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Multiple intertwined pairing states and temperature-sensitive
gap anisotropy for superconductivity at a nematic quantum-
critical point
Avraham Klein 1*, Yi-Ming Wu1 and Andrey V. Chubukov1

The proximity of many strongly correlated superconductors to density-wave or nematic order has led to an extensive search for
fingerprints of pairing mediated by dynamical quantum-critical (QC) fluctuations of the corresponding order parameter. Here we
study anisotropic s-wave superconductivity induced by anisotropic QC dynamical nematic fluctuations. We solve the non-linear gap
equation for the pairing gap Δðθ;ωmÞ and show that its angular dependence strongly varies below T c. We show that this variation is
a signature of QC pairing and comes about because there are multiple s-wave pairing instabilities with closely spaced transition
temperatures T c;n. Taken alone, each instability would produce a gap Δðθ;ωmÞ that changes sign 8n times along the Fermi surface.
We show that the equilibrium gap Δðθ;ωmÞ is a superposition of multiple components that are nonlinearly induced below the
actual Tc ¼ T c;0, and get resonantly enhanced at T ¼ T c;n < Tc. This gives rise to strong temperature variation of the angular
dependence of Δðθ;ωmÞ. This variation progressively disappears away from a QC point.
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INTRODUCTION
Recent observations of superconductivity (SC) near a nematic
quantum-critical point (QCP) in Fe-based superconductors, such as
FeSe,1–7 renewed interest in studies of SC in proximity to a density-
wave or a nematic order.8,9 Several researchers hinted2,10–14 that
the SC dome observed in several Fe-SCs may be the consequence
of the pairing mediated by nematic fluctuations. However, a SC
dome can appear for other reasons as well, e.g., owing to the
“fight” for the Fermi surface (FS) between SC and density-wave
orders, even when each is described within BCS/mean-field
theory.15–20 The question we address here is whether there are
unique features of SC near a nematic QCP, encoded in the SC gap
structure on the FS, Δðθ;ωmÞ (θ is the angle along the FS and ωm is
Matsubara frequency). Previous studies have focused on signatures
of QC pairing in the frequency dependence of the gap function.21–
23 Such emphasis stems from the understanding that the pairing
kernel in the QC regime is a singular function of frequency. In
contrast, the angular dependence of the gap along the FS was
assumed to be set either by the non-s-wave pairing symmetry (e.g.,
d-wave in the cuprates24,25), or, for s-wave, by some material
specific non-singular angular dependencies of interactions and
band structures, as in the Fe-based superconductors.26–30 In either
case the angular variation of the gap Δðθ;ωmÞ was expected to be
set at Tc and not vary strongly in the SC state.
In this paper, we demonstrate that QC pairing can give rise to a

strong temperature evolution of Δðθ;ωmÞ below T c at any given
ωm. Specifically, we argue that this is the case for s-wave SC near a
nematic transition in 2D, e.g., a transition into a state with
spontaneously broken symmetry between dxz and dyz orbitals in
FeSe.3,4,7,11,26,27,29,31–35 Several previous works, including by some
of us,36,37 compared the values of T c for s-wave and d-wave
pairings owing to anisotropic dynamical nematic fluctuations,
which give rise to an attraction in both channels,36 and analyzed
s-wave and d-wave gap structures right at T c by solving the
linearized gap equations for Δðθ;ωmÞ. These studies found that T c

for s-wave is larger. The s-wave gap is anisotropic, with four
maxima along the FS. This gap anisotropy reflects the anisotropy
of the pairing interaction and by itself is not a signature of
quantum criticality. Here, we argue that the gap evolution below
Tc is the signature of quantum criticality. We show that the
mechanism, driving the evolution of Δðθ;ωmÞ below Tc, is the
existence of multiple s-wave pairing states with closely spaced
transition temperatures T c;n. These solutions yield Δnðθ;ωmÞ of the
same symmetry, but with a different number (¼ 8n) of sign
changes of the gap along the FS. The closeness of Tc;n stems from
the long range nature of the interaction near a QCP, which
reduces the energy cost of gap oscillations. Taken separately, the
state with the largest condensation energy is a conventional s-
wave state with sign-preserving gap Δ0ðθ;ωmÞ, which emerges
below the highest T c;0 ¼ T c. However, all other Δn are induced
below T c, and each gets resonantly enhanced below T c;n. As a
result, the actual Δðθ;ωmÞ coincides with Δ0ðθ;ωmÞ only near T c,
while at smaller T the gap structure at any frequency ωm is a
mixture of different Δnðθ;ωmÞ.
We emphasize that all Δn have the same symmetry (s-wave). In

this respect, the gap evolution below T c, which we consider here,
is different from the one induced by a change of a gap symmetry
from, e.g., s-wave to d-wave, or owing to the emergence of a
mixed s–d state. We argue that multiple closely spaced solutions
for T c;n exist only in proximity to the nematic QCP. Away from the
QCP, other solutions shift to smaller T and progressively disappear
as the nematic correlation length gets smaller. An experimental
observation of a strong variation of the shape of Δðθ;ωmÞ below
Tc would then be conclusive evidence for QC pairing.

RESULTS
We begin with a qualitative explanation for the existence of
multiple pairing states and the temperature evolution of the gap.
We consider s-wave SC of 2D fermions, minimally coupled to order
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parameter fluctuations near a nematic QCP, at which the system
spontaneously breaks C4 lattice symmetry.38–49 The strength of
fermion-boson interaction is described by a dimensionless
coupling λ (defined below), which we treat as a small parameter
to keep calculations under control. The nematic order develops at
q ¼ 0, so the pairing interaction is peaked at zero momentum
transfer and involves fermions at any angle θ on the FS. Still, the
pairing interaction does depend on θ via the square of the
nematic form-factor f 2ðθÞ ¼ cos22θ. As a result, the pairing
interaction is larger in ‘hot’ regions near θ ¼ π

