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Superconductivity from valley fluctuations and approximate
SO(4) symmetry in a weak coupling theory of twisted bilayer
graphene
Yi-Zhuang You1 and Ashvin Vishwanath1

The recent discovery of the Mott insulating and superconducting phases in twisted bilayer graphene has generated tremendous
research interest. Here, we develop a weak coupling approach to the superconductivity in twisted bilayer graphene, starting from
the Fermi liquid regime. A key observation is that near half filling, the fermiology consists of well nested Fermi pockets derived from
opposite valleys, leading to enhanced valley fluctuation, which in turn can mediate superconductivity. This scenario is studied
within the random phase approximation. We find that inter-valley electron pairing with either chiral (d+ id mixed with p−ip) or
helical form factor is the dominant instability. An approximate SO(4) spin-valley symmetry implies a near degeneracy of spin-singlet
and triplet pairing. On increasing interactions, commensurate inter-valley coherence wave (IVCW) order can arise, with
simultaneous condensation at the three M points in the Brillouin Zone, and a 2 × 2 pattern in real space. In simple treatments
though, this leads to a full gap at fillings ± (1/2+ 1/8), slightly away from half-filling. The selection of spin-singlet or spin triplet
orders, both for the IVCW and the superconductor, arise fcase corresponds to the Hundsrom SO(4) symmetry breaking terms. Mott
insulators derived from phase fluctuating superconductors are also discussed, which exhibit both symmetry protected and intrinsic
topological orders.
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INTRODUCTION
There has been considerable interest in studying artificial lattices
induced by a long wavelength Moiré potential in graphene and
related materials. These experiments have recently gathered
momentum with the observation of superconductivity and
correlated Mott insulators in bilayer graphene twisted to a
particular “magic angle”. The Moiré superlattice induced in bilayer
graphene twisted by a small angle leads to isolated bands near
charge neutrality, whose bandwidth can be tuned by twist
angle.1–12 On approaching certain magic angles, the largest being
~1.1°, the bandwidth is significantly reduced allowing for
correlation physics to take hold. Indeed, recent studies on twisted
bilayer graphene (tBLG) near the magic angle have revealed the
presence of Mott insulators13 at fractional filling of the bands, as
well as superconductivity14 in close proximity to some of the Mott
insulators. While Mott physics has also been observed in a
different Moiré superlattice system, induced by a boron nitride
substrate on ABC trilayer graphene,15 here we will focus on the
tBLG system, which has already generated a significant amount of
theoretical interest.16–33

The band structure of tBLG at small twist angles can be
understood from a continuum model1,4,6 that couples the Dirac
points in the individual graphene layers via the interlayer
tunneling. Due to the small twist angles involved, there is a
separation of scales between the atomic lattice and the Moiré
superlattice which implies that commensuration effects can be
neglected.6 The opposite Dirac points in each layer are then
essentially decoupled, leading to a valley quantum number nv=

±1 for each electron (nv=+1 for K valley and −1 for K′ valley),
which is reversed under time reversal symmetry (as valleys are
exchanged). Including both spin and valley degrees of freedom it
takes 8 electrons (per Moiré unit cell) to completely fill the nearly
flat bands that appear near neutrality. The additional factor of two
in the filling appears due to band contacts present at neutrality
and protected by symmetry. Charge neutrality then corresponds
to four filled and four empty bands, which meet at Dirac cones at
the K points of the Moiré Brillouin zone (MBZ). Measuring the
electron charge density n from neutrality, the fully filled and fully
empty bands occur at ±ns (~2.7 × 1012 cm−2 for magic angle tBLG).
In ref. 13,14, an insulating state was also observed at
f ¼ n=ns ¼ ∓ 1=2, i.e., at half filling both below and above
neutrality (hence the term Mott insulator), where there were two
(six) electrons per Moiré unit cell. Furthermore, superconductivity
was observed around the f=−1/2 Mott insulator, i.e., around the
Mott insulator on the hole doped side of neutrality.
Although interactions and the band width are both estimated

to be comparable in magic angle tBLG, here we consider
approaching the problem from the weak coupling limit, i.e., we
imagine moving slightly away from the magic angle, which is
motivated by the following considerations. First, although the
energy scale of the bandwidth W2 and interactions U13 were
estimated to be of order 10 ~ 20meV, the Mott gap observed in
transport experiments is much smaller ~0.4 meV, and could be
closed with an in-plane Zeeman field of roughly the same
strength. Therefore, the system is not deep in the Mott regime,
where the Mott gap would be of the same order as U. Next,
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doping the Mott insulator towards neutrality results very quickly in
a metal with a big Fermi surface, where superconductivity is also
observed. This regime could be approached from weak coupling.
On the other hand, the side facing the band insulator (i.e., hole
doping the f=−1/2 Mott insulator or electron doping the f=+1/
2 Mott insulator) behaves like a “doped” Mott insulator, with both
Hall conductivity and quantum oscillations pointing to a small
Fermi surface composed of just the doped carries.
Finally, in both iron-pnictides34–36 and overdoped cuprates,37–39

weak coupling approaches have been relatively successful at least
in predicting the gap symmetry. However, both these calculations
relied on band structures with some degree of nesting. Does the
fermiology of tBLG support such a nesting driven scenario?
Interestingly, on moving slightly away from the magic angle,
multiple band structure calculations6,10,13,40 for small angle tBLG
bands reveal a relatively strong nesting feature in the vicinity of
half filling, albeit at wave-vectors not simply related to the filling.
Such nesting is not expected in a single orbital model on the
triangular lattice, but appears here quite generally from having
opposite valleys that give rise to a pair of Fermi surfaces related by
time reversal symmetry, each of which is constrained by the
microscopic symmetries C3, My and C2T as defined in ref. 19.
Within a random phase approximation (RPA), we show that
nesting-enhanced valley fluctuations give rise to an inter-valley
pairing in the “d/p-wave” channel (d-wave and p-wave are
generally mixed under C3 symmetry). An important ingredient is
the presence of an approximate SO(4) symmetry. Although four
component electrons (spin and valley) might suggest an SU(4)
symmetry, this is strongly broken by the valley-dependent band
structure. Instead, we obtain separate spin SU(2) rotation
symmetries for the two valleys SU(2)K × SU(2)K′~SO(4) with
interactions that only depend on the slowly varying part of the
electron density. This symmetry ensures a degeneracy of the spin
singlet and triplet inter-valley pairing (with valley indices adjusted
to ensure the antisymmetry of the pair wave function). Further
weak symmetry breaking terms are expected to split this
degeneracy, the experimentally reported Pauli limiting behavior14

suggests a spin singlet superconductor. This would require
invoking a weak anti-Hunds coupling, leading to a inter-valley
spin-singlet superconductor with chiral d+ id and p−ip mixed
pairing, while the more conventional Hunds coupling would favor
a spin triplet superconductor with chiral d+ id/p−ip pairing.16

Note, in this setting, there is no symmetry distinction between d +
id and p−ip pairing. However, depending on their relative
strengths, a topological phase transition occurs characterized by
different quantized thermal Hall conductivities (chiral central
charge c= 4 vs c=−2). At strong coupling, or with explicit
rotation symmetry breaking, nematic superconductivity with two
or four nodes may also be stabilized.
Our general picture is illustrated the phase diagram in Fig. 1, in

the vicinity of f=−1/2, which is obtained based on a mean-field
model Eq. (12) to be discussed in details later. Tuning the twist
angle θ towards the magic angle θmag effectively decreases the
ratio W/U between the band width W and the interaction U, which
pushes the system towards strong coupling. Superconductivity
will first emerge in the weak coupling regime. At stronger
coupling, a simple nesting based picture predicts a inter-valley
coherence wave order, with ordering wave vector at the three M
points of the MBZ, although a full gap is opened only at filling f=
−(1/2+ 1/8) or at 25% hole doping. A gap at half filling can open
if interactions also modify the electronic dispersion, but this is
outside the scope of the present treatment. The RPA approach
does not apply to the strong coupling regime (as indicated in the
phase diagram by the fading-out color), but we will also comment
on alternative approaches that can tackle the strong correlation
physics. We should also keep in mind that apart from the ratio W/
U, the twist angle θ also influence the band structure especially
when θ gets close to the magic angle θmag. Since the band

structure becomes very sensitive to all kinds of perturbations near
the magic angle, it is hard to draw universal features right at the
magic angle. Thus we will stay a little bit away from the (first)
magic angle θmag by considering 1:2θmagtθt2θmag, which can
provide us a relatively robust band structure and also place us
closer into the weak coupling region in the phase diagram Fig. 1.
Given the volume of recent theoretical output we have to

restrict our comments to a few selected references that are closest
to this work. ref. 16 starts with an SU(4) Mott insulator, and
predicted a topological superconductor on doping the Mott
insulator. Our conclusions are similar, although we have an SO(4)
(rather than SU(4)) symmetry, and we adopt a weak coupling
approach which avoids conflict with localizing electrons in the
narrow bands of tBLG.19 As in reference19 we favor a spin-singlet
inter-valley ordering, albeit at a finite wave vector, and inter-valley
fluctuations drive pairing of a spin-singlet superconductor. Finally,
adding strong SO(4) symmetry breaking terms to our model
reproduces the s-wave pairing in ref. 21. Although27,28,33 also
predicts topological superconductor from weak coupling/quan-
tum Monte Carlo, their models differ significantly from ours. Our
proposed pairing mechanism based on the fluctuation of incipient
order is similar to ref. 17, while we identify the leading incipient
order to be the valley fluctuation, which differs from the spin
fluctuation in.17

