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Path to stable quantum spin liquids in spin-orbit coupled
correlated materials
Andrei Catuneanu1, Youhei Yamaji2,3, Gideon Wachtel1, Yong Baek Kim1,4 and Hae-Young Kee1,4

The spin liquid phase is one of the prominent strongly interacting topological phases of matter whose unambiguous confirmation
is yet to be reached despite intensive experimental efforts on numerous candidate materials. Recently, a new family of correlated
honeycomb materials, in which strong spin-orbit coupling allows for various bond-dependent spin interactions, have been
promising candidates to realize the Kitaev spin liquid. Here we study a model with bond-dependent spin interactions and show
numerical evidence for the existence of an extended quantum spin liquid region, which is possibly connected to the Kitaev spin
liquid state. These results are used to provide an explanation of the scattering continuum seen in neutron scattering on α-RuCl3.
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INTRODUCTION
The role of strong interaction between electrons in the emergence
of topological phases of matter is currently a topic of intensive
research. The archetypal example of a topological phase with
strong electron interaction is the quantum spin liquid,1 in which
the elementary excitations are charge-neutral fractionalized
particles. While a lot of progress has been made on the theoretical
understanding of the quantum spin liquid phase, its direct
experimental confirmation has remained elusive despite various
studies on a number of candidate materials.2–6 Significant
progress, however, has recently been made due to the availabilty
of a new class of correlated materials, where strong spin-orbit
coupling leads to various bond-dependent spin interactions,7–9

thus resulting in magnetic frustation. These materials are Mott
insulators with 4d and 5d transition metal elements, which include
iridates and ruthenates10–14 and come in two-dimensional (2D) or
three-dimensional (3D) honeycomb variants. They have been
particularly exciting because they intrinsically have a strong Kitaev
interaction and therefore could potentially realize the Kitaev spin
liquid (KSL) phase—an example of a Z2 quantum spin liquid
where the electron’s spin � 1

2 fractionalizes into two degrees of
freedom: itinerant Majorana fermions and Z2 fluxes.
While the Kitaev interaction (K) in these materials is large, it

competes with symmetry allowed nearest-neighbor (n.n.) sym-
metric off-diagonal (Γ) and Heisenberg (J) spin interactions.15 For
example, in α-RuCl3 (RuCl3), an actively studied KSL candidate,
comprehensive ab initio computations and recent dynamical
studies16,17 suggest that ferromagnetic K and antiferromagnetic Γ
interactions are dominant and comparable in magnitude, while J
is negligible.18–20 The balance of these and additional small further
neighbor interactions causes RuCl3 and other KSL candidates to
magnetically order at low temperature; however, it is still unclear
whether or not the often-large Γ interaction prefers magnetic
ordering. Meanwhile, the community has attempted to revive the
possibility of a KSL in RuCl3 by applying a small magnetic field,

with the effect of entering a potential spin liquid phase with no
magnetization.20

Since a weak magnetic field takes RuCl3 out of the ordered
phase, it lends credence to the idea that the zig-zag phase is
stabilized by small interactions at comparable energy scale to the
magnetic field, such as a 3rd n.n. Heisenberg J3

18–20 term or terms
coming from slight trigonal distortion.21 This calls into question
the role of the Γ interaction. Interestingly, a recent analysis of the Γ
model revealed a macroscopically degenerate classical ground
state.22

In this work we will thus investigate if a model with K and Γ
hosts an extended quantum spin liquid phase. A previous exact
diagonalization (ED) study on a 24-site honeycomb cluster hints
that the ferromagnetic KSL is unstable after perturbing with a
small Γ, but the resulting phase is not orderered.15 On the other
hand, it is known that the KSL is stable upon introducing bond
anisotropy, which is present in real materials as depicted in Fig. 1a.
We indeed find that such anisotropy can extend the KSL phase
between the −K and Γ limits, as shown in Fig. 1b.
We consider the following nearest-neighbor (n.n.) model on a

2D honeycomb lattice:

H ¼
X
γ2x;y;z

Hγ; (1)

where

Hz ¼
X

hiji2z�bond

½KzSzi Szj þ ΓzðSxi Syj þ Syi S
x
j Þ� (2)

and Hx,y are defined similarly with corresponding Kx, y and Γx, y.
Each Hγ represents the n.n spin interactions along one of the
three bond directions, γ= x, y, z. The model is parameterized by
Kz=−(1+ 2aK) cos ϕ, Kx, y=−(1−aK) cos ϕ, Γx, y, z= sin ϕ, with aK
characterizing bond anisotropy. When ϕ= 0, π (i.e., Γγ= 0), this
model reduces to the exactly solvable Kitaev model with the KSL
ground state.
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We have studied this model using a combination of three
different, corroborating, numerical methods: ED on a 24-site
honeycomb cluster, the method of thermal pure quantum
states,23–27 and infinite time-evolution block decimation (iTEBD).
We have first reproduced the earlier work in the isotropic aK= 0
limit, showing a strong first-order transition between −K and Γ
limits (see Supplementary Materials (SM)). We present the
following results using our numerical techniques:

1. When aK ≥ 0.06, we find that the −Kγ (0 ≤ ϕ ≤ π/2) and Γγ (ϕ/
π= 0.5) limits are adiabatically connected as shown in Fig.
1b. Thus we find evidence for an extended quantum spin
liquid phase in the presence of anisotropy, aK.

2. An intervening magnetically ordered phase separates the
spin liquid phase near the pure Γγ limit and the anti-
ferromagnetic KSL at ϕ/π= 1.

3. The specific heat C(T) and entropy S(T) at finite temperatures
suggest a smooth crossover from the ferromagnetic Kitaev
limit to the pure Γγ limit, consistent with our ED results.

4. Zig-zag spin correlations become dominant upon perturb-
ing the quantum spin liquid phase in 0 < ϕ < π/2 by J3,
indicating the enhancement of zig-zag order by J3.

RESULTS
Extended spin liquid state in global phase diagram
The ground state energy per site E0/N of Eq. 1 was computed for
ϕ/π∈ (0, 1), and for different anisotropy parameters by ED on a 24-
site cluster using periodic boundary conditions (see SM).
Discontinuities in 1

N
∂E0
∂ϕ were used to identify possible phase

transitions. Remarkably, when ϕ/π∈ (0, 0.5) and 0 ≤ aK < 0.06,
there is a line of first order phase transitions that terminate at aK
= 0.06. Above aK= 0.06, the first derivative of the energy presents
no sharp features suggesting that the ground state of the Γ-limit
(ϕ/π= 0.5) is adiabatically connected to the ferromagnetic KSL (ϕ/
π= 0) as depicted in Fig. 1b for aK= 0.1.
In the antiferromagnetic region of phase space, there are two

large discontinuities in 1
N
∂E0
∂ϕ that encompass a large region of

phase space separating the Γ-limit and the exactly solvable
antiferromagnetic Kitaev limit at ϕ/π= 1. These peaks coincide
with kinks in E0/N (solid yellow) shown in Fig. 2a. Two smaller
discontinuities can also be seen near ϕ/π= 0.75, however these
are not present when aK= 0, while the larger jumps near ϕ/π= 0.5
and 1 appear consistently for different aK. The small discontinuities
can thus be considered spurious and a consequence of the finite

Fig. 1 a Shorter z-bond leading to stronger Kz and weaker Kx;y interactions, parameterized by aK in Eq. 1. b aK phase diagram of Eq. 1. A line of
first order phase transitions (dashed black line), terminating below aK ¼ 0:06 (black dot), separates the −K and Γ limits. Anisotropy allows the
KSL to be adiabatically connected to the Γ-phase (arrow). Red, green, and blue triangles indicate first-order phase transitions when
aK ¼ 0:0; 0:02, and 0.04 respectively, as seen in N= 18 and 24-site exact diagonalization calculations. A subsequent iDMRG calculation38 has
further corroborated the phase transition labeled by the red triangle

Fig. 2 a Top: E0/N (yellow), 1
N
∂E0
∂ϕ (purple), and � 1

N
∂2E0
∂ϕ2 (light purple) for anisotropy parameter aK ¼ 0:1. Bottom: Sq for anisotropy parameter

aK ¼ 0:1 at Γ (black), M (blue), Y (cyan), K (red), and Γ (green) in the reciprocal lattice (inset). b Representation of Sq, averaged over domains in
a real material, when aK ¼ 0:1 for various ϕ in the phase diagram
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cluster size. Similar finite size effects were also found for ϕ/π∈ (0,
0.5) when aK= 0, as discussed in the SM.