2m, and is smaller
in ‘lukewarm’ regions near θ ¼ π

4 þm π
2 (see Fig. 1).36,37 This

separation is not sharp as the width of both lukewarm and hot
regions is of order one.
At the QCP, the pairing boson is massless, and its dynamics

cannot be neglected. The scale of bosonic dynamics (the Landau
damping) is set by the same interaction, which gives rise to the
pairing. As a result, the strongest pairing occurs for fermions
within a small angular separation of order δθ � λ, which is small
compared with the width of a hot region. To leading order in λ,
the gap equation then becomes local and allows a continuous set
of solutions ΔðθÞ / δðθ� νÞ with T cðνÞ / f 4ðνÞ, where ν is a
continuous parameter. The physical T c is the highest temperature
in the set, and it corresponds to ν ¼ πm=2, where the form-factor
f ðνÞ ¼ 1. The actual gap structure is determined at the next
approximation, when one properly accounts for weaker interac-
tions at angle transfers above δθ. The result is that in each octant,
e.g., at 0 < jθj < π=4, the actual gap magnitude is of order Δðθ ¼
0Þ for jθj < θh � λ1=3 (δθ � θh � 1) and rapidly drops as ðθh=θÞ4
at larger θ. This can be interpreted as if a Cooper pair is ‘trapped’
in a potential well within the range θh. Figure 2 depicts the
interplay of the different scales in the problem. The correlation
function between fermions in a pair (the gap function) can vary
inside the trap at the cost of a small kinetic energy
� λ=λ1=3 ¼ λ2=3. In this situation, the continuous set of T 0

cs
transforms into a discrete set T c;n, each corresponds to the
solution of a Schroedinger-like equation for the gap function in a
box with the width 2θh. The discrete T c;n differ from Tc;0 by
multiples of the kinetic energy cost

T c;n ¼ Tc 1� OðnλÞ2=3
� �

; Tc ¼ Tc;0 (1)

The solutions exist up to nmax � 1=λ � 1. The corresponding gap
functions ΔnðθÞ are all fourfold periodic, i.e., s-wave, but have n
nodes in the first octant (8n total along the FS). We depict several
such oscillating solutions in Fig. 4. The gap oscillations can be
interpreted semiclassically as back-and-forth motion of a localized

Cooper pair wave-packet within the gap’s “trapping” potential. In
our approximate analytical treatment they appear as the solutions
of the Airy equation, which naturally emerges when we linearize
the ‘trapping’ potential (see Methods section).
At T < T c, the physical gap is a superposition of Δ0 and Δn>0,

which are all induced by Δ0, because all Δn have the same
symmetry. This superposition causes destructive interference in
the trap region, where oscillations occur, and constructive
interference outside it. As a result, the gap width increases
strongly with decreasing temperature, as more oscillating Δn>0 are
superimposed on the non-oscillating Δ0. Figure 3 shows the
numerical solution of the non-linear gap equation. A strong
increase of the gap width with decreasing temperature is clearly
visible.
Multiple pairing states of s-wave symmetry have been found

previously by Yang and Sondhi (YS)50 in their analysis of the
pairing owing to a near-local static interaction. In their case, Δn is
angle-independent, but oscillates n times as a function of the
distance to the FS, k � kF. YS argued that additional solutions
affect superconducting stiffness and reduce T c to a smaller value,
proportional to the size of their short-range potential. Our
dynamical theory is different in two aspects. First, the gap
oscillates on the FS, i.e., at k ¼ kF. Second, the potential range is
self-consistently set by the dynamics, and in this self-consistent
framework the reduction of superfluid stiffness (and, hence, of Tc)
is at most Oð1Þ.

Model and gap equation
We consider 2D fermions with Fermi energy EF, minimally coupled
to a nematic order parameter field ΔnemðqÞ by

HI ¼ g
X
k;q;σ

ΔnemðqÞf ðkÞψy
σ kþ q

2

� �
ψσ k� q

2

� �
; (2)

where f ðkÞ is a form-factor, which has d-wave symmetry with
respect to C4 lattice rotations. We assume that the static
susceptibility χðqÞ of the nematic field is peaked at q ¼ 0:
χðqÞ ¼ χ0=ðξ�2

0 þ q2Þ, where ξ0 is the bare correlation length. We
define the dimensionless coupling to be λ ¼ g2χ0=4EF. We assume
for simplicity a circular FS, but our results are readily generalized to
other C4-symmetric FSs. Because relevant fermions are near the FS,
we can approximate f ðkÞ by f ðθÞ ¼ cos 2θ (see Fig. 1). Below we
focus on the octant 0 < θ < π=4.

Fig. 1 The s-wave gap function around the Fermi surface for a
superconducting state near a nematic QCP. The gap is sharply
peaked in four hot regions surrounding the points θ ¼ πm=2, where
the interaction mediated by QC nematic fluctuations is the
strongest, and is strongly suppressed around θ ¼ π=4þ πm=2,
where the interaction is the weakest

Fig. 2 The typical scales in the formation of the SC gap on the FS. In
proximity to the QCP, pairing fluctuations (represented by the sharp
gray peak) are almost local on the FS, limited to a small angle λ, on
order of the effective dimensionless coupling. The anisotropy
changes on a much larger scale, of order one. The gap forms a
region with an intermediate width λ � θh � λ1=3 � 1. Fermions on
the FS bind into Cooper pairs that are localized on the scale λ, but
can oscillate in the gapped region at the cost of a small kinetic
energy. This results in a series of distinct pairing states with closely
spaced instability temperatures
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A bosonic excitation with momentum q connects two fermions
on the FS with angles θ; θþ ϕ such that q ¼ 2kF sin jϕ=2j � kFjϕj.
The effective pairing interaction is then the function of both ϕ (via
χðqÞ) and θ (via the form-factor f ðθÞ). This interaction modifies
both bosonic and fermionic variables. Fermionic self-energy scales
as ΣðωmÞ � ðλ2EFÞ1=3jωmj2=3sgnðωmÞ, modulo logarithmic correc-
tions from higher-order planar diagrams,43,46,51,52 which we
neglect here, and singular contributions from thermal fluctuations
at T > 0. The thermal contribution cancels out between the self-
energy and the pairing vertex53–55 and we eliminate it in ΣðωmÞ
and in the gap Eq. (4) below. The bosonic self-energy renormalizes
the bare correlation length ξ0 into the true ξ, which vanishes at
the QCP, and also generates a dynamical Landau damping term.
The dressed bosonic susceptibility at a QCP is

χðθ;ϕ;ΩmÞ�1 ¼ k2F
χ0

jϕj2 þ λ

πEF
f 2 θþ ϕ

2

� �
Ωm

ϕ

����
����

� �
: (3)

To obtain T c and the gap function we need to analyze the
equation for the pairing vertex Φðθ;ωmÞ. The pairing gap Δ is
related to Φ in a usual way, as Φðθ;ωmÞ ¼ Zðθ;ωmÞΔðθ;ωmÞ,
where Zðθ;ωmÞ ¼ 1þ Σðθ=ωmÞ=ωm is is the inverse quasiparticle
residue.