This paper is organized as follows. We start by proposing an
effective model for tBLG, deriving the low-energy band structure
in Sec. IIA and formulating the symmetry-allowed generic
interaction in Sec. IIB. We then analyze the instabilities in all
fermion-bilinear channels within the RPA approach in Sec. IIC and
find a leading instability in the inter-valley coherence channel. We
study valley fluctuation mediated pairing in Sec. IID and identify
the dominant superconducting order parameter. We sketch two
descriptions for the insulating phase adjacent to the super-
conducting phase: a Slater insulator with inter-valley coherence
wave order in Sec. IIE and a topologically ordered Mott insulator
obtained by projecting out charge fluctuations of the super-
conductor in Sec. IIF. Finally, we study the SO(4) symmetry
breaking effects in Sec. IIG and close with a discussion in Sec. III.

RESULTS
Band structure and fermi surface nesting
We first formulate an effective Hamiltonian that describes the
electrons in the Moiré band near the Fermi surface. Our starting
point is the continuum model of the tBLG proposed in ref. 4,5

which first focuses on the band structure around one valley (say

Fig. 1 Schematic phase diagram in the vicinity of f = −1/2, which is
obtained by self-consistent mean-field calculation according to Eq.
(12) in the low temperature limit (details will be discussed later). TSC
topological superconductor, IVCW inter-valley coherence wave. The
strong coupling regime (closer to the magic angle) is not captured
by this approach. We will mainly focus on the weak coupling regime
in this work. The superconductivity is slightly stronger on
approaching the van-Hove singularity which is on the electron
doped side (neutrality is on the right)
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the K valley)

H0 ¼ HK þ HK 0

HK ¼
P
k;l

cyKlkhlkcKlk þ
P
k;a

cyK�kTqa cKþkþ qa þ h:c:; (1)

where cKlk denotes the K valley electron originated from the layer l
(with l= ±1 labeling the top and the bottom layers respectively).
hlk = vF(k−Kl)⋅σl captures the Dirac dispersion of the electron near
the Kl valley, where K l ¼ Rφl

K ¼ e�iφlσ
2
K is rotated from the

monolayer K point K ¼ ð4π=ð3
ffiffiffi
3

p
Þ; 0Þ by an angle φl = lθ/2

determined by the twist angle θ, and accordingly σl ¼
e�iφlσ

3=2σeiφlσ
3=2 is also rotated from the standard Pauli matrices

σ = (σ1, σ2) by the same angle. Tqa ¼ w0 þ w1ðqa ´σÞ � bz þ iw3σ
3

describes the interlayer tunneling to the lowest-order of the
momentum transfers, as specified by q1= K−−K+, q2= R2π/3q1
and q3= R−2π/3q1 in Fig. 2a. In general, Tqa depends on three real
parameters w0, w1 and w3 (a typical setting is w0 ≈ w1|qa| ≫
w3).

1,4,6 Such a generic form of Tqa can be pinned down by
symmetry arguments given in ref. 19. The Hamiltonian HK′ around
the K′ valley can be obtained from HK simply by a time-reversal
operation T : cKlk ! KcK 0

l ;�k (with K being the complex conjuga-
tion operator). Putting together, H0= HK+ HK′ provides a full
description of the low-energy electronic band structure of the
tBLG in the continuum limit.
By diagonalizing the Hamiltonian HK (with an appropriate

momentum cutoff), we obtain the single-particle band structure as
shown in Fig. 3a. The bands are defined in the Moiré Brillouin zone
(MBZ), as depicted in Fig. 2a with high symmetry points labeled.

The K+ and K− valleys from either layers rest on the Moiré KM and
K 0
M point respectively. We focus on the middle band around the

charge neutrality, which will become flat as the twist angle θ
approaches to the magic angles θmag. A prominent feature of this
band is that its energy contours (Fermi surfaces) around the −1/2
filling typically take triangular shapes around the ΓM point in the
MBZ, as shown in Fig. 2a, which was observed in several band
theory calculations for small twist angles.6,10,13,40 The triangular
distortion of the Fermi surface is generic on symmetry ground, as
it is the lowest order (in terms of angular momentum) distortion
that is consistent with all the valley-preserving lattice symmetries
C6T and My.

19,41 Indeed it is a rather robust feature for a range of
twist angles θgt; rsim1:2θmag and is also stable against perturba-
tions like lattice relaxation,42 as long as we are not too close to the
magic angle. We assume that such triangular shape Fermi surface
is relevant to the low-energy physics of the tBLG near the magic
angle at −1/2 filling and base our analysis on this assumption. The
key idea is that the almost parallel (well nested) sides of the
triangular Fermi surfaces between K and K′ valleys could lead to
strong valley fluctuations, which further provides the pairing glue
for the superconductivity.
We describe a systematic procedure to extract an low-energy

effective band structure from the continuum model described
above. Briefly, the end result is a single band model with the
dispersion ϵK;k ¼ k2 � μþ αðk3x � 3kxk2y Þ around the K valley and
ϵK 0 ;k ¼ ϵK ;�k around the K′ valley. In more detail, we proceed as
follows. To model the triangular Fermi surface around the ΓM
point, we first derive the effective band theory near ΓM. One
systematic and unbiased approach is to first collect the single-
particle wave vectors |mk〉 around ΓM in the middle band
(including both its upper and lower branches), and then construct
a density matrix ρ /

P
mk jmkihmkj out of these states (note that |

mk〉 are not orthogonal in the orbital space). By diagonalization
ρ ¼

P
i jψiipihψij, we can identify the leading natural orbitals |ψi〉

(orbitals with largest weights pi). The number n of the leading
orbitals to be involved in the effective theory can be set by the
desired fidelity level. To retain above 95% fidelity, s.t.Pn

i¼1 pi > 0:95, we typically need to take up to six orbitals (i.e.,
n= 6). Projecting the continuum model Eq. (1) to the six orbitals
leads to the effective Hamiltonian HK ¼

P
k c

y
khKkck with

hKk ¼
ϵ1σ1 κ�k κ�k
κþk λk 0

κþk 0 �λk

2
64

3
75 (2)

where κ ±
k ¼ v1ðkxσ0 ± ikyσ3Þ and λk ¼ ϵ2 þ v2k � σ are set by four

real parameters ϵ1;2 and v1,2. The band structure of the six-orbital
model is shown in Fig. 3b. We can see that the features around ΓM
is well captured compared to the continuum model in Fig. 3a, but
the Dirac dispersions around KM and K 0

M can not be described by
the six-orbital model (as expected). The six-orbital model provides
a simpler and more flexible description of the near-ΓM band
structure compared to the continuum model.43 Its parameters can
be determined by fitting to the first-principle calculations or
experimental observations towards a more realistic modeling.
One can further simplify the six-orbital model by integrating out

the high-energy electrons in the top and bottom bands, reducing
the 6 × 6 Hamiltonian hKk in Eq. (2) to its first 2 × 2 block:
h0Kk ¼ ðϵ1 � bk2Þσ1 þ a Re k3þσ

0 þO½k4�, which describes both
branches of the middle band, where k±≡ kx ± iky and the
coefficients are given by b ¼ 2ϵ1v21=ðϵ22 � ϵ21Þ and
a ¼ 4ϵ1ϵ2v21v2=ðϵ22 � ϵ21Þ

2. If we only focus on the lower branch,
the effective band theory boils down to a single-orbital model

H0 ¼
P
k
cyKkϵkcKk þ cyK 0kϵ�kcK 0k ;

ϵk ¼ k2 � μþ α Re k3þ;
(3)