Magnetic order and perturbations
The ground state wavefunction of Eq. 1 computed by ED is used
to evaluate real-space spin–spin correlation functions hSi � Sji;
where i and j are site indices on the honeycomb lattice. By Fourier
transform, we obtain the static structure factor (SSF) given by
Sq ¼ 1

N

P
i;j e

iðri�rjÞ�qhSi � Sji; where q is a vector in the reciprocal
lattice. The SSF at various points in the Brillouin zone (BZ) is
plotted over the phase space in the bottom panel of Fig. 2a.
The discontinuities in the SSF can be directly matched with

those in 1
N
∂E0
∂ϕ . Visualizations of the SSF over the BZ for

representative ϕ in the phase diagram are presented in Fig. 2b.
The SSF in Fig. 2b is obtained by computing the average of hSi � Sji
over all n.n. bonds, 2nd n.n., etc. This calculation reflects the
presence of different domains in the crystal, in which either of x, y,
z bond interactions can be stronger and thus, over the whole
crystal, these domains result in an isotropic Sq despite the inherent
bond anistropy in Eq. 1. The SSF varies adiabatically when aK= 0.1
for ϕ∈ (0, π/2) and the spin correlations at the Γ-points and M-
points are comparable in intensity when Γ ’ Kγ , leading to a
“star”-shaped structure in the SSF as seen in Fig. 2b (e.g., ϕ/π=
0.2). The extended phase separating ϕ/π= 0.5 and 1 is
characterized by dominating spin correlations at the K-points
and Γ′-points in the reciprocal lattice (ϕ/π= 0.75 in Fig. 2b).
Contained within this phase is the exactly solvable point with
hidden SU(2) symmetry at ϕ/π= 0.75, which features K-point
correlations28 consistent with the results presented here. Thus the
extended spin liquid phase for ferromagnetic K is separated from
the antiferromagnetic KSL at ϕ/π= 1 by a magnetically ordered
phase.
These results can be connected to real materials, particularly

RuCl3 in which a zig-zag magnetic ordering has been observed.29–
31 Previous studies have shown that in addition to the n.n.
ferromagnetic Kitaev and antiferromagnetic Γ interactions, a 3rd n.
n. antiferromagnetic Heisenberg interaction J3

P
hhhi;jiii Si � Sj is

non-vanishing and plays a role in determining the magnetic
ordering in RuCl3.

18,19 Figure 3 shows that the effect of perturbing
Eq. 1 by J3 is to enhance (suppress) the M-point (Γ-point) spin
correlations, consistent with a zig-zag magnetically ordered state
observed in experiments. This result indicates that by tuning J3 in
the real material, an alternate path to achieve a spin liquid phase
may be realized.

Specific heat and thermal entropy
Previous study on the finite temperature properties of the Kitaev
model has shown that KSLs feature two peaks in the heat capacity
C(T) and a 1

2� plateau in the entropy S(T), which is attributed to
the thermal fractionalization of spin degrees of freedom.32 Here
we go beyond the Kitaev limit and investigate the heat capacity
and entropy at finite temperature in the presence of Γ, which is
expected to compete with Kγ in RuCl3, using the method of
thermal pure quantum states (see SM).
The dependence of C(T) on ϕ when aK= 0.1 is plotted in the top

panel of Fig. 4. The expected two peak structure in C(T) is
observed when ϕ/π= 0, and is seen to be maintained continu-
ously as ϕ/π approaches 0.5 so that the Γ-limit shows a
qualitatively similar behavior in C(T) to the KSL. Evidence for a
phase transition can be seen when ϕ ≳ 0.7 on account of the
abrupt change in C(T), resembling that of the heat capacity in
trivially ordered phases.33 This finding is consistent with our ED
results and the 120-order at ϕ/π= 0.75 seen in refs. 15 28. The

Fig. 3 SSF at the Γ-points (black) and M-points (blue) in the BZ for small J3. Solid and dashed curves correspond to ϕ/π= 0.5 and 0.2,
respectively. The inset shows the dramatic change in the relative intensity at the Γ-points and M-points for small J3 > 3

Fig. 4 Results of the method of thermal pure quantum states on a
24-site cluster with anisotropy parameter aK ¼ 0:1. Plotted in solid
curves are the temperature dependence of heat capacity C(T) (top)
and entropy S(T) (bottom) for various ϕ in the phase diagram. The
shaded regions represent the estimated errors on the results. The

temperature Γ is expressed in units, where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKz=ð1þ 2aK ÞÞ2 þ Γ2z

q
=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðKx;y=ð1� aK ÞÞ2 þ Γ2x;y

q
= 1
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dependence of S(T) on ϕ is plotted in the bottom panel of Fig. 4
with a clear 1