The discrete set of solutions of the linearized gap equation
We first analyze the gap equation for infinitesimally small
Δðθ;ωmÞ. We explicitly integrate out fermionic momenta trans-
verse to the FS in the gap equation and obtain the equation for
the gap function Δðθ;ωmÞ on the FS:

Zðθ;ωmÞΔðθ;ωmÞ ¼ λk2F
χ0
T
P

m0≠m

R dϕ
2π

Δðθþϕ;ωm0 Þ
jωm0 j Sm�m0 ðθ;ϕÞ

Sm�m0 ðθ;ϕÞ ¼ f 2 θþ ϕ
2

� �
χðθ;ϕ;ωm0 � ωmÞ:

(4)

Equation (4) allows solutions with different gap symmetry. Earlier
works found36,37,56 that the s-wave solution has the largest T c, so
we focus on s-wave gap. Because χðθ;ϕ;ωm0 � ωmÞ is strongly
peaked at ϕ ¼ 0, to first approximation we may set ϕ ¼ 0 in
Δðθþ ϕ;ωmÞf 2 θþ ϕ

2

� �
. This yields a local equation for

Δðθ;ωmÞ ¼ Δðθ;mÞ, with θ acting as a parameter.38,47,55,57,58 At
the QCP we have

Δðθ;mÞ � ðλ2EFf 4ðθÞÞ1=3

ð2T cÞ1=333=2πZðθ;mÞ
X
m0

Δðθ;m0Þ
jm0 þ 1=2j

1

jm0 �mj1=3
: (5)

Equation (5) has a continuous set of solutions Δðθ;mÞ / δðθ� νÞ
with arbitrary ν from the interval 0 < ν < π=4, and
TcðνÞ � λ2EFf

4ðνÞ. The maximum T cð0Þ � 0:022λ2EFf
4ð0Þ corre-

sponds to ν ¼ 0. To determine the actual structure of Δðθ;mÞ and
the correct number of solutions, we need to go beyond the

leading approximation and keep the dependence on ϕ in the
numerator in (4). The problem is analytically tractable if we use the
fact that typical ωm;ωm0 � T , i.e., typical m;m0 ¼ Oð1Þ and typical
Z ¼ Oð1Þ, and simplify the gap equation by neglecting the
frequency dependence of Δðθ;mÞ and setting Z ¼ 1. In this
approximation, Eq. (4) becomes an effective 1D integral equation
over the angle. We expand in small angles near θ ¼ 0 and obtain

ηðTÞΔðθÞ � θ
2
ΔðθÞ �

Z 1

�1

dϕ
π

Δðθþ ϕÞ � ΔðθÞ
ϕ
2 : (6)

(See the Methods section for the detailed derivation.) Here,
ηðTÞ � ððT cð0Þ=TÞ1=3 � 1Þ=θ2h and ðθ;ϕÞ ¼ θ�1

h ðθ;ϕÞ, where θh �
λ1=3 sets the width of the gap function ΔðθÞ. Transforming to a
Fourier representation ΔðθÞ ¼ 2πð Þ�1 R dx expðixθÞΔðxÞ, we find
from (6)

ηðTÞΔðxÞ ¼ �∂2xΔðxÞ þ jxjΔðxÞ: (7)

For even ΔðxÞ, which we consider, this reduces to the Airy
equation. It has orthogonal solutions

ηn ¼ xn; ΔnðxÞ / Aiðjxj � xnÞ; (8)

where �xn is the nth zero of the derivative of the Airy function
Ai0ðxÞ. For later convenience, we choose ΔnðθÞ to be orthonormal:R
dθΔnðθÞΔmðθÞ ¼ δmn. As we described earlier in this Section, the

appearance of the Airy equation is attributed to the fact that the
Cooper pair can oscillate in the ‘trapping potential’ set by θh.
The smallest eigenvalue ηn is for the even solution with n ¼ 0.

For ΔðθÞ in the original coordinates, it yields a non-oscillating gap
Δ0ðθÞ, peaked at θ ¼ 0, with the width OðθhÞ. The corresponding
Tc;0 is the actual Tc for the pairing at a nematic QCP. It differs from
Tcð0Þ from Eq. (5) by a numerical factor of order λ2=3. For other
solutions, ΔnðθÞ changes sign n times in the first octant. Extracting
Tc;n from Eq. (8), we obtain Tc;n ¼ T c;0 1� OðnλÞ2=3

� �
, up to

nmax � 1=λ � 1. Figure 4 depicts the first few even solutions.
Although the detailed form of these solutions depends on λ and
f ðθÞ, their appearance is the universal feature of QC pairing by
nematic fluctuations.