Fig. 2 a Equal-filling contours from the band bottom to the charge
neutrality for both valleys in the Moiré Brillouin zone. The −1/2
filling Fermi surface is traced out by thick lines. b The Fermi pockets
around −1/2 filling are modeled as the triangular shaped Fermi
surface in the single-band model. The K and K′ pockets are almost
nested along three nesting vectors Q1,2,3

Fig. 3 Reducing the band structure from (a) the continuum model
to (b) the six-orbital model and finally to (c) the single-orbital model.
The energy unit is chosen such that vF|qa|= 1. The continuum model
parameters are taken to be w0= 0.275 and w1|qa|=−0.3 for
illustration. Each latter model targets the band(s) high-lighted (in
red) in the previous model. The reduced models (b, c) are only valid
around the Moiré ΓM point
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where we have chosen to rescaled the energy such that the
single-orbital depends on only one tuning parameter α ¼ a=b ¼
2ϵ2v2=ðϵ22 � ϵ21Þ that characterizes the strength of the triangular
Fermi surface anisotropy. The band structure of ϵk is plotted in Fig.
3c. In Eq. (3), the K′ valley Hamiltonian is also included, which can
be inferred from that of the K valley by the time-reversal symmetry
T : cKk ! KcK 0;�k . The Fermi surfaces in both valleys are drawn in
Fig. 2b with μ= 1, α= 1/3 for example. One can see that the
model essentially captures the triangular shape of the Fermi
surface. There are three nesting vectors between K and K′ pockets,
which are set by the chemical potential μ: Q1 ¼ ð

ffiffiffiffiffi
3μ

p
; 0Þ and

Q2= R2π/3Q1, Q3= R−2π/3Q1 are related to Q1 by C3 rotations. Note
that the electronic spin degrees of freedom can be included in Eq.
(3) implicitly.
In this single-orbital model, the notions of filling fraction and

nesting commensurability are lost, but by going back to the
original continuum model, we can identify the commensurate
wavevector that has a high degree of nesting, which is found to
be the MM points, i.e., Q1≃ q2−q1/2. A commensurate perfect
nesting will be achieved at the filling −5/8, which is hole-doped
by 25% from the half-filling. We will show later in Sec. IIE that
including a commensurate inter valley ordering with a period
corresponding to the MM point of the MBZ, we can induce a full
gap for relatively small order parameters, and obtain an insulating
state when we are at the filling −(1/2+ 1/8) in the microscopic
model given by the continuum theory Eq. (1).

Interactions and SO(4) symmetry
We now introduce interactions into the single-orbital model in Eq.
(3). As the electron c= (cK↑, cK↓, cK′↑, cK′↓) in the MBZ carries both
the spin (σ= ↑, ↓) and the valley (v= K, K′) degrees of freedom,
one may expect an emergent U(4) symmetry at low energy that
rotates all four components of the electron, as pointed out in
ref. 16,19,20,29. However, the electron kinetic energy (the band
structure) strongly breaks this U(4) symmetry. For example, the
triangular Fermi surface anisotropy α in the band Hamiltonian Eq.
(3) explicitly breaks the symmetry as the Fermi surface deforma-
tions are opposite between the two valleys as shown in Fig. 2. The
U(4) symmetry is broken down to U(1)c × U(1)v × SO(4), where U
(1)c is the charge U(1) symmetry generated by nc ¼ cyσ00c, U(1)v
denotes the emergent valley U(1) symmetry generated by nv ¼
cyσ30c and SO(4) ~ SU(2)K × SU(2)K′ stands for the two
independent SU(2) spin rotation symmetries in both valleys
generated by Sv ¼ cyvσcv (for v= K, K′ separately). The original
SU(4) generators that are broken by the Fermi surface anisotropy α
form a (complex) SO(4) vector, which corresponds to the inter-
valley coherence (IVC) order Iμ ¼ cyK s

μcK 0 as proposed in ref. 19,
where sμ are defined to be (s0, s1, s2, s3)≡ (σ0, −iσ1, −iσ2, −iσ3) for
σμ being the Pauli matrices. The pairing channels can also be
classified by the SO(4) symmetry. There are only two possibilities:
the inter-valley pairing Δμ ¼ ciKσ

2sμcK 0 that transforms as SO(4)
(pseudo)vector, and the intra-valley pairing Δv ¼ civσ

2cv (v= K, K′)
that transforms as SO(4) (pseudo)scalar. These operators are
summarized in Table 1, which exhaust all fermion bilinear
operators that can be written down on a local Wannier orbital.
(See the Supplementary Material I for a more detailed classifica-
tion of fermion bilinear operators.)
Therefore any U(1)c × U(1)v × SO(4) symmetric local interaction

should be mediated by one of these fermion bilinear channels.
Further taken into account the time-reversal symmetry T (that
interchanges valleys), it turns out that there are only two linearly
independent and symmetric interactions (see the Supplementary
Material I for the derivation of independent local interactions),
which can be written purely in terms of density-density

interactions as

Hint ¼
X
q

U0nK�qnK 0q þ
U1

2
ðnK�qnKq þ nK 0�qnK 0qÞ; (4)

where nvq �
P

k;σ c
y
vσkþqcvσk is the density operator of each valley.

Since the density-density interaction is generally repulsive,
we expect both parameters U0 and U1 to be positive (typically
U0 ≈ U1 > 0). At the special point of U0= U1= U, the U(4)
symmetry is restored for the interaction Hint. However, even if
Hint is tuned to the U(4) symmetric point, when combined with the
kinetic energy H0 in Eq. (3), the symmetry of the full Hamiltonian
H= H0+ Hint is still reduced to U(1)c × U(1)v × SO(4). Later in Sec.
IIG, we will further discuss the effect of adding small interaction
terms to finally break the emergent SO(4) symmetry down to the
microscopic SO(3) spin rotation symmetry.
In summary, by putting together Eqs. (3) and (4), we propose an

effective model H= H0+ Hint for the tBLG with Fermi level resting
in the lower branch of the nearly-flat band but not too close to the
charge neutrality (such that the Fermi surface is still within the
control of ΓM point expansion). More specifically, we assume that
the Fermi level does not go beyond the van Hove singularity that
separates Fermi pockets around the KM points near charge
neutrality from those centered around ΓM, see also Fig. 2a. Our
remaining goal is to analyze the model within a weak coupling
approach.

Random phase approximation
We calculate the renormalized interactions within the random
phase approximation (RPA)34–36 to analyze the electron instabil-
ities in all six fermion bilinear channels as enumerated in Table 1.
We will first restrict our analysis within the s-wave channels for
simplicity. For each fermion bilinear operator Aq ¼ 1

2

P
k χ�kþqAχk

generally expressed in the Majorana basis χk, we evaluate its bare
static (zero frequency) susceptibility χ0ðqÞ ¼ Ay

qAq

D E
0

on the
ground state of the single-orbital model H0. Then we rewrite the
interaction Hint ¼ g0

P
q A

y
qAq þ � � � in the same channel to extract

the bare coupling g0. The RPA corrected coupling is then given by
gRPA(q)= g0(1+ g0χ0(q))

−1. Admittedly, the RPA approach may not
capture the interwind fluctuations in different channels. More
systematic and unbiased approaches such as the function
renormalization group44 could be implemented to improve the
result in the future.
The largest (in magnitude) value of gRPA(q) is taken and plotted

in Fig. 4a as a function of U0= U1= U for various channels. The
most attractive coupling appears in the IVC channel, which is
associated with the operator Iμq ¼

P
k c

y
Kkþqs

μcK 0k . Figure 4b shows
the bare susceptibility of the IVC fluctuation and Fig. 4c is its RPA
corrected coupling, which peaks strongly around three momen-
tums that exactly correspond to the nesting momentums Q1,2,3. So

Table 1. Symmetry classification of fermion bilinear operators (labeled
in the bottom row)

U(4) U(1)c qc= 0 qc= 2

SU(4) 1 15 6 ⊕ 6′

≃ U(1)v qv= 0 qv= 2 qv= 0 qv= 2

SO(6) SO(4) 1 1′ 6 4 ⊕ 4′ 4 ⊕ 4′ 2(1 ⊕ 1′)

nc nv Sc Iμ Δμ Δv

Electrical charge is labeled by qc, thus qc= 0 corresponds to charge neutral
(particle-hole) operators, while qc= 2 corresponds to Cooper pair (particle-
particle) operators. The valley quantum number of the U(1)v symmetry is
labeled by qv, hence inter-valley coherence order is obtained on
condensing qv= 2 operators. Non-Abelian symmetry representations are
labeled by the dimension (with a prime to denote the pseudo-
representation)
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as the bare interaction is strong enough, Iμ will condense at these
momentums, leading to a finite-momentum IVC order, which we
called the inter-valley coherence wave (IVCW). Suppose the
nesting vector is pinned by the Moiré pattern to MM.
Upon doping, the nesting condition will quickly deteriorate and

the IVCW order will cease to develop. Nevertheless the low-energy
valley fluctuations can play the role of the pairing glue, mediating
an effective pairing interaction between electrons. A hint that can
already be observed from Fig. 4 in which the attractive coupling
diverges in the Iμ channel, while at the same time a repulsive
coupling in the s-wave inter-valley pairing Δμ channel also
diverges. This implies that if the pairing form factor is allowed
to change sign along the Fermi surface (which goes beyond
s-wave), the repulsive coupling in this pairing channel can be
effectively converted to an attractive one, leading to a strong
pairing instability based on the Kohn-Luttinger mechanism.45,46

The details will be discussed in the following.