2� plateau observed when ϕ/π= 0, consistent with
the expected KSL behavior. In addition, a plateau of about 1/5 the
total entropy is observed when ϕ/π= 0.5. Another plateau is
observed in the magnetically ordered phase around ϕ/π= 0.75;
however, this feature can be attributed to finite-size effects as
follows. The (N+ 1)-fold ground state degeneracy at ϕ/π= 0.75
due to the hidden SU(2) symmetry28 is only slightly broken away
from this point, inducing a plateau in S(T) with height given by
ln ðN þ 1Þ=N ln 2 ’ 0:1935 � 1=5 when N= 24. By contrast, the
height of the plateau around ϕ/π= 0.5 is independent of N. (The
height of the plateau in the temperature dependence of entropy
is also examined by using a 32 site cluster).
The physical origin of the two peak structure in C(T) and the

plateau in S(T) can be traced to the energy scales of the thermal
fluctuations of the underlying quasiparticles in the spin liquid.32 In
the KSL at zero temperature, the low-lying quasiparticle excita-
tions are characterized by itinerant Majorana fermions which
disperse in a background of zero flux.34,35 It has been shown that
as temperature increases, the flux degrees of freedom begin to
fluctuate and lead to the low temperature peak seen in C(T),
resulting in the plateau seen in S(T). Furthermore, the high
temperature peak in C(T) is attributed to the development of short
range spin correlations.32 Our results show that the two-peak
structure in C(T) is qualitatively maintained and further suggests
that no phase transition has taken place.

Similarities on the infinite tree
We further studied Eq. 1 on an infinite Cayley tree with z= 3
connectivity, using the iTEBD36 (see SM). Classically, the ground
state in the Γ-limit on the infinite tree is macroscopically
degenerate because a different state with the same energy can
be constructed by flipping the sign of one spin component on an
infinite string of neighboring spins. The Γ-limit on the 2D
honeycomb and 3D hyper-honeycomb21 lattices also feature
similar classical degeneracy. The similarity at the classical level of
the Γ-limit on the infinite tree to the 2D and 3D lattices prompts us
to study the quantum model on the infinite tree for further insight.
Figure 5 shows results of the eight-site iTEBD calculation with

bond dimension χ= 10, and anisotropy aK= 0.1. In this calcula-
tion, we have also introduced an anisotropy to Γγ such that Γx= Γy

= (1−aΓ)sin ϕ and Γz= (1+ 2aΓ)sin ϕ in order to apply the iTEBD
method (see SM). No transition is found when ϕ/π∈ (0, 0.5) and
the obtained state is a highly entangled paramagnet, with SE �
0:8 for strong (z) bonds, while for weak (x, y) bonds, SE � 0:4. Deep
in the gapped phase of the Kitaev model, with large anisotropy aK,
one finds SE � log2 � 0:693 for the strong bonds and much
smaller values of SE for the weak bonds. Both, however, increase as
the anisotropy is reduced—perhaps due to a finite contributions
from the Majorana fermions.37 An increase is expected in the
entanglement entropy as one approaches a phase transition,
however no such peaks are seen for 0 < ϕ < π/2. Similarly, there
are no sharp features in the ground state energy E0 as a function
of ϕ, which indicates that this phase is adiabatically connected to
the KSL at ϕ= 0.
There is an apparent first order transition around ϕ= 0.6π into a

Néel state with spins ordered in the (111) direction, accompanied
by a dramatic lowering of SE on both strong and weak bonds into
this region. This Néel state becomes a simple product state when
ϕ/π= 0.75, as seen by the vanishing of SE. A final transition into a
paramagnetic state is seen before the antiferromagnetic Kitaev
limit.