Non-linear gap equation and evolution of θh
At T only slightly below T c;0 ¼ T c, the angular dependence of the
pairing gap coincides with Δ0ðθÞ, just the overall gap magnitude
increases with decreasing T . To obtain the form of ΔðθÞ at lower T ,
we solve the full non-linear gap equation (see Methods) in the
temperature range down to T � T c. Figure 3 depicts the
evolution of the amplitude and the width of the gap θhðtÞ as a
function of the reduced temperature t ¼ 1� T=T c. We see from
Fig. 3 that θhðtÞ exhibits strong temperature evolution, i.e., ΔðθÞ

Fig. 3 Evolution of the gap anisotropy with temperature. a The 3D plot depicts the pairing gap Δðt; θÞ at ωm ¼ πT , as a function of the angle
along the FS, counted from θ ¼ 0, and reduced temperature t ¼ ðT c � TÞ=T c. The gap function has been obtained by numerically solving the
full non-linear Eliashberg gap equation at a nematic QCP with coupling λ ¼ 0:03. Δ has been normalized to its maximum value at T ¼ 0. b The
temperature-dependent width of the gap θhðtÞ /

R
Δðt; θÞdθ. The gray dashed line is a linear fit, in agreement with Eq. (10)
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substantially broadens below T c. We are not aware of other
models that show such behavior of the gap function in the SC
state (see Discussion section). We now argue that this drastic
evolution of the shape of ΔðθÞ comes about because the width of
ΔðθÞ is strong influenced by orthogonal components ΔnðθÞ. These
components have the same symmetry as Δ0ðθÞ and are all
induced by Δ0ðθÞ immediately below T c. They are initially small,
but the Δ0ðθÞ induces the orthogonal gap components with n < 0,
and the nth component ΔnðθÞ gets resonantly enhanced at
t � ðnλÞ2=3, and its magnitude becomes comparable to Δ0ðθÞ.
These additional gap components interfere destructively in the
region jθj < θh, where they oscillate, but constructively for θ> θh.
To demonstrate this, we express the gap function as ΔðθÞ ¼P

n�0ΔnΔnðθÞ and derive the Landau free energy expansion for
the coefficients Δn. We obtain

F ¼� 1
2

X
n

ðt � tnÞΔ2
n þ

X
n

an
4
Δ
4
n

þ
X
n>0

an1Δ
3
nΔ0 þ an2Δ

2
0Δ

2
n þ an3Δ

3
0Δn

h i
þ ¼

(9)

where tn ¼ 1� T c;n=T c (t � tn ¼ ðT c;n � TÞ=T c), ank /
R
dθΔ4�k

nðθÞΔk
0ðθÞ, and ¼ stand for less relevant terms in F, e.g., the

coupling between two states with n> 0.
We stress that the solution for ΔðθÞ, obtained by minimizing Eq.

(9), is equivalent to the solution of the non-linear gap equation. At
small θ, ΔnðθÞ / ð�1Þn, because the sign at the origin depends on
the number of oscillations in each octant. At large θ � θh all ΔnðθÞ
decay as 1=θ4 (see Methods section). Solving the saddle-point
equations, we find that immediately below T c, when 0 < t � 1,
Δ
2
0 � t=a0 and jΔnj � jðΔ0Þ3an3=tnj � Δ0. In the opposite case,

when t is finite and t � tn � t, we have, using the numerical
results for an and ani (i ¼ 1� 3) (see Methods section),
Δn � ð�1Þnþ1Δ0, i.e., jΔnj is of the same order as Δ0. Figure 5
illustrates the evolution of Δn with temperature. Because at small
θ, ΔnðθÞ / ð�1ÞnΔ0 and Δn / ð�1Þnþ1Δ0, all n > 0 contributions to
ΔðθÞ (the terms ΔnΔnðθÞ) are of opposite sign compared with
Δ0Δ0ðθÞ. The original and the induced gap components then
interfere destructively, and the total Δðθ � 0Þ decreases with
decreasing T . On the other hand, at θ � θh, ΔnðθÞ / Δ0, hence
ΔnΔnðθÞ / ð�1Þnþ1 oscillates in sign between even and odd n.
Because ΔnΔnðθÞ decrease in magnitude with increasing n, and
Δ1Δ1ðθÞ has the same sign as Δ0Δ0ðθÞ, the original and the
induced gap components then interfere mostly constructively. As
the consequence, the effective ‘width’ of the gap,
θhðtÞ /

R
Δðt; θÞdθ, increases with decreasing T . To leading order

at t � 1, θh obeys

θhðtÞ � θhð0Þ
θhð0Þ / t

λ2=3
(10)

We emphasize that (i) the temperature variation is strong,
particularly at small λ, and (ii) it is a non-linear effect owing to
the existence of multiple sign-changing ΔnðθÞ, all having the same
s-wave symmetry. The inset of Fig. 3 shows that θhðtÞ indeed
increases as tα with α � 1, in agreement with Eq. (10). We also
verified numerically (see Fig. 7 in the Methods section) that the
scaling form of Eq. (10) holds even when λ is of order one and θh is
comparable to the width of the hot region.

Away from the QCP
Our results are readily generalized (see Methods section) to the
case when the correlation length ξ for nematic fluctuations is large
but finite, i.e., the system is at a finite distance from the QCP. For
ðkFξÞ�1 < λ, the effect of ξ is a uniform reduction of all T c;n.
However, for ðkFξÞ�1 > λ, we find that tn ¼ 1� T c;n=T c �
ðnλÞ2=3ððkFξÞ�1=λÞ5=3 gets larger. As a result, fewer gap compo-
nents get resonantly enhanced, and the temperature variation of
the shape of ΔðθÞ weakens. It becomes undetectable at
ðkFξÞ�1 � λ3=5. This clearly points out that the variation of the
gap width θh with t is a fingerprint of QC pairing.