Superconductivity
To pin down the pairing instability mediated by the valley
fluctuations, we take the RPA corrected interaction in the IVCW
channel IμyIμ and recast it in the inter-valley pairing channel ΔμyΔμ

(restricting to the zero momentum pairing ckc−k)X
q;μ

gRPAðqÞIμyq Iq
μ ’ �

X
q;k;μ

gRPAðqÞΔμy
�kþqΔ

μ
k; (5)

where Iμq ¼
P

k c
y
Kkþqs

μcK 0k is the IVCW operator and Δμ
k ¼

ciKkσ
2sμcK 0�k is the inter-valley pairing operator, recall that

(s0, s) = (σ0, −iσ). The attractive interaction (gRPA < 0) in the IVCW
channel implies the repulsive interaction (−gRPA > 0) between Δμ

k
and Δμ

�kþq. So the pairing can gain energy only if there is a relative
sign change between the pairing form factors connected by the
nesting momentums Qa (at which the scattering is the strongest),
i.e., Δμ

k ¼ �Δμ
�kþQa

, as illustrated in Fig. 5a.
By solving the linearized gap equation,X

k02FS
v�1
F ðk0ÞgRPAðk þ k0ÞΔμ

k0 ¼ λΔμ
k ; (6)

the leading gap function (i.e., the eigen function Δμ
k with the

largest eigenvalue λ) is found to be of the form

Δμ
k ¼ uμwk þ vμw�

k ; (7)

where uμ and vμ are complex vectors, and the form factor wk ¼
wdk2þ þ wpk� is a linear combination of the d+ id and the p−ip
waves with real coefficients wd and wp, as shown in Fig. 5b. The

mixing between the d+ id and the p−ip pairing is generic,
because in the presence of the triangular Fermi surface distortion
α, the angular momentum is only mod 3 conserved, meaning that
there is no distinction between the d+ id and the p − ip wave on
symmetry ground. The ratio |wp/wd| carries the dimension of
momentum and sets a momentum scale kQ= |wp/wd|, which is
expected to be associated with the nesting momentum kQ ≃ |Qa|/
2. The form factor wk has three zeros (vortices) on the circle of kQ
in the momentum space. If the Fermi surface circumvents
the zeros from outside (or inside), the pairing will be dominated
by d + id (or p − ip) wave.
To determine the coefficients uμ and vμ in Eq. (7), we can write

down the Landau-Ginzburg (LG) free energy F within the mean-
field theory,16 (see also the Supplementary Material I,I for the
derivation of Landau-Ginzburg free energy and a more detailed
analysis of competing orders)

F ¼
X
k

rΔμ�
k Δμ

k þ κð2ðΔμ�
k Δμ

kÞ
2 � jΔμ

kΔ
μ
k j

2Þ þ � � � : (8)

As studied in ref. 16, the free energy admits two types of minimum,
which are degenerated in energy,

chiral :
uμ ¼ eiϕnμ;

vμ ¼ 0;
or

�
uμ ¼ 0;

vμ ¼ eiϕnμ;

�

helical :
uμ ¼ eiϕ1ðnμ1 þ inμ2Þ;
vμ ¼ eiϕ2ðnμ1 � inμ2Þ;

( (9)

where ϕ, ϕ1, ϕ2 are arbitrary phases and nμ; nμ1; n
μ
2 are real O(4)

vectors with nμ1n
μ
2 ¼ 0. The chiral solution preferentially choose the

form factor of one chirality (either wk or w�
k ), which corresponds to

four copies of the d+ id or the p−ip superconductors (or its time-
reversal partners). The helical solution is a superposition of wk (in
one spin sector) and w�

k (in the other spin sector), which
corresponds to two copies of the d ± id or the p ∓ ip
superconductors.
In the valley and spin space, Δμ

k transforms as a (complex) SO(4)
vector, whose four components corresponds to the spin-singlet
pairing Δ0

k and the spin-triplet pairing Δk ¼ ðΔ1
k ;Δ

2
k ;Δ

3
kÞ. In the

presence of the emergent SO(4) symmetry, the singlet and triplet
pairings are degenerated. This can be considered as an SO(4)
generalization of the SO(3) pairing Δk proposed in ref. 16, such that
the singlet pairing is also included as a possible option in our
discussion. However, the SO(4) symmetry is not exact in the tBLG.
Any inter-valley spin-spin interaction will break the SO(4)
symmetry down to the global (valley-locked) SO(3) spin rotation
symmetry, and thus splits the degeneracy between singlet and
triplet pairings. If the singlet pairing is favored, then only the chiral
gap function is possible, because there is no room for two
perpendicular O(4) vectors nμ1 and nμ2 to coexist just in the singlet
channel. If the triplet pairing is favored, then both the chiral and
helical gap functions are allowed. We will discuss the effective of
explicit SO(4) symmetry breaking in more details later.

Fig. 4 a RPA effective coupling gRPA in different interaction channels
v.s. the bare interaction strength U0= U1= U. The inter-valley
coherence (IVC) channel Iμ has the strongest instability. b The bare

susceptibility χ0ðqÞ ¼ Iμyq Iμq
D E

0
of the IVC order at zero frequency

(ω= 0). c The RPA corrected coupling gRPA(q) in the IVC channel. The
coupling is strongly peaked around the nesting momentums

Fig. 5 a A Cooper pair scattered by the valley fluctuation of the
nesting vector Q1 leads to a sign change along the Fermi surface
(between Δμ

k and Δμ
�kþQ1

). b The leading inter-valley pairing form
factors on the Fermi surface. The pairing phase is indicated by the
hue and the gap size by the color intensity. Here we show the case
of wd/wp= 1 (i.e., d-wave and p-wave are equal in strength) such that
there are nodal points on the Fermi surface. For generic wd/wp, the
Fermi surface will be fully gapped
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In general, the superconductor will be a topological super-
conductor (TSC) with fully gapped Fermi surface.47–49 The chiral
TSC breaks the time-reversal symmetry and also breaks the U
(1)c × U(1)v × SO(4) symmetry to ZF

2 ´Uð1Þv ´ SOð3Þ. The topologi-
cal classification for the chiral TSC is Z. If the d+ id (or p − ip)
pairing is stronger, the topological index will be ν= 8 (or ν=−4),
which admits 8 (or 4) chiral Majorana edge modes. The helical
(non-chiral) TSC preserves the (spin-flipping) time-reversal sym-
metry ZT

2 (under which cKk ! Kiσ2cK 0;�k ; cK 0k ! Kiσ2cK ;�k ) and
breaks the U(1)c × U(1)v × SO(4) symmetry to ZF

2 ´Uð1Þv ´ SOð2Þ.
The SO(2) symmetry may be loosely called a spin U(1)s symmetry
since it corresponds to a joint spin rotation for both valleys (in
either the same or the opposite manner). In the presence of both
U(1)v and U(1)s, the topological classification of the helical TSC is
also Z. If the d ± id (or p ∓ ip) pairing is stronger, the topological
index will be ν= 4 (or ν=−2), which admits 4 (or 2) helical
Majorana edge modes. It is also possible to fine tune the ratio wd/
wp to the topological phase transition between the d-wave and p-
wave TSC, then superconducting gap will close at the nodal points
on the Fermi surface resulting in 12 Majorana cones in the bulk.
Finally, we would like to briefly comment on the possibility of

the nematic d-wave or p-wave pairing. We could go beyond the
mean-field theory by considering more general momentum-
dependent quartic terms in the LG free energyX
k;k0

κkk0 ð2Δμ�
k Δμ

kΔ
ν�
k0 Δ

ν
k0 � Δμ�

k Δμ�
k Δν

k0Δ
ν
k0 Þ: (10)

If κkk′ satisfies
P

k;k0 κkk0 ðw�
kwk0 Þ2<0, the LG free energy will have

only one type of minimum, (see Supplemental Information I,I for
justifications of the assumption and the solution)

nematic :
uμ ¼ eiϕ1nμ;

vμ ¼ eiϕ2nμ;

�
(11)

where ϕ1, ϕ2 are arbitrary phases and nμ is a real O(4) vector. This
solution corresponds to the nodal d-wave or p-wave pairing, as
Δμ
k � Reðeiðϕ1�ϕ2ÞwkÞnμ, which preserves the time-reversal sym-

metry and breaks the U(1)c × U(1)v × SO(4) symmetry down to
ZF
2 ´Uð1Þv ´ SOð3Þ. The nodal line lies along the direction set by

ϕ1−ϕ2, which breaks the C3 rotational symmetry. So the nodal
superconductor also has a “nematic” (orientational) order.50,51 As
the Fermi surface is not fully gapped, the nematic superconductor
is not topological and has no protected edge mode. Apart from
strong coupling, explicit breaking of C3 rotation symmetry could
also favor nematic superconductivity.