DISCUSSION
The highlight of our numerical results is that, in the presence of
bond anisotropy aK, there exists an extended quantum spin liquid
region which is adiabatically connected to the ferromagnetic KSL.
The model we have studied is motivated by experiments on RuCl3
and earlier ab initio computations.18–20 In a recent inelastic
neutron scattering experiment on RuCl3, it is found that the
continuum of finite energy excitations exists both below and
above the magnetic transition temperature despite that the low
temperature ground state is the zig-zag long-range ordered
state.38 The inelastic neutron scattering data for the continuum
show the star-shape intensity that extends from the zone center
towards the M-points of the BZ.
Recall that the SSF in our ED study shows enhanced (decreased)

short-range spin correlations at the M-point (zone center) of the
BZ as one moves from the ferromagnetic Kitaev limit to the pure
Γγ limit. When the strength of the ferromagnetic Kitaev interaction
and the Γγ interaction become comparable, both of the short-
range spin correlations at the M and the zone center would show
significant intensity, which leads to the star-shape structure in
momentum space. This behavior may be favorably compared to
the finite-energy short-range spin correlations seen in RuCl3. Given
that the ab initio computations suggest comparable magnitudes
of the ferromagnetic Kitaev and Γγ interactions in RuCl3,

18 it is
conceivable that RuCl3 may be very close to the quantum spin
liquid phase found in our model and, as shown in our work, the
introduction of small J3 would favor the zig-zag magnetically
ordered phase observed in RuCl3.
Finally, more analytical understanding of the connection

between the pure Kitaev limit and the quantum spin liquid
phases identified in our numerical work would be extremely
valuable for future applications on real materials. Note that a
possible incommensurate magnetic ordering cannot be ruled out
due to finite cluster size. However, based on the results of a recent
iDMRG study,39 no evidence of incommensurate ordering allowed
by their momentum cuts was found. It is also interesting to note
that quantum fluctuations do not lift the infinite ground state
degeneracy of the classical model for positive Γ, while they may
lead to incommensurate ordering for negative Γ.40 Thus it is likely
that the positive Γ regime studied here possesses a spin liquid
ground state, and the precise nature of the spin liquid is an
excellent topic for future study.

Fig. 5 iTEBD results for small anisotropy aK ¼ aΓ ¼ 0:1, and bond
dimension χ= 10. a Néel order parameter MNéel, and ground state
energy per site, E0/N. b Entanglement entropy SE associated with
splitting the system along the different bonds in the eight-site unit
cell. In most of the phase diagram all the strong z bonds are
identical, and so are all the weak, x and y bonds. In the transition
region near ϕ= 0.6π, the symmetry between like bonds is broken,
perhaps indicating a first order transition. At ϕ/π= 0.75, the
entanglement entropy vanishes since the system is in a product
state. Inset: schematic of Cayley tree with z= 3 connectivity
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METHODS
Our results were obtained using the combination of the three independent
numerical techniques listed below.

Exact diagonalization
Exact diagonalization was performed on a 24-site cluster with periodic
boundary conditions. This cluster allows all the symmetries present in the
infinite honeycomb lattice and has been used reliably in previous related
classical and quantum studies.15,40 The Hamiltonian given by Eq. 1 in the
main text does not have the U(1) symmetry associated with Sz

conservation, making it impossible to block diagonalize into magnetization
sectors. Therefore, the translational symmetry of the 24-site cluster was
used to block diagonalize into different momentum sectors to gain more
information about its energy spectrum. The lowest energies and
corresponding wavefunctions of each block were then numerically
obtained using the Lanczos method. Further details and calculations can
be found in the SM.

Thermal pure quantum states
We used the method of thermal pure quantum states26,27 in our specific
heat and thermal entropy calculations. A part of the TPQ results were
checked by a program package, HΦ.41 Details about the construction of
thermal pure quantum states and the subsequent calculation of specific
heat and entropy can be found in the SM.

Infinite time-evolving block decimation algorithm
The Hamiltonian given by Eq. 1 was studied on an infinite Cayley tree with
z= 3 connectivity using the iTEBD.36 Details about the method and the
construction of the ground state can be found in the SM.

Data availability
All relevant data is available from the corresponding author.

ACKNOWLEDGEMENTS
This work was supported by the NSERC of Canada and the Center for Quantum
Materials at the University of Toronto. Y.Y. was supported by JSPS KAKENHI (Grant
numbers 15K17702 and 16H06345) and was supported by PRESTO, JST. Y.Y. was also
supported in part by MEXT as a social and scientific priority issue (creation of new
functional devices and high-performance materials to support next-generation
industries) to be tackled by using post-K computer. Computations were mainly
performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is
funded by: the Canada Foundation for Innovation under the auspices of Compute
Canada; the Government of Ontario; Ontario Research Fund—Research Excellence;
and the University of Toronto. A part of the TPQ results were checked by a program
package, HΦ. We thank helpful discussions with Frank Pollmann, Matthias Gohlke,
Shunsuke Furukawa, and Subhro Bhattacharjee. We particularly thank Natalia Perkins
and Ioannis Rousochatzakis for informing us of their unpublished ED results on
related models.

