation of the density of states at the Fermi level, periodic in reciprocal field. These oscillations are reflected in most of the physical properties; in the case of magnetoresistance they are called Shubnikov–de Haas (SdH) oscillations^{41,52}. By analyzing the frequency f (in Tesla) of the oscillations across an inverse field range, the number and sizes of the Fermi surface pockets can be obtained. Moreover, the effective masses for the various pockets can be deduced from the temperature dependence of the oscillation amplitude (Fig. S4) via the Lifshitz–Kosevich formula, although, we note that the data analysis can be nonstandard when measuring across a broad magnetic field range (for a comprehensive discussion see ref. ^{22}). The QO amplitudes also contain the Dingle temperature. These can be used to find mean free paths of 500 Å for the α pocket, 714 Å for the β_{M} pocket, and 481 Å for the β_{X} pocket.
Quantum oscillation data was acquired using a standard four probe technique in a dilution refrigerator (current I = 300 μA) for temperatures between 0.1 and 1.0 K and magnetic fields between 7 and 15 T. Low contactresistance electrical connections were made to the crystals using gold wire (25 micron) and Dupont 6838 hightemperature curing paint (annealed at 470 °C under O_{2}). The current was applied in the ab plane (the twodimensional morphology of the crystals allowed for easy identification of the crystallographic ab plane and caxis). In the dilution refrigerator the samples were mounted on an in situ singleaxis rotator for the angular quantum oscillation study. Three crystals were measured from the same batch, with consistent results.
ARPES
ARPES measures single particle excitations directly in momentum space. The most commonly used expression for the photocurrent I(k, ω) is:
where \(M_{f,i}\) represents the photoemission matrix elements, A(k, ω) is the spectral function, and \(f\left( \omega \right)\) the Fermi function^{10}. The expression for the intrinsic photocurrent is then convolved with the experimental momentum and energy resolution R\(\left( {\delta {\mathbf{k}},\;\delta \omega } \right)\). Besides experimental difficulties, complications can arise from the interference of photocurrents from different emission sites and/or from different terms in the lightmatter interaction Hamiltonian. Expressing the photocurrent in terms of the spectral function further relies on the sudden approximation, i.e., the assumption that the photoexcitation is instantaneous and that there is no interaction between photoelectron and the sample during the photoemission process^{10}. This approximation is well tested down to much lower photon energies than used in the present work.
The ARPES experiments reported in this paper have been performed at beamline I05 of Diamond Light source using photon energies in the range of 20–80 eV^{53}. Energy and momentum resolutions were set to ~5 meV / 0.008 Å^{−1}, except for the data shown in Fig. 2c where the resolution varied with photon energy and thus with k_{z}. All data were acquired at T ~ 8 K.
STM
STM measures the tunneling current generated between an atomically sharp tip and a conducting sample when a voltage V is applied between the two. By scanning the tip over the sample surface, STM directly delivers realspace information with atomic resolution^{54}. The tunneling current I is directly proportional to the integrated local density of states (LDOS) of quasiparticles, which in the formalism of manybody physics can be defined via the local spectral function \(A\left( {\omega ,{\boldsymbol{r}}} \right) = \mathop {\sum}\nolimits_{\boldsymbol{k}} {A\left( {{\boldsymbol{k}},\omega ;{\boldsymbol{r}}} \right)}\). The local spectral function of the sample can be accessed for both occupied and unoccupied states by measuring the local differential conductance^{52}:
where \(A_{{\mathrm{S}},{\mathrm{T}}}\) are the spectral functions of sample and tip, respectively, and where we approximated the Fermi–Dirac distribution as a step function. \(\left {t({\mathbf{r}})} \right^2\) represents the positiondependent tunneling matrix element that contains the exponential dependence on tip–sample distance. Usually, the spectral function of the tip, A_{T} is designed to be constant, and the momentum dependence of the tunneling matrix elements is ignored.
When measuring in spectroscopicimaging mode (SISTM), for each pixel on a chosen field of view a \({\mathrm{d}}I/{\mathrm{d}}V\) spectrum is acquired at the tip–sample distance determined locally by the setup conditions \(\left( {V_{\mathrm{S}},\;I_{\mathrm{S}}} \right)\). The result of such a measurement is a threedimensional dataset representing the local density of states as function of position and energy.
Because we determine the tip–sample distance at each point by the setup conditions, the effect of the matrix element (assuming it is energy independent) is canceled. However, the procedure does bring in an extra denominator: \(\frac{{{\mathrm{d}}I}}{{{\mathrm{d}}V}}\left( {eV,\;{\mathbf{r}}} \right) = \frac{{I_{\mathrm{S}}A_{\mathrm{S}}\left( {eV,\;{\mathbf{r}}} \right)}}{{{\int \nolimits_0^{eV_{\mathrm{s}}}} A\left( {E,\;{\mathbf{r}}} \right){\mathrm{d}}E}}\) (9). The procedure can thus introduce additional artifacts into the measured differential conductance \({\mathrm{d}}I/{\mathrm{d}}V\)^{28}, the socalled setup effect.
A common way to reduce this effect is to choose setup conditions far away from the Fermi level such that inhomogeneities in the integrated density of states average out; however, this is not always experimentally possible. Other methods include the use of the ratio between quantities with positive and negative bias^{55}, or the division of the differential conductance by the total conductance \(({\mathrm{d}}I/{\mathrm{d}}V)/(I/V)\)^{28,29,30} – the approach that we also use in this paper. See Fig. 5b, c and Supplementary Figs 1 and 6 for comparisons. The current I is the measured current at that particular location and bias V, which means it is small but generally nonzero at the Fermi level. The voltage V is a value set in the experiment, implying for the Fermi level that the data would be multiplied by 0 in the normalization. To circumvent this, we manually add a 10 uV (negligible to the energy scale set by temperature) offset in data processing.
The STM experiments reported in this paper have been performed with an ultrahigh vacuum, homebuilt STM with exceptional stability, described elsewhere^{56}. All data was taken at a base temperature of 4.2 K. Measurements are performed with a chemically etched tungsten tip that is prepared by field emission on a gold surface before measuring Sr_{2}RhO_{4}.
Data availability
The data used in this paper is available at https://doi.org/10.26037/yareta:upufx3qatvbsldxstyz6tezszi.
Code availability
The code used in this work are available from the corresponding author upon reasonable request.
References
Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to hightemperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
Johnston, D. C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv. Phys. 59, 803–1061 (2010).
Coleman, P. Handbook of Magnetism and Advanced Magnetic Materials (John Wiley and Sons, 2007).
Imada, M., Fujimori, A. & Tokura, Y. Metalinsulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).
Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, 2011).
Crommie, M. F., Lutz, C. P. & Eigler, D. M. Imaging standing waves in a twodimensional electron gas. Nature 363, 524–527 (1993).
Petersen, L., Hofmann, P. H., Plummer, E. W. & Besenbacher, F. Fourier transform–STM: determining the surface Fermi contour. J. Electron Spectrosc. Relat. Phenom. 109, 97–115 (2000).
Fujita, K. et al. in Theoretical Methods for Strongly Correlated Systems Ch. 3 (Springer, Berlin, Heidelberg, 2012).
Yazdani, A., Eduardo, H., Neto, S. & Aynajian, P. Spectroscopic imaging of strongly correlated electronic states. Annu. Rev. Condens. Matter Phys. 7, 11 (2016).
Hüfner, S. Photoelectron Spectroscopy (Springer, Berlin, Heidelberg, 2003).
Baumberger, F. et al. Fermi surface and quasiparticle excitations of Sr_{2}RhO_{4}. Phys. Rev. Lett. 96, 246402 (2006).
Coleman, P. Introduction to ManyBody Physics (Cambridge Univ. Press, Cambridge, 2013).
Damascelli, A., Hussain, Z. & Shen, Z. Angleresolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).
Sebastian, S. E. & Proust, C. Quantum oscillations in holedoped cuprates. Annu. Rev. Condens. Matter Phys. 6, 411–430 (2015).
McElroy, K. et al. Elastic scattering susceptibility of the high temperature superconductor Bi_{2}Sr_{2}CaCu_{2}O_{8+δ}: a comparison between real and momentum space photoemission spectroscopies. Phys. Rev. Lett. 96, 067005 (2006).
Markiewicz, R. S. Bridging k and q space in the cuprates: comparing angleresolved photoemission and STM results. Phys. Rev. B 69, 1–10 (2004).
Vishik, I. M. et al. A momentumdependent perspective on quasiparticle interference in Bi_{2}Sr_{2}CaCu_{2}O_{8+δ}. Nat. Phys. 5, 718–721 (2009).
Hashimoto, M. et al. Reaffirming the dwave superconducting gap using the autocorrelation angleresolved photoemission spectroscopy. Phys. Rev. Lett. 106, 167003 (2011).
Kirchner, S. et al. Heavyelectron quantum criticality and singleparticle spectroscopy. Rev. Mod. Phys. 92, 011002 (2020).
Matt, C. E. et al. Consistency between ARPES and STM measurements on SmB_{6}. Phys. Rev. B 101, 085142 (2020).
Kim, B. J. et al. Missing xyband Fermi surface in 4d transitionmetal oxide Sr_{2}RhO_{4}: effect of the octahedra rotation on the electronic structure. Phys. Rev. Lett. 97, 106401 (2006).
Perry, R. S. et al. Sr_{2}RhO_{4}: a new, clean correlated electron metal. N. J. Phys. 8, 175–175 (2006).
Baumberger, F. et al. Nested Fermi surface and electronic instability in Ca_{3}Ru_{2}O_{7}. Phys. Rev. Lett. 96, 107601 (2006).
Haverkort, M. W., Elfimov, I. S., Tjeng, L. H., Sawatzky, G. A. & Damascelli, A. Strong spinorbit coupling effects on the Fermi surface of Sr_{2}RuO_{4} and Sr_{2}RhO_{4}. Phys. Rev. Lett. 101, 26406 (2008).
Liu, G., Antonov, V. N., Jepsen, O. & Andersen., O. K. Coulombenhanced spinorbit splitting: the missing piece in the Sr_{2}RhO_{4} puzzle. Phys. Rev. Lett. 101, 026408 (2008).
Kim, M., Mravlje, J., Ferrero, M., Parcollet, O. & Georges, A. Spinorbit coupling and electronic correlations in Sr_{2}RuO_{4}. Phys. Rev. Lett. 120, 126401 (2018).
Tamai, A. et al. Highresolution photoemission on Sr_{2}RuO_{4} reveals correlationenhanced effective spinorbit coupling and dominantly local selfenergies. Phys. Rev. X 9, 021048 (2019).
Feenstra, R. M., Stroscio, J. A. & Fein, A. P. Tunneling spectroscopy of the Si(111)2x1 surface. J. Vac. Sci. Technol. B 5, 295–306 (1987).
Hanaguri, T. et al. Two distinct superconducting pairing states divided by the nematic end point in FeSe_{1−x}S_{x}. Sci. Adv. 4, 6419 (2018).
Kostin, A. et al. Imaging orbitalselective quasiparticles in the Hund’s metal state of FeSe. Nat. Mater. 17, 869–874 (2018).
Macdonald, A. J. et al. Dispersing artifacts in FTSTS: a comparison of set point effects across acquisition modes. Nanotechnology 27, 414004 (2016).
Allan, M. P. et al. Imaging Cooper pairing of heavy fermions in CeCoIn_{5}. Nat. Phys. 9, 468–473 (2013).
Wang, Z. et al. Quasiparticle interference and strong electronmode coupling in the quasionedimensional bands of Sr_{2}RuO_{4}. Nat. Phys. 13, 799–805 (2017).
Allan, M. P. et al. Anisotropic energy gaps of ironbased superconductivity from intraband quasiparticle interference in LiFeAs. Science 336, 563–567 (2012).
Hess, C. et al. Interband quasiparticle scattering in superconducting LiFeAs reconciles photoemission and tunneling measurements. Phys. Rev. Lett. 110, 017006 (2013).
Wang, Q. & Lee, D. Quasiparticle scattering interference in hightemperature superconductors. Phys. Rev. B 67, 020511 (2003).
Capriotti, L., Scalapino, D. J. & Sedgewick, R. D. Wavevector power spectrum of the local tunneling density of states: ripples in a dwave sea. Phys. Rev. B 68, 014508 (2003).
Nunner, T. S., Chen, W., Andersen, B. M., Melikyan, A. & Hirschfeld, P. J. Fourier transform spectroscopy of dwave quasiparticles in the presence of atomic scale pairing disorder. Phys. Rev. B 73, 1–7 (2006).