Slater insulator and valley order
When the Fermi surface is tune to optimal nesting, the strong
nesting instability could lead to the condensation of the IVC order
parameter Iμ at the nesting momentums, which drives the system
into the IVCW phase. In the weak coupling approach, the IVCW
and the TSC order compete for the Fermi surface density of state.
Here we provide a mean-field theory calculation that captures
both competing orders and gives a rough estimate of the overall
structure of the phase diagram. We start with the mean-field
Hamiltonian HMF that incorporates the order parameters of both
the IVCW I0Q and the TSC Δ0

k (which are restricted to the singlet
channel without loss of generality given the SO(4) symmetry),

HMF ¼ H0 þ gIHI þ gΔHΔ;

HI ¼
P
Q;k

I0�Q cyKkþQcK 0k þ h:c:þ I0�Q I0Q;

HΔ ¼
P
Q;k

Δ0�
k ciKkσ

2cK 0�k þ h:c:� Δ0�
�kþQΔ

0
k ;

(12)

where H0 is taken to be the single-orbital model Eq. (3) and
Q is summed over the three nesting vectors Q1,2,3. gI= gRPA(Q)
and gΔ = avgk,k′∈FSgRPA(k+ k′) are the effective couplings in the

IVC and the pairing channels respectively. Both of them originate
from the RPA corrected coupling gRPA(q) and are expected to scale
together with the interaction strength U= U0= U1. By tracing out
the electron, we obtain the free energy F ¼ �β�1ln Tre�βHMF for
the order parameters I0Q and Δ0

k . (See the Supplementary Material I,
I,I for details about the self-consistent mean-field calculation.) We
find the free energy saddle point solution in the low temperature
limit for different W=U � g�1

I ; g�1
Δ (where W is the band width)

and different chemical potentials μ. This allows us to map out the
mean-field phase diagram (in the zero temperature limit) as
shown in Fig. 1. As we tune the twist angle towards the magic
angle, the band gets flatten and the effective coupling increases.
The TSC phase will first appear at low temperature. With stronger
coupling, the IVCW phase will emerge around the optimal nesting
and gradually expand to a wider range of chemical potential.
As we fix the couplings at gI= 0.8 and gΔ= 0.4 (the energy unit

is set by the band dispersion in H0), assume that the optimal
nesting is around μ= 1 (such that the nesting momentum is
jQj ¼

ffiffiffiffiffi
3μ

p
� 1:73), and take the anisotropy parameter to be α=

1/3, we can obtain a mean-field phase diagram (for finite
temperature) as shown in Fig. 6 (by solving the free energy
saddle point equations). The fermilogy at different representative
points in the phase diagram are shown in Fig. 6. In the metallic
phase, the Fermi surface consists of electron pockets around K and
K′ valleys (drawn together). In the TSC phase, the Fermi surface is
gapped by the inter-valley pairing with the pairing form factor
shown in color (following Fig. 5b). The pairing can be either chiral
or helical within the mean-field theory. In the IVCW phase, the K′
pocket (in light red) is shifted away from the K pocket (in light
blue) by the three nesting vectors Q1,2,3. Deep in the IVCW phase,
the Fermi surface can be fully gapped. In between TIVCW and Tins,
small (reconstructed) hole or electron pockets remain on the
Fermi level. However, using the single-orbital model Eq. (3) as the
starting point, we have lost track of the notion of the Moiré
Brillouin zone (MBZ) and we can not tell if the nesting vector Q is
commensurate with the Moiré lattice or not.
To further investigate the commensurability of the nesting

vector and the corresponding filling of IVCW state, we have to fall
back on the continuum model Eq. (1) for H0, such that the MBZ can
be referred. We would like to explore if the IVCW order can fully
gap out the Fermi surface and lead to an insulator. We will first
focus on the commensurate IVCW order. From the shape of the

Fig. 6 Mean-field phase diagram in the vicinity of f=−1/2 and at
finite temperature. TSC topological superconductor, IVCW inter-
valley coherence wave. The TSC appears below Tc around the IVCW
insulator on both the hole and electron doped sides, with a d+ id
and p−ip mixed inter-valley pairing. The IVCW order on sets at the
temperature TIVCW and becomes strong enough to full gap out the
Fermi surface below Tins. On the hole doping side, the metallic IVCW
phase has a single hole pocket with twofold spin degeneracy. The
transition temperatures Tc and TIVCW are correlated since they arise
from the same interaction gRPA
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Fermi surfaces in Fig. 2a, the nesting vectors are most likely to be
commensurate if they connect the ΓM point to the MM points in
the MBZ. With this, we consider the IVCW order where the valley
fluctuations simultaneously develops at the three MM points in the
MBZ (corresponding to the nesting vector Q1= q2−q1/2 and its C3
related partners Q2,3).
The commensurate IVCW order breaks both the U(1)v × SO(4)

symmetry and the translation symmetry. It leads to a 2 × 2
modulation on the Moiré lattice as demonstrated in Fig. 7a. As the
unit-cell is enlarges to four Moiré sites, the Brillouin zone will be
reduced to 1/4 of the MBZ, as illustrated in Fig. 7b. The lower
branch of the band (from charge neutrality to the band bottom)
will be folded to eight bands in the reduced Brillouin zone (rBZ),
which consist of four folded bands for each valley. As we turn on
the IVCW order to mix the K and K′ valleys together, a full gap
opens between the third and the fourth bands (counting from
bottom) as shown in Fig. 7c, d. Counting from the charge
neutrality, this corresponds to the filling f=−5/8, but not the
filling f=−1/2 as one may expect. In fact, the −1/2 level lies in the
continuum above the IVCW gap, as indicated in Fig. 7c, d. At the
filling −5/8, the system becomes an IVCW ordered band insulator,
which may be called a Slater insulator (to be distinguished from
the Mott insulator). There is a simple geometric picture to explain
the seemly strange −5/8 filling. In the ideal case, if we consider
the K and K′ pockets to be straight triangles connecting the MM

points, illustrated as the dashed lines in Fig. 7b, the nesting will be
perfect at the desired MM momentum and the corresponding
filling is indeed −5/8 by counting the areas of the triangles.
Therefore, although the commensurate IVCW order can lead to a
fully gapped insulator, but the filling of the insulator has a 1/8
deficit from the −1/2 filling. We also checked that if the ordering
momentum is changed to the ΓM or KM point momentum, no gap
opening is observed with weak to medium IVCW order. While the
−5/8 filling sounds peculiar, we note that in a recent experiment52

of tBLG, separate quantum oscillations (Landau fans) are observed
to emerge from f=−1/2 and f ≈−0.6, the later of which is closer
to f=−5/8=−0.625, although more evidences are still needed to
verify or falsify this insulating state as a commensurate IVCW state.
However, if we go beyond the commensurate nesting and relax

the nesting vector from the MM momentum, it is possible to
obtain an incommensurate IVCW insulator for a range of fillings
around −5/8, including the −1/2 filling typically, as long as the
nesting condition is good. Another possibility is that the band
structure may receive self-energy corrections from the interaction

in such a way that the −1/2 filling Fermi surface turns out to admit
good commensurate nesting. But in either picture, the −1/2 filling
is not special compared to other fillings in terms of forming a
Slater insulator, which still does not provide a natural explanation
for the specific filling of the Mott insulator. This suggests that the
Mott insulator in the tBLG might be a strongly correlated phase
beyond the weak coupling picture like Fermi surface nesting. In
this case, a strong coupling approach is required to understand
the observed Mott insulator at precisely −1/2 filling. Below we
discuss a scenario of Mott insulator that naturally arise from
quantum disordering the adjacent superconducting phase by
double-vortex condensation.53–57

Mott insulator and topological order
One approach towards a strong-coupling Mott state is to start
from the adjacent superconducting state and then suppress the U
(1)c charge fluctuation by proliferating double vortices of the
superconductivity (SC) order parameter (or equivalently 2π fluxes
seen by the electron).53–57 Single vortices of the SC order
parameter become anyonic excitations in the resulting Mott state,
such that the Mott phase acquires intrinsic topological order.58,59

In this approach, the nature of the topological order in the Mott
phase will be closely related to the nature of the SC order in the
adjacent SC phase. Here we assume that the nature of the SC
order will remain qualitatively the same as we increase the
interaction strength from the weak-coupling to the strong-
coupling regime. This assumption is consistent with the past
experience of unconventional superconductors including cuprates
and iron-pnictides.60 Assuming this, we can take the SC orders
obtained from the weak-coupling approach as input to provide us
with more insights about the possible orders in the Mott phase.
On the field theory level, this amounts to first fractionalizing the

electron cvσ into a bosonic parton b and a fermionic parton fvσ as
cvσ= bfvσ following a slave-boson approach,61–64 where v= K, K′
labels the valley and σ= ↑,↓ labels the spin. Both bosonic and
fermionic partons couple to the emergent gauge field. We assign
the U(1)c symmetry charge to the bosonic parton and the U(1)v ×
SO(4) symmetry charge to the fermionic parton, in close analogy
to the spin-charge separation in cuprates.65–67 The fermionic
parton is assumed to be in one of the SC state, such that once the
bosonic parton condenses, the electronic SC state will be
recovered. As we go from the (electronic) SC phase to the Mott
phase, the bosonic parton is expected to acquire a gap across the
transition, such that the charge fluctuations will be gapped and
the U(1)c symmetry will be restored in the Mott phase. Then the
fermionic parton SC state essentially becomes a (generalized
version of) quantum spin liquid with intrinsic topological order
and symmetry fractionalization68–72 of valley and spin quantum
numbers. Hence such a Mott state may be called a valley-spin
liquid (VSL). Different types of SC states correspond to different
types of Mott states, as summarized in Table 2. On the other hand,
charge doping the VSL states will drive the bosonic parton
condensation 〈b〉 ≠ 0, which identifies the fermionic parton fvσ

Fig. 7 a A 2 × 2 pattern on the Moiré lattice (little hexagons
represent the AA stacking regions). The enlarged unit-cell is
highlighted. b The reduced Brillouin zone (rBZ) compared to the
Moiré Brillouin zone (MBZ). c The band structure of the IVCW state
below neutrality. d The corresponding density of state (DOS) shows
a full gap at filling −5/8

Table 2. Possible Mott states originated from adjacent SC states

SC phase Mott phase

Type Pairing State Symmetry

chiral d+ id SO(8)1 VSL U(1)c × U(1)v × SO(3)

p− ip SO(4)−1 VSL

helical d ± id Z2 VSL+ BSPT Uð1Þc ´Uð1Þv ´Uð1Þs ´ZT
2

p∓ ip Z2 VSL (SET)

nematic d or p gapless Z2 VSL+
nematic order

Uð1Þc ´Uð1Þv ´ SOð3Þ ´ZT
2 ;
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with the electron cvσ= 〈b〉fvσ, and converts the topological order
back to the corresponding SC order. So the correspondence
between the SC states and the Mott states in Table 2 are mutually
consistent.
The chiral VSL sate can be viewed as the d+ id (or p−ip) chiral

TSC state of the fermionic parton, which enjoys the SO(8)1 (or SO
(4)−1) topological order.73 They admit Abelian Chern-Simon
theory74–78 descriptions LCS ¼ 1

4π KIJa
I ^ daJ with the K matrices

given by

KSOð4Þ�1
¼

�2 0

0 �2

� �
; KSOð8Þ1 ¼

2 �1 �1 �1

�1 2 0 0

�1 0 2 0

�1 0 0 2

2
6664

3
7775: (13)

Both topological orders have four anyon sectors, labeled by 1, e, m
and ε. In the SO(4)−1 topological order state, e and m anyons are
semions: one carries spin-1/2 (the projective representation of SO
(3)) and no valley charge (the U(1)v charge), the other carries valley
charge ±1 and spin-0. They fuse to the fermionic spinon that
carries both spin-1/2 and valley charge. This symmetry fractiona-
lization pattern can be infer from the fact that the π-flux core in
the p−ip TSC traps 4 Majorana zero modes χ1,2,3,4, which splits into
two sectors (differed by fermion parity) under the four-fermion
interaction H= Vχ1χ2χ3χ4, and the U(1)v and SO(3) acts separately
in either one of the sectors.79 After gauging the fermion parity, the
two sectors are promoted to e and m anyons respectively. In the
SO(8)1 topological order state, e, m, ε are all fermions. m carries no
symmetry charge (because now the π-flux core traps 8 Majorana
zero modes, which can be trivialized by the interaction in the even
fermion parity sector), but e carries the same symmetry charges as
the fermionic spinon ε. The chiral VSL states are characterized by
their non-trivial chiral central charges: c=−2 for SO(4)−1 and c=
4 for SO(8)1. In the ideal case, the chiral central charge can be
detected from the thermal Hall conductance as
κH ¼ cπk2BT=ð6�hÞ.

80–82

Now we turn to the helical VSL states, corresponding to the
helical TSC states of fermionic partons. Both the d-wave and the p-
wave parton TSC states lead to the Z2 topological order (described

by the K matrix KZ2 ¼
0 2
2 0

� �
).83 Their difference lies in a

topological response of the U(1)v × U(1)s symmetry, which might
be called the valley-spin Hall conductance σvsH, defined as the
coefficient in the following the effective response theory84–86

L½Av ;As� ¼
σvsH

2π
Av ^ dAs; (14)

where Av and As are the background fields that probe the U(1)v × U
(1)s symmetry. The Z2 topological order have four anyon sectors:
1, e, m and ε, where e and m are bosons with mutual-semionic
statistics, and they fuse to the fermionic parton ε. For the p-wave
helical VSL, e and m must separately carry either the U(1)v or the U
(1)s symmetry charge, and ε carries both charges. The mutual-
semionic statistics between e and m implies that the p-wave
helical VSL state will have a fractionalized valley-spin Hall
conductance σvsH=−1/2. Moreover, because the fermionic
spinon ε is a Kramers doublet T 2 ¼ �1

� �
under the time-

reversal symmetry, it must be the case that one of e or m is a
Kramers doublet and the other one is a Kramers singlet
T 2 ¼ þ1
� �

, such that the time-reversal anomaly vanishes.87,88

So the p-wave helical VSL state is a Uð1Þv ´Uð1Þs ´ZT
2 symmetry

enriched topological (SET) state.89–91 For the d-wave helical VSL, m
can be charge neutral and Kramers singlet, whereas e and both
carry the U(1)v × U(1)s charge and are Kramers doublet. This can be
viewed as a trivial Z2 topological order on top of a U(1)v × U(1)s
bosonic symmetry protected topological (BSPT) state.77,92–97 The
Z2 topological order can be removed by condensing the charge

neutral boson m. Then the Mott insulator simply realizes a U(1)v ×
U(1)s BSPT state with quantized valley-spin Hall conductance σvsH
= 1.
Finally, if we start with the nematic superconductor, the

corresponding Mott state will be a gapless Z2 VSL with nodal
fermionic partons and gapped visons.50 The symmetry of this VSL
state is Uð1Þc ´Uð1Þv ´ SOð3Þ ´ZT

2 . Like the nematic superconduc-
tor, the C3 rotation symmetry is still broken in the VSL state, so
there will be a coexisting nematic order in this Mott insulator.
In all cases, the emergent SO(4) symmetry is broken in the Mott

phase. But the remaining symmetry is still sufficient to protect a
two-fold degeneracy of the electron. For the chiral VSL, the
electron transforms (projectively) as spin-1/2 (spinor representa-
tion) of the SO(3) symmetry. For the helical VSL, the electron forms
Kramers doublet under the time-reversal symmetry. For the
nematic VSL, both SO(3) and time-reversal protections are present.
The symmetry protected two-fold degeneracy in the valley-spin
space is consistent with the experimentally observed Landau fan14

near the Mott phase with the filling-factor sequence 2; 4; 6;…
Consider for example, the spin singlet VSL phase, which is
connected to the spin singlet chiral superconductor. Here, spin
degeneracy is present, and although valley remains a good
quantum number, since the phase itself breaks time reversal
symmetry, the degeneracy between opposite valleys is lost.
Although it is hard to estimate the strength of this effect, the
symmetry dictated degeneracy is just twofold.

Breaking SO(4) symmetry
Both the IVCW and the TSC phases break the emergent SO(4)
symmetry, as their order parameters Iμ and Δμ are SO(4) vectors.
The four (complex) components of the order parameters
correspond to the orderings in the spin-singlet and the spin-
triplet channels, which are degenerated in the presence of the SO
(4) symmetry. However, the SO(4) symmetry is never exact in
reality. The explicit SO(4) symmetry breaking can split the
degeneracy. We will analyze the effects of the SO(4) symmetry
breaking in the following.
We first consider the Heisenberg spin-spin interaction between

valleys,

HJ ¼
X
q

JðqÞSKq � SK 0�q; (15)

where Svq ¼
P
k
cyvkþqσcvk (for v= K, K′) is the spin operator. The J

(q) < 0 (or J(q) > 0) case corresponds to the Hunds (or anti-Hunds)
interaction. It belongs to the (1,1) representation (the symmetric
rank-2 tensor) of the SO(4)≃ SU(2)K × SU(2)K′ group, which locks
the two SU(2) subgroups together and breaks the SO(4) symmetry
down to SO(3). The interaction HJ admits decompositions in the
IVC and the pairing channel as

HJ ’ 1
8

P
k;q

JðqÞð�3Δ0y
kþqΔ

0
k þ Δy

kþq � ΔkÞ þ � � � ;

’ 1
8

P
q0 ;q

JðqÞð�3I0yq I0q þ Iyq � IqÞ þ � � � ;
(16)

where Δ0 and I0 are the spin-singlet orderings (as SO(3) scalar),
and Δ and I are the spin-triplet orderings (as SO(3) vector).
Depending on the sign of the inter-valley Heisenberg interaction J
(q), the spin-triplet (or spin-singlet) pairing is favored if the
interaction is Hunds (or anti-Hunds) like. If we assume an anti-
Hunds interaction (i.e., J(q) > 0), then according to Eq. (16), the
interactiont will provide attractive interactions for both the IVC
and the pairing in the spin-singlet channel. The anti-Hunds
interaction could arise from the renormalized Hubbard interaction
by integrating out high energy electrons as proposed in ref. 21,98.
Note that the spin-singlet TSC can only be a chiral TSC as
discussed in Sec. IID previously. However, if the inter-valley
interaction turns out to be Hunds like, the spin-triplet pairing
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could also be favored, which admits both chiral and helical TSC.
The possibilities are summarized in Table 3.
However, if the SO(4) symmetry breaking is implemented in the

IVC channel, the result can be very different. Suppose we consider
the following enhanced attraction (i.e., g(q) < 0) in the I0 channel,
so as to single out the spin-singlet IVCW order. The same
interaction would be translated into the pairing channel as

HJ ¼
P
q
gðqÞI0yq I0q

’ 1
2

P
k;q

gðqÞðΔ0y
�kþqΔ

0
k � Δy

�kþq � ΔkÞ þ � � � ;
(17)

which is also an attractive interaction in the spin-singlet pairing
channel Δ0 (note that g < 0). In contrast to Eq. (5), only the I0yI0

interaction is involved in Eq. (17), which completely changes the
interaction sign in the singlet pairing channel. Under the RPA
correction, g(q) peaks strongly around the nesting momentums
q=Q1,2,3, thus the attractive interaction between Δ0

k and Δ0
�kþQa

effectively reduces the energy gain in the singlet channel, due to
the sign-changing TSC pairing form factor (i.e., Δ0

k ¼ �Δ0
�kþQa

).
Therefore a slightly enhanced attractive interaction in the spin-
singlet IVCW channel will actually suppresses the spin-singlet TSC
pairing and favors the spin-triplet TSC pairing, as summarized in
Table 3. The spin-triplet TSC can be either chiral or helical as
discussed Sec. IID previously. Although HJ in Eq. (16) and Hg in Eq.
(17) are both SO(4) symmetry breaking terms in the (1,1)
representation that favor the singlet IVCW order, yet their effects
on splitting the singlet-triplet degeneracy in the TSC channel is
completely opposite. This has to do with the fact that under the
RPA correction, the interaction HJ in the spin channel is not
sensitive to the nesting effect, but the interaction Hg in the valley
channel exhibit a strong nesting effect. This results in very
different momentum-dependence of their coupling functions (J(q)
or g(q)), which finally divide the fate of the singlet-triplet splitting.
The competition between these two symmetry breaking effects
demands further analysis by more refined approach such as the
functional renormalization group,99,100 which will be left for future
works.101

Finally, we would like to comment on the connection to ref. 21,
where the valley XY interaction Hg in Eq. (17) was considered to be
the dominant interaction in the tBLG. In this case, the emergent
SO(4) symmetry is strongly broken. The effective attraction in the
spin-singlet pairing channel can simply drive the s-wave valley-
symmetric spin-singlet pairing, which then leads to a nontopolo-
gical superconductor as in, 21. Therefore, whether the super-
conductivity in the tBLG is topological or not could sensitively
depend on the form and the strength of the SO(4) symmetry
breaking interactions, as summarized in Table 3.

Effect of electric field
Within the framework of the weak coupling theory, we can further
consider the effective of a vertical electric field. In the continuum
model, turning on the electric field amounts to introducing a
potential difference between the layers,

HK ! HK þ V
X
kl

ð�ÞlcyKlkcKlk : (18)

As the time-reversal symmetry T remains unbroken under the
electric field, the K′ valley Hamiltonian HK 0 ¼ T HKT �1 is still
related to that of the K valley HK by the time-reversal operation.
We will focus on the band structure around the K valley. Figure 8
shows the effect of the electric field on the band structure and the
Fermi surfaces for the cases of (a) V= 0.2vF|qa| and (b) V= 0.6vF|
qa|. One can see that the Fermi surface is distorted as the electric
field shifts the Dirac cones at KM and K 0

M relative to each other in
energy (as they originated from the top and the bottom layers
respectively).
We can follow the procedure described in Sec. IIA to extract the

effect of the vertical electric field in the single-orbital model.
However a symmetry analysis already suffices to determine the
more relevant deformation of the Fermi surface. Given that the
electric field breaks the My:k+→k− mirror symmetry and preserves
the C3:k+→e2πi/3k+ rotational symmetry, new terms can be added
to the single-orbital model Eq. (3) as

ϵk ! ϵk þ α0Im k3þ þ α00Im k6þ þ � � � : (19)

The α′ and α″ terms describes the rotation and deformation of the
Fermi surface as shown in Fig. 8 a for weak field. If the electric field
is of the same order of the band width, the Fermi surface could be
strongly deformed as in Fig. 8b, which goes beyond the
perturbative description of Eq. (19).
As a consequence of the Fermi surface deformation, the Fermi

surface nesting between K and K′ valley will be suppressed by the
electric field, therefore both the IVCW and the SC instability should
reduce with the electric field. However as the deformation effect
α″ enters at a higher order perturbation, one expects that nesting-
driven orders remains insensitive to weak electric field, until the
interlayer electric potential difference V reaches the order of the
band width. Additional effects of interlayer electric field such as
modulation of substrate effects due to the vertical displacement of
the 2D electron gas can also play a role, and were not included in
this analysis.

Table 3. Orders favored by different interactions (marked by √)

IVCW TSC s-SC

interaction I0 I Δ0 Δ Δ0 Δ

SO(4) symmetric ✓ ✓ ✓ ✓

+SK · SK′ ✓ ✓

−SK · SK′ ✓ ✓

−I0†I0 weak ✓ ✓

strong ✓ ✓

IVCW inter-valley coherence wave, TSC (inter-valley) topological super-
conductivity (d+ id/p−ip-wave), s-SC (inter-valley) s-wave superconductiv-
ity. I0 and Δ0 are in the spin-singlet channel, I and Δ are in the spin-triplet
channel

Fig. 8 Band structure (left panel) and the equal-filling Fermi surfaces
(right panel) in the Moiré Brillouin zone around the K valley in the
presence of vertical electric field, for (a) weak field and (b)
intermediate field. The f=−1/2 filling level is marked out as dashed
lines in the band structure plot and as thick lines in the Fermi
surface contour
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DISCUSSION
In summary, we presented a weak coupling analysis of valley
fluctuation mediated superconductivity in twisted bilayer gra-
phene. We started with a momentum space formalism of the low-
energy effective Moiré band structure, so as to circumvent the
obstruction to constructing valley symmetric Wannier tight binding
models. We identified the triangular (three-fold) anisotropy of the
Fermi surface is a universal feature of the Moiré band structure
around the charge neutrality, as it is the lowest-order distortion
that is consistent with all the lattice symmetries. The Fermi surface
anisotropy has important implications. The triangular shape of the
Fermi surface allows a unique nesting between the parallel triangle
sides of opposite valley Fermi pockets. This leads to enhanced
valley fluctuations near half-filling, which in turn can provide the
pairing glue which is demonstrated using the RPA.
By solving the pairing gap equation with the RPA corrected

interaction, we obtain the leading pairing instability in the inter-
valley channel with a d+ id and p−ipmixed pairing form factor. The
mixing between the d-wave and p-wave pairing is generic, because
with triangular anisotropy, and the remaining C3 symmetry, the
angular momentum of the electron is only conserved modulo three,
so there is no distinction between d+ id and p−ip on symmetry
ground. Further taking spin into account, one obtains both spin
singlet and triplet chiral superconductors, parameterized by a four-
vector nμ, where the μ= 0 component corresponds to the spin-
singlet. Additionally, helical pairing orders were also discussed,
parameterized by two orthogonal nμ vectors.
We emphasized the approximate SO(4) spin-valley symmetry.

The naive SU(4) symmetry of four component electrons in valley-
spin space is broken by the Fermi surface distortion which is
opposite between the two valleys, leading to U(1)v × SO(4)
symmetry. The SO(4) symmetry allows us to discuss the spin-
singlet and spin-triplet pairings on equal footing, and nμ

transforms as an SO(4) vector. This degeneracy is lifted by SO(4)
breaking perturbations and we argued that a Hunds (anti-Hunds)
interaction, i.e., an inter-valley ferromagnetic (antiferromagnetic)
spin interaction favors spin-triplet (spin-singlet) pairing, which can
be probed by studying the response to a Zeeman field. The
presence of an approximate SO(4) symmetry could still have
observable consequences which would be interesting to explore
further. For example, if the SO(4) breaking is not too strong, a
Zeeman field would tune a transition between singlet and triplet
superconductors at low temperatures. Thus twisted bilayer
graphene may provide an opportunity to study different SC
phases and the phase transitions between them.
We propose two scenarios for the insulating phases. First, pushing

to stronger interactions we see that inter valley coherence order can
develop at the nesting vectors. The close commensurate wavevec-
tors are the three M points corresponding to (0, π), (π, 0) and (π, π) at
the midpoint of the triangular lattice Brillouin Zone edges. The
simultaneous condensation of IVC order at these three wavevectors
leads to a Slater insulator, although in our model a full gap obtains
slightly below half filling at f ¼ � 1

2 � 1
8. Future work should establish

if a more complete treatment of interactions changes this
conclusion. Nevertheless, other aspects of the phenomenology
appear promising. For example, on hole doping the IVCW insulator,
a single Fermi pocket appears, with two fold degeneracy (see Fig. 6).
This agrees with the observed quantum oscillation experiments on
the hole doped side of the Mott insulator below neutrality, where a
Landau fan degeneracy in multiples of two was observed. As with
superconductivity, the SO(4) symmetry implies a degeneracy
between spin singlet and spin triplet IVCW orders, the latter being
a kind of spin density wave. The same Hunds (anti-Hunds) SO(4)
breaking interaction also picks out the spin-triplet (spin-singlet)
IVCW order.
In ref. 13, superconductivity was found to coexist with the

insulating phase, i.e., superconducting puddles form even at half

filling and establish a phase coherent state at very low
temperatures. Assuming the orders are not spatially segregated,
this places constrains on the possible pairs of order parameters
which are likely not to destroy each other immediately.102,103 In
fact, the spin singlet IVCW order parameter and the spin singlet
TSC order parameter anticommute with each other, therefore they
are allowed to coexist in general (although they may compete for
Fermi surface density of state on the level of energetics). In
contrast, a triplet IVCW order will serve as a pair breaking order
with respect to the singlet TSC order, such that it will rapidly
destroy superconductivity. As with superconductivity, a Zeeman
field may stabilize the spin triplet IVCW at reduced temperatures,
which would be interesting to explore in future experiments.
Similarly, the spin triplet IVCW and superconducting orders are
mutually compatible. The common origin of superconductivity
and IVCW order implies that their transition temperatures should
scale together if interactions are enhanced. Both orders should
also be experimentally testable.
Finally, we have considered in detail topologically ordered Mott

insulators arising from freezing the charge fluctuations in the
candidate superconducting states. We show that condensing
double-vortices in the spin-singlet chiral TSC leads to a chiral
valley-spin liquid state in the Mott phase, where the time-reversal
symmetry is broken spontaneously. Thus the valley degeneracy is
lifted in the Mott insulator, consistent with the two-fold Landau
level degeneracy in the quantum oscillation experiment. The
coexistence of such an insulator with the superconductivity is also
natural, as the two phases only differ by chargeon condensation,
which can form puddles in the presence of inhomogeneity.
Our study already reveals a plethora of orders and their

interrelations on the basis of approximate symmetries as well as
quantum interference effects. Undoubtedly, this just the scratches
the surface of an even richer set of exciting phenomena made
possible in this new experimental platform.
We notice that several related works appear around the same

time. ref. 104 focuses on the nesting among hotspots at the van
Hove energy where the (CDW′, SDW′) and (singlet SC, triplet SC)
orders correspond to the IVCW order Iμ and the inter-valley SC
order Δμ in our notation. ref. 105 points out that a fluctuating O(n)
vector order (with n > 2) is crucial in explaining the emergence of
SC inside the insulating phase.

METHOD
The band structure is calculated by exact diagonalization of the continuum
model Eq. (1), where 120 bands are kept in the calculation. Only the middle
bands are taken to build the effective model. The symmetry analysis of the
interaction is carried out in the Majorana basis. As the electron carries
valley and spin degrees of freedom, the Majorana basis is 8 dimensional.
We systematically classify all the 28 fermion bilinear operators by
enumerating all antisymmetric 8 × 8 matrices. Each representation is
combined with its conjugate representation to form symmetric four-
fermion interactions. We collect all interaction terms constructed in this
way and simplify them to the form of Eq. (4).
The RPA calculation is performed in the zero temperature limit based on

the single-orbital model. The bare susceptibility χ0(q) is calculated from
χ0ðqÞ ¼ 1

4

P
s1 ;s2¼± fs1s2 ðqÞTrðσ000 þ s1σ300ÞAðσ000 þ s2σ300ÞB, where A, B are

two fermion bilinear operators in their matrix representations and the form
factor reads fs1s2 ðqÞ ¼

P
k ΘðEs1 ;kþqÞ � ΘðEs2 ;kÞ
� �

= Es1 ;kþq � Es2 ;k
� �

with
Es;k ¼ k2 � μþ sαðk3x � 3kxk2y Þ at μ= 1, α= 1/3. The momentum summa-
tion is carried out over a disk centered around the origin of the radius |k|=
3. To evaluate the RPA corrected coupling gRPA(q) = g0(1+ g0χ0(q))

−1, we
also need to know the bare coupling g0 in each channel. They are given by
g0= (U0 + U1)/4 in the nc channel, g0= (U1 − U0)/4 in the nv channel, g0=
−U1/12 in the Sv channel, g0=−U0/8 in the Iμ channel, g0= U0/8 in the Δμ

channel, g0= U1/8 in the Δv channel.
The self-consistent mean-field calculation is carried out based on the single-

orbital model. Given the reflection and rotation symmetry, we only need to
solve the mean-field Hamiltonian in Eq. (12) a triangle region 0; 0ð Þ � ðL; 0Þ �
ðΛ=2;

ffiffiffi
3

p
Λ=2Þ with the momentum cut-off Λ= 1.7. The order parameters in
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other regions in the momentum space are related by symmetry transforma-
tions. Within the triangular region, we take a momentum grid of 72
momentum points and solve the mean-field Hamiltonian at each point. The
mean-field saddle point in found by iteratively update mean-field expectation
values. The parameters are taken to be gI= 0.8, gΔ= 0.56. To increase the
stability of the mean-field iteration, we adopt a trick to blur the pairing order
parameter Δ0

k in the momentum space by a Lorentzian kernel with a
characteristic radius of 3 units on the momentum grid.

DATA AVAILABILITY
The dataset generated during and/or analyzed during the current study are available
in the GitHub repository https://github.com/EverettYou/WeakCouplingTBG.
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