AUTHOR CONTRIBUTIONS
A.C. and Y.Y. performed the ED calculations. Y.Y. performed the thermal pure
quantum states calculations. G.W. performed the iTEBD calculations. H.Y.K. and Y.B.K.
supervised the study. All authors contributed to the writing of the manuscript.

ADDITIONAL INFORMATION
Supplementary information accompanies the paper on the npj Quantum Materials
website (https://doi.org/10.1038/s41535-018-0095-2).

Competing interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

REFERENCES
1. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).
2. Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M. & Saito, G. Spin liquid state in an

organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 91, 107001 (2003).

3. Helton, J. S. et al. Spin dynamics of the spin −1
2 Kagome lattice antiferromagnet

ZnCu3(OH)6Cl2. Phys. Rev. Lett. 98, 107204 (2007).
4. Okamoto, Y., Nohara, M., Aruga-Katori, H. & Takagi, H. Spin-liquid state in the S =

1/2 hyperkagome antiferromagnet 6 Na4Ir3O8. Phys. Rev. Lett. 99, 137207 (2007).
5. Yamashita, M. et al. Highly mobile gapless excitations in a two-dimensional

candidate quantum spin liquid. Science 328, 1246–1248 (2010).
6. Han, T.-H. et al. Fractionalized excitations in the spin-liquid state of a kagome-

lattice antiferromagnet. Nature 492, 406–410 (2012).
7. Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin-orbit coupling limit:

from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102,
017205 (2009).

8. Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phe-
nomena in the strong spin-orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57
(2013).

9. Rau, J. G., Lee, E. K.-H. & Kee, H.-Y. Spin-orbit physics giving rise to novel phases in
correlated systems: iridates and related materials. Annu. Rev. Condens. Matter
Phys. 7, 195 (2016).

10. Singh, Y. et al. Relevance of the Heisenberg-Kitaev model for the honeycomb
lattice iridates A2IrO3. Phys. Rev. Lett. 108, 127203 (2012).

11. Plumb, K. et al. α-RuCl3: a spin-orbit assisted Mott insulator on a honeycomb
lattice. Phys. Rev. B 90, 041112 (2014).

12. Kim, H.-S. et al. Kitaev magnetism in honeycomb RuCl3 with intermediate spin-
orbit coupling. Phys. Rev. B 91, 241110 (2015).

13. Modic, K. A. et al. Realization of a three-dimensional spinanisotropic harmonic
honeycomb iridate. Nat. Commun. 5, 4203 (2014).

14. Takayama, T. et al. Hyperhoneycomb iridate β-Li2IrO3 as a platform for Kitaev
magnetism. Phys. Rev. Lett. 114, 077202 (2015).

15. Rau, J. G., Lee, E. K.-H. & Kee, H.-Y. Generic spin model for the honeycomb iridates
beyond the Kitaev limit. Phys. Rev. Lett. 112, 077204 (2014).

16. Ran, K. et al. Spin-wave excitations evidencing the Kitaev interaction in single
crystalline α-RuCl3. Phys. Rev. Lett. 118, 107203 (2017).

17. Wang, W., Dong, Z.-Y., Yu, S.-L. & Li, J.-X. Theoretical investigation of magnetic
dynamics in α-RuCl3. Phys. Rev. B 96, 115103 (2017).

18. Kim, H.-S. & Kee, H.-Y. Crystal structure and magnetism in α-RuCl3: an ab initio
study. Phys. Rev. B 93, 155143 (2016).

19. Winter, S. M., Li, Y., Jeschke, H. O. & Valenti, R. Challenges in design of Kitaev
materials: magnetic interactions from competing energy scales. Phys. Rev. B 93,
214431 (2016).

20. Yadav, R. et al. Kitaev exchange and field-induced quantum spin-liquid states in
honeycomb α-RuCl3. Sci. Rep. 6, 37925 (2016).

21. Rau, J. G. and Kee, H. -Y. Trigonal distortion in the honeycomb iridates: proximity
of zigzag and spiral phases in Na2IrO3. Preprint arXiv:1408.4811 (2014).

22. Rousochatzakis, I. & Perkins, N. B. Classical spin liquid instability driven by off-
diagonal exchange in strong spin-orbit magnets. Phys. Rev. Lett. 118, 147204 (2018).