Sulangi, M. A., Allan, M. P. & Zaanen, J. Revisiting quasiparticle scattering interference in hightemperature superconductors: the problem of narrow peaks. Phys. Rev. B 96, 134507 (2017).
Choubey, P., Kreisel, A., Berlijn, T., Andersen, B. M. & Hirschfeld, P. J. Universality of scanning tunneling microscopy in cuprate superconductors. Phys. Rev. B 96, 174523 (2017).
Schoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, Cambridge, 1984).
Bürgi, L., Jeandupeux, O., Brune, H. & Kern, K. Probing hotelectron dynamics at surfaces with a cold scanning tunneling microscope. Phys. Rev. Lett. 82, 4516 (1999).
Allan, M. P. et al. Identifying the ‘fingerprint’ of antiferromagnetic spin fluctuations in iron pnictide superconductors. Nat. Phys. 11, 177–182 (2014).
Dahm, T. & Scalapino, D. J. Quasiparticle interference probe of the selfenergy. N. J. Phys. 16, 023003 (2014).
Sulangi, M. A. & Zaanen, J. Selfenergies and quasiparticle scattering interference. Phys. Rev. B 98, 094518 (2018).
Martins, C., Aichhorn, M., Vaugier, L. & Biermann, S. Reduced effective spinorbital degeneracy and spinorbital ordering in paramagnetic transitionmetal oxides: Sr_{2}IrO_{4} versus Sr_{2}RhO_{4}. Phys. Rev. Lett. 107, 266404 (2011).
Martins, C. et al. Coulomb correlations in 4d and 5d oxides from first principles – or how spinorbit materials choose their effective orbital degeneracies. J. Phys. 29, 263001 (2017).
Chaplik, A. V. Energy spectrum and electron scattering processes in inversion layers. Sov. J. Exp. Theor. Phys. 33, 997 (1971).
Giuliani, G. F. & Quinn, J. J. Lifetime of a quasiparticle in a twodimensional electron gas. Phys. Rev. B 26, 4421 (1982).
Fukuyama, H. & Abrahams, E. Inelastic scattering time in twodimensional disordered metals. Phys. Rev. B 27, 5976 (1983).
Smith, N. V., Thiry, P. & Petroff, Y. Photoemission linewidths and quasiparticle lifetimes. Phys. Rev. B 47, 15476 (1993).
Bergemann, C., Mackenzie, A. P., Julian, S. R., Forsythe, D. & Ohmichi, E. Quasitwodimensional Fermi liquid properties of the unconventional superconductor Sr_{2}RuO_{4}. Adv. Phys. 52, 639–725 (2003).
Hoesch, M. et al. A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy. Rev. Sci. Instrum. 88, 013106 (2017).
Chen, C. J. Introduction to Scanning Tunneling Microscopy (Oxford Univ. Press, Oxford, 2007).
Kohsaka, Y. et al. An intrinsic bondcentered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380–1385 (2007).
Battisti, I., Verdoes, G., van Oosten, K., Bastiaans, K. M. & Allan, M. P. Definition of design guidelines, construction, and performance of an ultrastable scanning tunneling microscope for spectroscopic imaging. Rev. Sci. Instrum. 89, 123705 (2018).
Acknowledgements
This work was supported by the UKEPSRC under grant EP/G007357/1, by the Swiss National Science Foundation (SNSF) under grants 200020_165791 and 200020_184998, by the Max Planck Society, by the European Research Council (ERC StG SpinMelt), and by the Netherlands Organization for Scientific Research (NWO) under grants 680–47–536 and FOM167. We acknowledge Diamond Light Source for time on beamline I05 under proposals no. SI13398 and SI5282.
Author information
Authors and Affiliations
Contributions
I.B., W.T., and A.T. performed STM experiments; A.T. and S.R. performed ARPES experiments; R.P. performed QO experiments and fabricated samples. All authors participated in discussion, data analysis, and interpretation.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Battisti, I., Tromp, W.O., Riccò, S. et al. Direct comparison of ARPES, STM, and quantum oscillation data for band structure determination in Sr_{2}RhO_{4}. npj Quantum Mater. 5, 91 (2020). https://doi.org/10.1038/s41535020002924
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41535020002924
This article is cited by

Coherent propagation of spinorbit excitons in a correlated metal
npj Quantum Materials (2023)