DISCUSSION
We analyzed s-wave SC, induced by QC nematic fluctuations, near
a nematic QCP in 2D. The corresponding gap function ΔðθÞ is
peaked at θ ¼ πm=2, where the pairing interaction is the
strongest, and has the width θh � λ1=3, where λ is a dimensionless
coupling. Away from a QCP, the structure of ΔðθÞ is set at T c and
varies only weakly below T c. We showed that near a QCP the
situation is different, and ΔðθÞ has a distinctive temperature
evolution within the superconducting state. Namely, the width of
the peak strongly grows with decreasing temperature. The source
of this evolution is the existence of multiple solutions for the
pairing gap ΔnðθÞ of the same s-wave symmetry, with closely
spaced Tc;n. These solutions can be thought of as oscillating
excited states in an effective trapping potential within the range
θh. The actual T c coincides with Tc;0, and below this temperature
the non-oscillating solution Δ0ðθÞ develops. However, other ΔnðθÞ

Fig. 5 Temperature evolution of the induced pairing states. The
figure depicts an illustration of the temperature evolution of the
induced Δn of ΔðθÞ ¼ Δ0Δ0ðθÞ þ Δ1Δ1ðθÞ þ 	 	 	 ; where ΔnðθÞ are
orthonormal eigenfunctions of the linearized gap equation.
Different colored dots correspond to T c;n, and dashed lines with
the same color are the corresponding Δn . The contribution of
ΔnΔnðθÞ to ΔðθÞ is resonantly enhanced for T < T c;n. Observe that the
sign of Δn oscillates between even and odd n: Δn / ð�1Þnþ1Δ0.
Because at small θ, ΔnðθÞ / ð�1ÞnΔ0ðθÞ, the original (n ¼ 0) and the
induced (n> 0) gap components interfere destructively

Fig. 4 Orthogonal solutions of the linearized gap equation. We used
λ ¼ 0:025 to produce this figure
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are induced by Δ0ðθÞ and each gets resonantly enhanced below
Tc;n ¼ T cð1� OððnλÞ2=3ÞÞ. Interference effects from these reso-
nantly induced components modify θh and make it temperature-
dependent. The effect is strong near the nematic QCP and rapidly
disappears away from it. We obtained this behavior in a controllable
analytical calculation at small λ, but verified numerically that it holds
at λ ¼ Oð1Þ. This allows us to estimate temperature ranges where
our theory applies. For EF � 20� 30meV, as in QC FeSe1�xSx with
x � 0:259 we obtain T c � 5� 8K for λ ¼ 1, consistent with the
experimental Tc � 8K (we caution that this is only an order-of
magnitude estimate for T c because of the complex multi-band
electronic structure of FeSe1�xSx).
We now briefly discuss other mechanisms of anisotropic SC and

argue that they do not lead to strong temperature evolution of
the gap width. First, an anisotropic gap ΔðθÞ naturally emerges if
the pairing is driven by order parameter fluctuations at a finite q,
such as spin- or charge- d-wave fluctuations. However, in this case,
the gap width θh is comparable to the width of the hot region
already for small coupling λ, and the requirement for closely
spaced T c;n does not hold. Second, lattice effects do give rise to
some variation of θhðtÞ, but this variation is (i) small in T c=ωD and
also small in the electron-phonon coupling λph, and (ii) does not
critically depends on the closeness to a QCP. It was argued60 that
the coupling to the lattice may prevent an electronic system from
fully reaching a nematic QCP because the phonon that softens at a
nematic QCP only does so in the cold regions. This will not affect
our results if λ2 � λphωD=EF.
We therefore believe that the observation of the temperature

evolution of the gap width will be a “smoking gun” proof of QC SC
in a proximity to a nematic QCP.

METHODS
In this section, we give a detailed description of our analytic calculations,
both for the linearized and the non-linear gap equation. In the final
section, we briefly describe our numerical procedure. In what follows, we
first consider the pairing at a QCP, and then away from it. For the latter
case, we introduce a finite correlation length ξ � k�1

F .

The linearized gap equation at a QCP
We consider a generic d-wave form-factor f ðθÞ and focus on the region
�π=2 < θ < π=2. We use as an input previous works,36,37 in which the
Eliashberg gap equation has been derived. It has the form (Eq. (4) of the
main text)

Zðθ;ωnÞΔðθ;ωnÞ ¼ T
X
ωm

Z
dϕ
2π

Δðθþ ϕ;ωmÞf 2 θþ ϕ
2

� �
jωmj Dðθ;ϕ;ωm � ωnÞ;

(11)

where the bosonic propagator is

Dðθ;ϕ;ΩÞ ¼ λ

ϕ2 þ f 2 θþ ϕ
2

� � λjΩj
EFπjϕj

: (12)

As we explained in the main text, the key effect of fermionic Zðθ;ωnÞ is to
cancel the term with ωm ¼ ωn in the frequency sum in the r.h.s. of (11). We
eliminate this term and thereafter set Zðθ;ωnÞ ¼ 1. This simplifies the
analytical consideration. We keep the full Zðθ;ωnÞ contribution in
numerical calculations.
In order to make manifest the different roles played by the strong local

fluctuations at the smallest angular transfers ϕ and the weak tail of the
interaction at larger ϕ, it is convenient to split Eq. (11) into two parts. To do
so, we subtract Δðθ;ωmÞ from Δðθþ ϕ;ωmÞ in the numerator of the RHS of
Eq. (11) and add it as a separate term. We then obtain

Δðθ;ωnÞ ¼ Λ̂0Δðθ;ωnÞ þ T
X

ωm≠ωnZ
dϕ
2π

Δðθþ ϕ;ωmÞ � Δðθ;ωmÞð Þf 2 θþ ϕ
2

� �
jωmj Dðθ;ϕ;ωm � ωnÞ:

(13)

Here Λ̂0 takes care of strong local fluctuations,

Λ̂0Δðθ;ωnÞ ¼ T
X
ωm≠ωn

Δðθ;ωmÞ
jωmj ´

Z
dϕ
2π

f 2 θþ ϕ

2

� �
Dðθ;ϕ;ωm � ωnÞ: (14)

Because the integration over ϕ is confined to small jϕj � 1, we can
approximate f ðθþ ϕ=2Þ by f ðθÞ, and extend the limits of the ϕ integration
to ±1. Integrating over ϕ we then obtain

Λ̂0Δðθ;ωnÞ � 2

33=2
T
X
m≠n

Δðθ;ωmÞ
jωmj

1

jωm�ωn j
πλ2EF f

4ðθÞ

� �1=3 ;
which is Eq. (5) of the main text.
The local gap equation

Δðθ;ωnÞ ¼ Λ̂0ðθ;ωnÞΔðθ;ωnÞ (15)

has a continuous set of solutions

Δðθ;ωnÞ ¼ ΔνðωnÞδðθ� νÞ (16)

which progressively emerge at T cðνÞ ¼ Tcð0Þð1� aνν2 þ ¼ Þ, where aν is
a constant of order one. The largest T cð0Þ is obtained by solving (15) with
f ðθÞ ¼ f ð0Þ. By order of magnitude, at a QCP, T cðνÞ � λ2EFf

4ðνÞ. To get the
exact prefactor, we note the gap equation, Eq. (15), with fermionic Z-factor
re-introduced in the l.h.s., is equivalent to that for the QC γ model with
γ ¼ 1=358. Using the results for the γ model, we find the exact expression

T cð0Þ ¼ 0:022λ2EF½f ð0Þ
4 (17)

The existence of a continuous set of solutions is a consequence of
neglecting the second, non-local term in the r.h.s. of Eq. (13). To obtain the
actual gap function we need to account for this non-local term. We
proceed with an analytic treatment by making two approximations. First,
we use the fact that the frequency sum converges, i.e., typical ωm ¼ OðTÞ.
We then neglect the frequency dependence in the gap equation by taking
ωn and ωm to be the smallest non-equal Matsubara frequencies, i.e., set
ωn ¼ πT ;ωm ¼ �πT . Second, we expand f ðθÞ and f ðθþ ϕ=2Þ in small
angles near θ ¼ 0;ϕ ¼ 0, i.e., around the center of the hot region. We
assume and then verify that the expansion is justified everywhere in the
hot region, since we will see that the width of Δðθ; nÞ, viewed as a function
of θ, is small, θh � λ1=3, as long as λ � 1.
Using these approximations, we re-write Eq. (13) as

ΔðθÞ 1� 1� aθθ
2� �4=3 T cð0Þ

T

� �1=3
" #

¼ λf 2ð0Þ
π

Z
dϕ
2π

Δðθþ ϕÞ � ΔðθÞ
ϕ2 þ aλ λ3

jϕj
(18)

where we used f ðθÞ ¼ f ð0Þð1� aθθ
2Þ and aλ is a constant of order one.

A quick study of Eq. (18) shows that there are two relevant scales for θ: a
smaller (lower) scale θl ¼ OðλÞ, below which ΔðθÞ � Δðθ ¼ 0Þ and a larger
(higher) scale θh ¼ Oðλ1=3Þ, which is set by balancing θ2ΔðθÞ in the l.h.s. of
Eq. (18) and λ

R dϕ
π

ΔðθþϕÞ�ΔðθÞ
ϕ2 � λΔðθÞ=jθj in the r.h.s. We will be interested

in the gap function at θ � θh � λ. In this region, one can drop the λ3=jϕj
term in the r.h.s. of (18) and re-write this equation as

ΔðθÞ 1� T cð0Þ
T

� �1=3
" #

¼ � 4
3
aθθ

2ΔðθÞ þ λf 2ð0Þ
π

Z
dϕ
2π

Δðθþ ϕÞ � ΔðθÞ
ϕ2

(19)

Rescaling θ by θh and choosing the prefactor in θh / λ1=3 to eliminate the
numerical factor between θ2 and integral terms in the r.h.s. of Eq. (19), we
re-write Eq. (19) as

ηðTÞΔðθÞ ¼ θ
2
ΔðθÞ �

Z 1

�1

dϕ
π

Δðθþ ϕÞ � ΔðθÞ
ϕ
2

where θ;ϕ are rescaled angles and we again extended the integration to
±1. This is Eq. (6) of the main text. The width of the Δ in Eq. (6) (defined
as jθj � θh) is of order one in the rescaled units. The parameter
η � ððTcð0Þ=TÞ1=3 � 1Þ=λ2=3. For jT � T cð0Þj � T cð0Þ, η � ðTcð0Þ � TÞ=
ðTcð0Þλ2=3Þ.
To solve Eq. (6) we treat separately the behavior in and out of the hot

region, i.e., at θ � 1 and θ � 1. For θ � 1, we may neglect the ΔðθÞ term
in the integrand. The largest contribution to the integral comes from the
region where the gap is large, i.e., from ϕ � �θ, with the width of order
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ϕ ¼ Oð1Þ, so to leading order we have

Δðθ � 1Þ � Δ

θ
4 ; (20)

where

Δ ¼
Z

dx
π
ΔðxÞ (21)

In original variables, Eq. (20) shows that ΔðθÞ rapidly drops once θ exceeds
θh. Inside the gapped region, at θ < 1, we can transform to Fourier
components ΔðθÞ ¼ ð2πÞ�1 R dxeixθΔðxÞ and reduce Eq. (6) to the Airy
equation

ηΔðxÞ � �∂2xΔðxÞ þ jxjΔðxÞ
This is Eq. (7) from the main text. The boundary condition for the even gap
function is Δ0ð0Þ ¼ 0. Another boundary condition is Δðx � 1Þ ! 0. Using
asymptotic expressions for the Airy functions we then obtain a discrete set
of solutions, specified by integer numbers. The solutions are

ΔnðxÞ ¼ dnAiðjxj � xnÞ; ηn ¼ xn;

Equation (8) of the main text, where �xn is the position of the nth zero of
the derivative of the Airy function Ai0ðxÞ, and dn is a constant. This implies
that there exists a discrete set of solutions for the gap ΔnðxÞ with T c;n set
by ηðTÞ ¼ ηn . The corresponding ΔnðθÞ changes sign n times in the first
octant (8n times over the whole FS). For n � 1,

2
3
η3=2n � π

4
þ nπ; (22)

such that

T c;n ¼ T cð0Þ 1� OðλnÞ2=3
� �

(23)

The highest T c ¼ Tc;0 is for the solution with n ¼ 0. The corresponding
Δ0ðθÞ does not change sign.

Non-linear gap equation
In this section, we solve the non-linear gap equation. We extend Eq. (13) by
changing the frequency term in the denominator of the RHS to

jωmj !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
m þ Δ2ðθþ ϕ;ωmÞ

q
. For Δ=T c � 1, it is enough expand to 3rd

order in Δ and keep only the contribution to this order from the operator
Δ̂0 of Eq. (13). We then repeat the steps to give us an effective equation for
angles θ;ϕ like Eq. (6), but with additional terms that we will show below.
Equivalently, we can write a Ginzburg Landau free energy and compute

its saddle-point equations. We write the gap function as an expansion in
the states ΔnðθÞ that are solutions of the linearized equation,
ΔðθÞ ¼PnΔnΔnðθÞ. For convenience, we normalize them to be orthonor-
mal and such that Δnðθ ¼ 0Þ / ð�1Þn , i.e., non-oscillating Δ0 is positive for
Δðθ ¼ 0Þ, then Δ1ðθ ¼ 0Þ is negative, etc. The free energy has the form,

F /
Z

� 1
2

X
n

ðt � tnÞΔ2
n þ F4 þ 	 	 	 (24)

where tn ¼ ðT c � T c;nÞ=T c; t ¼ ðTc � TÞ=T c,

F4 ¼ A
X
ijkl

ΔiΔjΔkΔl

Z
dθΔiðθÞΔjðθÞΔkðθÞΔlðθÞ; (25)

and A is a constant of order one. We simplify the analysis of Eq. (24) by
keeping only those cross-terms (terms with at least two different Δn) that
have a power of Δ0. The justification for this is that the numerical solution
of the gap equation shows no oscillations, implying Δ0 � Δn>0. In addition,
the numerical solution is real, indicating that the coefficients Δn are real.
The result appears in Eq. (9) of the main text, which we reproduce here,

F4 �
X
n

an
4
Δ
4
n þ

X
n>0

an1Δ
3
nΔ0 þ an2Δ

2
0Δ

2
n þ an3Δ

3
0Δn

h i
: (26)

Qualitatively, we expect that jan3j; jan1j � jan2jtjanj. This is because a2n is
an integral over a positive-definite quantity, whereas the integrals that
determine an3; an1 oscillate. In addition, we expect that an3; an1 should
decay rapidly with increasing n because of the oscillations. Finally, we
expect that an3 / ð�1Þn . This is because Δ3

0ðθÞ is peaked in the region near
θ ¼ 0, and so the overall sign should go as the sign of Δnðθ ¼ 0Þ, as long as
the integral in Eq. (26) is determined by the peak region θ < 1.
Numerically, we find that the overlap integral in Eq. (26) yields (up to

the constant A), for λ ¼ 0:03,

a n ¼ 4; 3:14; 2:77; 2:56; ¼ ðn � 0Þ
an1 ¼ �0:1;�0:04;�0:02; ¼ ðn> 0Þ
an2 ¼ 0:59; 0:49; 0:43; ¼ ðn> 0Þ
an3 ¼ �0:42; 0:06;�0:03; ¼ ðn> 0Þ

(27)

These numbers are consistent with our qualitative arguments. As an1 � an3
and jΔnj � jΔ0j, we can neglect the an1 terms in F4. We neglect the
contribution of the induced states Δn > 0 on the non-oscillating Δ0, in
which case the saddle-point equation for Δ0 immediately yields
Δ0 �

ffiffiffiffiffiffiffiffiffi
t=a0

p
. The saddle-point equation of Eq. (24) for n> 0 is

Δn � � an3Δ
3
0 þ anΔ

3
n

tn þ 2an2Δ
2
0 � t

: (28)

The results quoted in the main text (after Eq. (9)) correspond to the limits
an3Δ

3
0 � anΔ

3
n and an3Δ

3
0 � anΔ

3
n . Note, that in the latter limit there are

two possible solutions to the equation, with opposite signs. The correct
sign is determined by the behavior for small Δn , i.e., by the sign of �an3.
Figure 6 depicts the numerical solution of Eq. (28). Using the solution of Eq.
(28) we can compute the t dependence of the width of the hot region,

θ hðtÞ /
Z

dϕ
ΔðϕÞ

Δðθ ¼ 0Þ �
P

nΔn
R
dϕΔnðϕÞP

nΔnΔnðθ ¼ 0Þ

�
P

nΔnΔnðx ¼ 0ÞP
nΔnΔnðθ ¼ 0Þ

(29)

We can simplify Eq. (29) using the following analytic properties of Airy
functions: Aið�xnÞ / ð�1Þn=n1=4; R dxAi2ðjxj � xnÞ / ffiffiffiffiffi

xn
p � n1=3;

R
dxAi

ðjxj � xnÞ � const. These in turn imply Δðθ ¼ 0Þ / ð�1Þn=n1=6;Δðx ¼ 0Þ
/ 1=n1=6þ1=4¼5=12. Then we have

θhðtÞ /
1� a

P
n>0

Δn

Δ0

��� ��� ð�1Þnþ1

n5=12

1� b
P

n>0
Δn

Δ0

��� ��� 1
n1=6

� 1� a
X
n>0

Δn

Δ0

����
���� ð�1Þnþ1

n5=12
þ b

X
n>0

Δn

Δ0

����
���� 1
n1=6

(30)

where a; b are constants. The second sum dominates over the first sum
(which oscillates rapidly), so the overall trend of θhðtÞ is positive. For t � 1,
as long as t1 � ðη1 � η0Þλ2=3 is not too small,
jΔn=Δ0j � an3=a0ðt=tnÞ � t=ðnλÞ2=3. Then the sum converges rapidly since
an3 decay rapidly. For the smallest λ ¼ 0:03 that we studied numerically in
this work, t1 � 0:3 and our assumptions are justified. This yields,

θhðtÞ / 1þ c

λ2=3
t; (31)

where c is a constant, in agreement with Eq. (10) of the main text. In Fig. 7,
we depict the evolution of θhðtÞ � θhð0Þ for λ ¼ 0:03; 0:15; 0:3 extracted
from the numerical solution of the full Eliashberg equations. The data show
good agreement with the predicted scaling.
In obtaining Eq. (31) we assumed that the evolution of θh is a

consequence only of the existence of multiple solutions, and neglected the
temperature evolution of the characteristic width θ0 of each independent
solution by itself. To further verify that the strong evolution of θh is a result
of multiple solutions, we investigate the evolution of θ0ðtÞ for t > 0. The
width θ0 can be extracted numerically from the width of Δ0, the non-

Fig. 6 An illustration of the numerical solution of Eq. (28). We chose
the parameters tn ¼ 0:25; a0 ¼ 4; an ¼ 3:14; a2n ¼ 0:59; a3n ¼ �0:42,
corresponding to n ¼ 1 for λ ¼ 0:03. We chose A ¼ 1 for simplicity
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oscillating solution of the linearized gap equation, for T < Tc. It is
straightforward to show, from Eq. (18), that the expected behavior is

θ0ðTÞ=θ0ð0Þ ¼ ðT=TcÞ1=9; (32)

i.e., θ0ðtÞ=θ0ð0Þ depends only weakly on temperature, does not depend on
λ, and actually goes down, not up. Figure 8 depicts the behavior of θ0ðtÞ
for several different λ, showing excellent agreement with Eq. (32). This
implies that the strong growth of θhðtÞ cannot be attributed to just the
non-oscillating Δ0 but comes from multiple solutions.

Away from a critical point
The analysis of the discrete set of solutions of the gap equation can be
readily extended to a finite nematic correlation length ξ . The bosonic
propagator at a finite ξ is

Dðθ;ϕ;ΩÞ ¼ λ

ϕ2 þ ðkFξÞ�2 þ f 2 θþ ϕ
2

� � λjΩj
EFπjϕj

: (33)

The computational steps are the same as before. The local gap equation is
given by (15) and still has an infinite number of solutions. To study the
effect of a finite correlation length, it is useful to consider first the
perturbative regime ðkFξÞ�1 � λ and then go to the opposite regime
ðkFξÞ�1 � λ. The operator Λ̂0ðθ;ωnÞ is given by (14). For ðkFξÞ�1 � λ we
have

Λ̂0ðθÞΔðθ; nÞ � T cð0Þ
T

� �1=3

1� aξ
ðkFξÞ�2

λ2

 !
Δðθ; nÞ � aθθ

2Δðθ; nÞ (34)

where aξ ¼ Oð1Þ. In the non-local part of the equation, the finite ξ has no
role since the behavior at small ϕ is smooth. Consequently, the gap
equation with the non-local term has the same form as Eq. (6), but with a
new scaling for η,

ηλ2=3 / T cð0Þ
T

� �1=3

1� aξ
ðkFξÞ�2

λ2

 !
� 1: (35)

The new onset temperatures are,

T c;n � T c;0
1� aξ

ðkFξÞ�2

λ2

1þ bðλnÞ2=3

2
4

3
5
3

� T cð0Þ 1� kFξ
λ

� �2 !
ð1� ðλnÞ2=3Þ;

(36)

where kF � kF and λ � λ. We see that, at ðkFξÞ�1 � λ, the effect of the
finite correlation length is a uniform reduction of all onset temperatures,

but multiple solutions survive and the width of the hot region θh does not
depend on ξ .
In the opposite limit ðkFξÞ�1 � λ, Λ0 has a BCS form,

Λ̂ 0ðθ;ωnÞΔðθ;ωnÞ � λf 2ðθÞ
2ðkFξÞ�1 T

XEF ðkFξÞ�3

λT


 �
m

Δðθ;ωmÞ
jωmj

� λ

2ðkFξÞ�1 log
EFðkFξÞ�3

λT

 !
Δðθ;ωnÞ � aθθ

2Δðθ;ωnÞ

(37)

Equation (37) shows that the frequency sum is no longer limited to a few
first Matsubara frequencies, and instead gives a logarithm and determines
an onset temperature

Tcð0Þ � ðEFðkFξÞ�3=λÞ exp �ðkFξÞ�1=λ
� �

: (38)

This logarithm then appears in the non-local part of the gap equation as
well, and affects the width of the hotspot θh. The gap equation with the
non-local term becomes

ΔðθÞ T cð0Þ � T

T cð0Þ
λ

2ðkFξÞ�1 / �aθθ
2ΔðθÞ þ ðkFξÞ�1

Z
dϕ

Δðθþ ϕÞ � ΔðθÞ
ϕ2 ;

(39)

Equation (39) can be recast into the same form as the dimensionless Eq.
(6), but now

θh / ðkFξÞ�1=3 (40)

and

η / T c � T

T c

λ

ðkFξÞ�5=3 (41)

Equation (41) implies that in order for T c;n to be close in temperature the
system must obey

ðkFξÞ�5=3

λ
� 1: (42)

Equation (42) demonstrates that the strong evolution of θh with
temperature is a signature of QC pairing. When ðkFξÞ�1 � λ3=5, the
solutions with n> 0 do not develop at finite T=T c, and the SC is of a
conventional nature, although it remains strongly anisotropic till kFξ � 1.

Details of the numerical solutions
We solved both the linearized and the non-linear gap equation
numerically. The details of the numerical solution of the linearized
equation have appeared previously in ref. 37. Figure 4 in this work was
obtained for a value of λ ¼ 0:025, with a numerical mesh of 512 points in
the range �π=2 < θ < π=2, and 48 Matsubara frequencies (half negative
and half positive). For Fig. 8, the number of Matsubara freuencies was 24.
Regarding the non-linear gap equation, all the figures and numerical
values that appear in this paper are for values of λ ¼ 0:03; 0:15; 0:3. They
were obtained with a mesh of 1000 points in the range �π < θ < π and
101 Matsubara frequencies, namely we take ωn ¼ ð2nþ 1ÞπT with n
ranging from −50 to 50. The numerical solution was obtained by iteration.
Both linear and non-linear equations were solved in MATLAB (various
versions).
To produce Fig. 6 in the Methods section as well as Fig. 5 in the main

text, we employed Mathematica 11 and its implementation of the Airy
function, with λ ¼ 0:03. We created Fig. 5 using the same parameters as in
Fig. 6, except for Tc;n , which we estimated from solutions of the Airy
equation.
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prediction of Eq. (32)
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