23. Imada, M. & Takahashi, M. Quantum transfer Monte Carlo method for finite
temperature properties and quantum molecular dynamics method for dynamical
correlation functions.J. Phys. Soc. Jpn. 55, 3354 (1986).

24. Jaklic, J. & Prelovsek, P. Lanczos method for the calculation ofinite-temperature
quantities in correlated systems. Phys. Rev. B 49, 5065 (1994).

25. Hams, A. & De Raedt, H. Fast algorithm for finding the eigenvalue distribution of
very large matrices. Phys. Rev. E 62, 4365 (2000).

26. Sugiura, S. & Shimizu, A. Thermal pure quantum states at finite temperatures
Phys. Rev. Lett. 108, 240401 (2012).

27. Sugiura, S. & Shimizu, A. Canonical thermal pure quantum state. Phys. Rev. Lett.
111, 010401 (2013).

28. Chaloupka, J. & Khaliullin, G. Hidden symmetries of the extended Kitaev-
Heisenberg model: implications for the honeycomb-lattice iridates A2IrO3. Phys.
Rev. B 92, 024413 (2015).

29. Sears, J. A. et al. Magnetic order in α-RuCl3: a honeycomb-lattice quantum
magnet with strong spin-orbit coupling. Phys. Rev. B 91, 144420 (2015).

30. Johnson, R. D. et al. Monoclinic crystal structure of α-RuCl3 and the zigzag anti-
ferromagnetic ground state. Phys. Rev. B 92, 235119 (2015).

31. Cao, H. et al. Low-temperature crystal and magnetic structure of α-RuCl3. Phys.
Rev. B 93, 134423 (2016).

32. Nasu, J., Udagama, M. & Motome, Y. Thermal fractionalization of quantum spins in
a Kitaev model: temperature-linear specific heat and coherent transport of
Majorana fermions. Phys. Rev. B 92, 115122 (2015).

33. Yamaji, Y. et al. Clues and criteria for designing a Kitaev spin liquid revealed by
thermal and spin excitations of the honeycomb iridate Na2IrO3. Phys. Rev. B 93,
174425 (2016).

34. Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2
(2006).

35. Knolle, J., Kovrizhin, D., Chalker, J. & Moessner, R. Dynamics of a two-dimensional
quantum spin liquid: signatures of emergent majorana fermions and fluxes. Phys.
Rev. Lett. 112, 207203 (2014).

Path to stable quantum spin liquids in spin-orbit coupled
A Catuneanu et al.

5

Published in partnership with Nanjing University npj Quantum Materials (2018)  23 

https://doi.org/10.1038/s41535-018-0095-2


36. Vidal, G. Classical simulation of infinite-size quantum lattice systems in one
spatial dimension. Phys. Rev. Lett. 98, 070201 (2007).

37. Kimchi, I., Analytis, J. G. & Vishwanath, A. Three-dimensional quantum spin liquids
in models of harmonic-honeycomb iridates and phase diagram in an infinite-D
approximation. Phys. Rev. B 90, 205126 (2014).

38. Banerjee, A. et al. Neutron scattering in the proximate quantum spin liquid α-
RuCl3. Science 356, 1055-1059 (2017).

39. Gohlke, M., Wachtel, G., Yamaji, Y., Pollmann, F. & Kim, Y. B. Quantum spin liquid
signatures in Kitaev-like frustrated magnets. Phys. Rev. B 97, 075126 (2018).

40. Chaloupka, J., Jackeli, G. & Khaliullin, G. Kitaev-Heisenberg model on a honey-
comb lattice: possible exotic phases in iridium oxides A2IrO3. Phys. Rev. Lett. 105,
027204 (2010).

41. Kawamura, M. et al. Quantum lattice model solver HΦ. Comput. Phys. Commun.
217, 180 (2017).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2018

Path to stable quantum spin liquids in spin-orbit coupled
A Catuneanu et al.

6

npj Quantum Materials (2018)  23 Published in partnership with Nanjing University

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Path to stable quantum spin liquids in spin-orbit coupled correlated materials
	Introduction
	Results
	Extended spin liquid state in global phase diagram
	Magnetic order and perturbations
	Specific heat and thermal entropy
	Similarities on the infinite tree

	Discussion
	Methods
	Exact diagonalization
	Thermal pure quantum states
	Infinite time-evolving block decimation algorithm
	Data availability

	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGMENTS




