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Non-quasiparticle transport and resistivity saturation: a view
from the large-N limit
Yochai Werman1, Steven A. Kivelson2 and Erez Berg1

The electron dynamics in metals are usually well described by the semiclassical approximation for long-lived quasiparticles.
However, in some metals, the scattering rate of the electrons at elevated temperatures becomes comparable to the Fermi energy;
then, this approximation breaks down, and the full quantum-mechanical nature of the electrons must be considered. In this work,
we study a solvable, large-N electron–phonon model, which at high temperatures enters the non-quasiparticle regime. In this
regime, the model exhibits “resistivity saturation” to a temperature-independent value of the order of the quantum of resistivity—
the first analytically tractable model to do so. The saturation is not due to a fundamental limit on the electron lifetime, but rather
to the appearance of a second conductivity channel. This is suggestive of the phenomenological “parallel resistor formula”, known
to describe the resistivity of a variety of saturating metals.
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INTRODUCTION
The tendency for the resistivity of metals to increase with
temperature, T, is generally understood on the basis of Boltzmann
transport theory. In turn, for the requisite distribution function to
be consistent with quantum mechanics, it must be possible to
construct electron wave-packets with well-defined velocities and
positions. Consequently, at best, Boltzmann theory is applicable
only so long as the mean-free-path, ‘, is long compared to the
Fermi wavelength, i.e. ‘ � 2π=kF. There are other conditions for
the validity of Boltzmann theory, such as the Mott-Ioffe-Regel
(MIR) condition ‘ � a, which allows one to ignore interband
scattering. While there is no upper bound on the magnitude of a
metallic resistivity, any time ρ≳ ρB/N (where N is the number of
bands), and it cannot be interpreted in terms of freely propagating
quasiparticles, which are occasionally scattered. Here, ρB signifies a
characteristic resistivity derived from Boltzmann theory
extrapolated to the limit ‘¼ 2π=kF, i.e. ρB = ħ/e2 in d = 2 and
ρB = (4/3)[h/e2kF] in d = 3, while the MIR limit1 corresponds to
ρMIR = had−2/e2.
In practice, many simple metals melt before ρ gets to be as

large as ρB. Of those that reach this value, there are apparently two
distinct classes: (a) Those that exhibit “resistivity saturation,” i.e.
the resistivity becomes decreasingly T dependent as T gets large,
with a value that appears to approach a finite asymptotic limit
at large T. (b) Those “bad metals” (ref. 2) for which ρB does not
appear to be a relevant scale at all, in which the resistivity is
still a strongly increasing function of T even when ρ > ρB.
Understanding bad metallic behavior, and its complement,
resistivity saturation, remains one of the major open problems
in the theory of metals.2–4 Transport regimes beyond the quasi-
particle paradigm have attracted much interest in recent years.5–17

Since its discovery in the 1970s,18–20 several theories have been
proposed to explain resistivity saturation;21–31 however, to this
day, no consensus has emerged. In particular, several key
theoretical issues have not been resolved; for example, in cases

where 2π/kF and a are parametrically different from each other
(as in a weakly doped semiconductor), it is not clear whether the
saturation value of the resistivity corresponds to ‘ � 2π=kF, ‘ � a,
or neither. Empirically, the resistivity of saturating metals is often
well-described by the “parallel resistor” formula,32

ρðTÞ�1 ¼ ρidealðTÞ�1 þ ρ�1
sat ; ð1Þ

with ρideal(T) = ρ0 + γT representing the semiclassical contribution
of disorder and phonon scattering (where ρ0 and γ are constants),
and ρsat the saturation resistivity. This formula suggests the
existence of a parallel conduction channel, which is not affected
by phonon scattering. Moreover, it is typically the case that ρsat ~
ρB ~ ρMIR.
In this paper, we present a tractable microscopic

electron–phonon model with a resistivity that saturates at a value
ρsat that is independent of the strength of the electron–phonon
coupling, but that does depend on the electron density and the
band structure; in that sense, while numerically it is not all that
different from either ρB or ρMIR, conceptually it does not quite
correspond to either. In addition, two distinct conductivity
channels appear: one which continuously decreases with increas-
ing temperature, and another which saturates at high tempera-
tures. This is reminiscent of the parallel resistor formula, Eq. (1). In
this model, the saturation of resistivity is not due to a bound on
the quasiparticle lifetime or its mean free path, but on the
existence of a T-independent phonon-assisted conduction
channel.
Our model consists of N identical electronic bands coupled to

N2 optical (Einstein) phonon modes. As in ref. 33, we consider the
problem in the limit that the dimensionless electron–phonon
coupling (defined in Eq. (7) below) is large, λ≫ 1. This is a
necessary condition to insure that Boltzman transport theory
breaks down at a temperature, TB ~ EF/λ, that is small compared to
the Fermi energy EF. We shall see that at low electron density,
where the bandwidth Λ≫ EF, it is possible to look separately at
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the crossover that occurs at TB and at TMIR ~ Λ/λ, while still
maintaining T≪ EF. There are generically many unwanted
complications, including possible lattice instabilities, associated
with large λ; however, the combination of the large N limit taken
here, and the fact that we are studying phenomena at relatively
high temperatures makes them irrelevant in the present study (In
the electron–phonon coupling, we keep only linear order in the
phonon displacement, and neglect higher-order terms. This is
justified in the large-N limit, since the typical magnitude of the
coupling term to any single phonon mode is α(T/(KN))1/2, which is
smaller than other electronic scales (e.g., EF)). Representative
results for the resistivity as a function of temperature are shown in
Fig. 1.
In order to verify that the behavior we find is not an artifact of

the large N limit, we have performed numerical Monte-Carlo
simulations of the model at finite values of N. The results (see
Fig. 6) confirm that the qualitative behavior of the N→∞ solution
are already apparent for N as small as four.

RESULTS
Model
Our system is composed of N≫ 1 electron bands, which interact
with N2 optical, dispersionless phonon modes, in d spatial
dimensions. The phonons couple to the electron kinetic energy.
In this type of large-N expansion, inspired by the work of
Fitzpatrick et al.,34 the phonon modes act as a momentum and
energy bath for the electrons; thus, it is particularly suitable for
studying the effects of the phonons on the electrons, while
neglecting the back action of the electrons on the phonons.
(This is probably a reasonable assumption in the relevant
temperature range even for “realistic” small values of N).
The action is given by

S ¼ Sel þ Sph þ Sint; ð2Þ
where

Sel ¼
XN
a¼1

X
νn

Z
ddk

ð2πÞd
cyaðk; νnÞ½iνn � ξk�caðk; νnÞ ð3Þ

is the electronic part of the action,

Sph ¼
XN
a;b¼1

X
ωn ;r

Z
ddq

ð2πÞd
1
2
½Mω2

0 þMω2
n�jXr

abðq;ωnÞj2 ð4Þ

is the phononic part, and

Sint ¼ αffiffiffiffiffiffi
βN

p XN
a;b¼1

X
νn ;νm;r

Z
ddkddk′

ð2πÞ2d grðk; k′Þ ´ Xr
abðk � k′; νn � νmÞ

½cyaðk; νnÞcbðk′; νmÞ þ a $ b� ð5Þ
is the electron–phonon interaction term. Here, cyaðk; νnÞ creates an
electron of wavevector k, Matsubara frequency νn, and flavor 1≤
a≤ N; the electronic dispersion is ξk = ϵ(k)−μ(T), with ϵ(k)∈[−Λ/2,
Λ/2] (where Λ is the bandwidth). μ(T) is the chemical potential at
temperature T, and β = 1/T. Xr

abðq;ωnÞ is the Fourier transform of
the phonon displacement operator of flavor a,b and mode r; M is
the ionic mass, and ω0 is the phonon frequency. α is the
electron–phonon coupling strength. The dimensionless form
factor gr (k, k′) satisfies gr (k′, k) = gr (k, k′)*. Throughout the
paper, we set kB, ħ and the lattice spacing a to 1.
For concreteness, we use a d = 2 tight binding model on a

square lattice; we expect the results to be qualitatively insensitive
to this particular choice. We consider a case, where the phonons
couple to the electron bond density (as in the
Su–Schrieffer–Heeger model35). There is one phonon mode
centered on every bond; we label the phonon modes by the
direction of the bond, r = x, y. The electron–phonon coupling term
in the Hamiltonian has the form
αffiffiffiffiffiffi
4N

p
X
a;b;j;r

Xr
ab;jðcya;jcb;jþr þ h:c:þ a $ bÞ; ð6Þ

where j labels lattice sites. This term describes coupling of the
phonon modes to the electron bond density. The corresponding
electron–phonon form factor in Eq. (5) is grðk; k′Þ ¼ eikra þ e�ik′ ra.
This is in contrast to the models studied by Millis et al.30 and by
us,33 where the phonons couple to the electron site density. The
electronic dispersion is given by εðkÞ ¼ �2t

P
r cosðkrÞ:

As in ref. 33, we focus on the range of temperatures ω0≪ T≪
EF, where ω0 is the mean optical phonon frequency and EF is the
Fermi energy. The first inequality implies that the phonon
variables can be treated as classical (our results are accurate to
leading order in ω0/T ), and the second that the electron fluid is
still highly quantum mechanical.
We define the dimensionless electron–phonon coupling con-

stant as

λ ¼ α2ν

Mω2
0
; ð7Þ

with ν the density of states at the Fermi energy. We will be
particularly interested in the case in which λ is large compared to
unity, so that although T is small compared to EF, λT can be larger
EF and even larger than the bandwidth Λ, i.e. there exists an
interesting “high temperature” regime in which EF/λ≪ T≪ EF,
where the quasiparticle scattering rate is larger than its energy,
but the electrons are nevertheless quantum mechanically
degenerate.33

The current operator of this system is given by

JðiωnÞ ¼ e
X
a;νn

Z
ddk

ð2πÞd vkc
y
aðk; νnÞcaðk; νn þ ωnÞ

þ eαffiffiffiffiffiffi
βN

p X
a;b;νn;νm;r

Z
ddkddk′

ð2πÞ2d
Xr
abðk � k′; νn � νmÞ

´ ð∂gr
∂k

þ ∂gr
∂k′Þ½cyaðk; νnÞcbðk′; νm þ ωnÞ

þa $ b� � J0 þ J1; ð8Þ
here vk = (∂ϵ)/(∂k). This can be derived, for instance, by coupling
the electrons to a vector potential A by replacing ca(k)→ ca(k−eA)
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Fig. 1 Resistivity per flavor, in units of 1/e2N, as a function of λT/Λ in
the N→∞ limit, where Λ is the bandwidth, for a two-dimensional
square lattice. The blue and green curves are, respectively, for a
density per site in each flavor, n= 1/3 and n= 1/8. At the lower
density, the resistivity exceeds the saturating value and then
approaches it with increasing temperature from above
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in Eq. (2), and differentiating the action with respect to A. J0

derives directly from the non-interacting electrons’ kinetic energy,
while J1 represents a phonon-assisted conductivity channel.

Single electron properties
Taking the limit N→∞ allows us to solve the model (2) order by
order in 1/N. Just as in ref. 34, the full set of rainbow diagrams
contributes to the electron self-energy to lowest order in 1/N.
This results in a self-consistent Dyson’s equation for the fermion
self-energy:

Σðk; ωÞ ¼ λT
ν

X
r

Z
ddk′

ð2πÞd
jgrðk; k′Þj2

ω� ξ ′k � Σðk′; ωÞ :
ð9Þ

For solids with a constant density of electrons, this equation
must be solved simultaneously with the equation for the density
per flavor

n ¼
Z

ddk

ð2πÞd
hcyαðkÞcαðkÞi �

Z
ddk

ð2πÞ2
Z 0

�1

dω
2π

Aðk; ωÞ; ð10Þ

which fixes the temperature dependent chemical potential μ. Here
A(k,ω) = −2Im(1)/(ω−ξk−Σ(k,ω)) is the spectral function. For details
of the solution, see supplementary material; here, we state the
results.
At low temperatures, λT≪ EF, the chemical potential is

approximately temperature-independent and the scattering rate
on the Fermi surface, given by 1/τ(k) = −Im[Σ(k,ω = 0)]≡ Σ′′(k,ω =
0), rises linearly with temperature: 1/τ(k) = πλT/ν∑ r ∫k′|gr(k,k')|

2δ(ξk'),
with ∫k≡ ∫ddk/(2π)d; this is the famous semiclassical result.36

In the high temperature limit, λT≫ Λ, the temperature
dependence is given by (see details in the supplementary
material)

μðTÞ ¼ ~μ0
ffiffiffiffiffiffiffiffiffiffi
λT=ν

p
;

X
ðk; ω; TÞ ¼

X�
ðk; ~ωÞ

ffiffiffiffiffiffiffiffiffiffi
λT=ν

p
; ð11Þ

where ~ω ¼ ω=
ffiffiffiffiffiffiffiffiffiffi
λT=ν

p
, and ~μ0; ~Σðk;ωÞ are found by solving the

coupled, temperature independent equations

~Σðk; ~ωÞ ¼
X
r

Z
ddk′

ð2πÞd
jgrðk; k0Þj2

~ωþ ~μ0 � ~Σðk0; ~ωÞ ;

n ¼
Z

ddk′

ð2πÞd
Z ~μ0

�1

d~ω
2π

Im
1

~ω� ~Σðk0; ~ωÞ

� �
: ð12Þ

At high temperature, a crossover occurs to a square-root
dependence of the self energy on the temperature. The crossover
occurs around λT ≈ μ.

Conductivity
The D.C. conductivity is given by summing over three different
channels (see Fig. 2):

σ ¼ σ00 þ 2σ01 þ σ11 ; where

σij ¼ � lim
ω!0

ImΠijðωÞ
ω

;

ΠijðωÞ ¼ hJixðiωnÞJjxð�iωnÞijiωn!ωþiδ: ð13Þ
The full details of the calculation of the conductivity are given in

the supplementary material; here, for simplicity, we will sketch the
calculations without vertex corrections. Vertex corrections are
included in the figures, and do not change the behavior
qualitatively.

σ00 has been calculated in ref. 33 neglecting vertex corrections,
it is given by

σ00ðTÞ ¼ � lim
ω!0

ImΠ00ðiωn ! ωþ iδ; TÞ
ω

¼ � lim
ω!0

e2N
βω

Im
X
νn

Z
ddk

ð2πÞd v
2
k ´Gðiνn; kÞGðiνn

þ iωn; kÞjiωn!ωþiδ

� e2N
4π

Z
ddk

ð2πÞd v
2
k½Aðk;ω¼ 0Þ�2: ð14Þ

Gðiνn; kÞ is the fully dressed electron Green’s function. In the last
line of Eq. (14), we have inserted the spectral representation of the
Green’s function, performed the Matsubara summation over νn
(see, e.g.,37), and used the fact that the Fermi function nF(ϵ) obeys
(dnF(ϵ))/(dϵ) ≈ −δ(ϵ) in the regime T≪ EF, assuming that A(k,ω)
changes slowly on the scale of T (This is justified because, at low
temperature, A(k,ω) varies on the scale of Σ′′(ω = 0,T≪ EF/λ) ~ λT,
assumed to be much larger than T. [Here we have assumed that
the density of states, and hence Σ′′(ω), vary slowly around zero
energy on the scale of T]. At high temperature the spectral
function varies on the scale of Σ′′(ω = 0,T≫ Λ/c)~((λT)/(ν))1/2≫ T
[see Eq. (11)]).
σ11 is the channel responsible for resistivity saturation. For

simplicity, we present here only the contribution of the diagram
(C) in Fig. 2, that does not contain vertex corrections to leading
order in 1/N; diagram (D) is calculated in the supplementary
material, and found to be negligible. To lowest order in 1/N, the
Π11 correlation function is given by

Π11ðiωnÞ ¼ e2Nα2
X
r

Z
ddkddk′

ð2πÞ2d
∂gr
∂k

þ ∂gr
∂k′

����
����
2

´
1

β2

X
n;m

Gðk; iνnÞGðk′; iνm þ iωnÞ

Dðk � k′; iνn � iνmÞ; ð15Þ

with D(q,iωn) the phonon propagator, which is unrenormalized to

A B

C D

Fig. 2 The four diagrams which contribute to the conductivity. Bold
lines are renormalized electron propagators, dashed lines are phonon
propagators, and the full and dashed wiggly lines correspond to
J0 and J1, respectively. The green and blue areas represent the
renormalized J0 and J1 vertex functions, respectively
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lowest order in 1/N. To leading order in ω0/T, this results in

Π11ðiωnÞ ¼ e2N
λT
ν

X
r

Z
ddkddk′

ð2πÞ2d
∂gr
∂k

þ ∂gr
∂k′

����
����
2

´
1
β

X
n

Gðk; iνnÞGðk′; iνn þ iωnÞ

¼ e2N
λT
ν

X
r

Z
ddkddk′

ð2πÞ2d
∂gr
∂k

þ ∂gr
∂k′

����
����
2

´
Z

dε1
2π

dε2
2π

Aðk; ε1ÞAðk′; ε2Þ nFðε1Þ � nFðε2Þ
iωn þ ε1 � ε2

; ð16Þ

where we have inserted the spectral representation and
performed the Matsubara summation. Therefore, again using the
fact that T≪ EF,

σ11 ¼ e2NλT
4πν

X
r

Z
ddkddk′

ð2πÞ2d
∂gr
∂k

þ ∂gr
∂k0

����
����
2

´Aðk; 0ÞAðk′; 0Þ: ð17Þ

At high temperatures it is possible to approximate
Aðk; 0Þ ¼ �2

ffiffiffiffi
ν
λT

p
Im 1

~μ0�~Σðk;0Þ, with both ~Σðk; 0Þ and ~μ0 temperature

independent. Therefore, at high T, σ11 saturates to a temperature
and coupling strength-independent value.
A plot of σ00 and σ11, calculated for a two-dimensional tight

binding model, is shown in Fig. 3. The contribution of the {01}
channel, σ01 (calculated in the supplementary material) is found to
be negligible compared to max [σ00,σ11], both at low and high
temperatures.

Resistivity
Adding the three conductivity channels, the resistivity ρ = 1/σ of
the model is shown in Fig. 1. For ω0≪ T≪ EF/λ, the {00} channel
dominates, and the resistivity rises linearly with temperature:

ρðT � EF=λÞ � 1=σ00 � 2π
e2N

λT

v2Fν
; ð18Þ

where v2F ¼ 1=π
R
k½v2kδðξkÞ=

P
r

R
k′ jgrðk; k′Þj2δðξk0 Þ�. This is the

Bloch–Grüneisen formula for T >ω0.
At high temperatures, however, the linear increase in 1/σ00 is

offset by the parallel addition of the saturating {11} channel, the
rapid growth of the resistivity is checked, and the resistivity
saturates at the value

ρsat ¼
π�h
e2N

X
r

Z
ddkddk′

ð2πÞ2d
∂gr
∂k

þ ∂gr
∂k0

����
����
2

"

´ Im
1

~μ0 � ~Σðk; 0Þ Im
1

~μ0 � ~Σðk0; 0Þ

��1

ð19Þ

Here, we have reintroduced ħ for clarity. From Eq. (19), it is clear
that ρsat is independent of temperature and of the
electron–phonon coupling strength, λ. It does, however, depend
on the form factor gr(k, k′) and on the electron density n [through
the dependence of ~μ and ~Σðk; 0Þ on n, Eq. (12)]. In Fig. 4 we
show1/ρsat as a function of n in our model. ρsat reaches a
minimum close to h/(Ne2) at half filling. Near n = 0 and n = 1, ρsat
diverges. (Note that within our model, in order to access the
saturation regime in the limit n→0 while keeping T≪ EF, one has
to take λ→∞ while keeping λEF fixed.)
At low fillings, the rapid decrease of σ00 causes the resistivity to

overshoot the saturating value, and the parallel addition of the
channels causes the resistivity to decrease with temperature. In
that case, the high temperature saturation value is approached
from above (see Fig. 1). Such behavior has been observed in
certain heavy fermion compounds.38
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Fig. 3 The σ00 and σ11 conductivities per band. σ00 falls as 1/T
(although with different proportionality constants) in both tem-
perature ranges ω0≪ T≪ μ/λ and μ/λ≪ T≪ μ. σ11 grows in the
lower range of T, then saturates as it approaches the value e2/2π in
the higher. This is calculated for a two-dimensional tight binding
model, in which the phonon displacement couples to the nearest-
neighbor hopping amplitude of the electrons
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Fig. 4 Saturation resistivity, ρsat, as a function of the density of
electrons per site per flavor
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Fig. 5 The optical conductivity σ(ω) for several temperatures. (inset)
For low temperatures ω0≪ T≪ EF/λ, a distinct Drude peak appears
in the spectrum, of width λT, and the conductivity vanishes for ω >
Λ. At high temperatures, the Drude peak is lost, but σ(ω) has a clear
structure on the scale of (λT/ν)1/2; the optical conductivity has finite
support over the effective bandwidth (λT/ν)1/2≫Λ. In this model,
resistivity saturation implies that the zeroth moment of the
conductivity grows with temperature
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Optical conductivity
The optical conductivity σ(ω) can give insights into the physics of
saturating metals and of bad metals.3, 4 In conventional metals,
the optical conductivity displays a pronounced Drude peak at all
accessible temperatures, while materials which approach the MIR
limit have been argued to lose this coherent contribution. To gain
further insights into the mechanism of the saturation in our
model, we now examine the optical conductivity.
It is straightforward to extend the calculations described above

to σ(ω) (see supplementary material for details). The optical
conductivity as a function of frequency for several temperatures is
shown in Fig. 5. At low temperatures, where σ00 dominates, the
conductivity shows a Drude peak, whose width is proportional to
T. At high temperatures (within the saturating regime), on the
other hand, the optical conductivity consists of a broad peak
whose height is nearly temperature independent, while its width
increases with temperature. This can be understood from the fact
that, at asymptotically high temperatures, σ(ω) has support over a
frequency range that scales with an effective bandwidth (λT/ν)1/2.
Interestingly, this implies that the total spectral weight, defined

as

μ0 ¼
Z 1

0
σðωÞ ð20Þ

increases with temperature. This is consistent with the sum rules
concerning σ(ω), which within our model is given by

μ0 ¼ � π

2
e2ðhK0i þ hK1iÞ; ð21Þ

where

K0 ¼
X
k;a

∂2ξk
∂k2x

cyaðkÞcaðkÞ;

K1 ¼ 4αffiffiffiffi
N

p
X

k;k0;a;b;r

γrðk; k0ÞXr
a;bðk � k0Þ

´ ½cyaðkÞcbðkÞ þ h:c:�: ð22Þ
Here, γrðk; k′Þ � ½∂2kx þ ∂2kx′ þ 2∂kx∂kx′ �grðk; k′Þ. It is the second
term in Eq. (21) that is responsible for the increase of the spectral
weight, μ0∝ (T)1/2, for λT≫ Λ. This reflects the fact that in this
regime, the phonon-assisted hopping channel dominates the
transport. In real materials, however, this behavior might be hard
to observe, as it could be masked by high-energy features in σ(ω)
due to inter-band transitions.

Numerics
The analytical results described above are confined to the N→∞
limit. One may then ask to what extent the physics of a system
with a finite number of electronic bands and phonon modes is
captured by the N→∞ picture. To assess this, we have performed
numerical simulations of the model in Eq. (2) for finite values of N.
The simulations are done by treating the phonons as a classical
static field with a distribution that corresponds to the free energy
of the system with a fixed phonon configuration, while the
electrons are treated quantum mechanically. (See supplementary
material for additional details of the simulations). The only
approximation in this approach is to neglect the phonon
dynamics, by taking ω0→0. The problem can be solved fully
quantum mechanically using quantum Monte Carlo (QMC), since
the model (2) does not suffer from a sign problem (although then,
calculating the conductivity requires an analytic continuation to
real time). Ref. 24 demonstrated that at high temperatures, QMC
results for a similar elecron–phonon model agree with the
“semiclassical” approximation that neglects the phonon dynamics.
In Fig. 6, the resistivity as a function of temperature is shown for

systems with N = 2, 4, 6, 8, along with the analytical N→∞ result.
The numerical results approach the N→∞ curve, showing that
the approach to the N→∞ limit is not singular. It is also clear that
signatures of saturation appear already at small N, rendering our
analysis pertinent for physical systems.

DISCUSSION
It has been argued that saturation is connected with a limit
quantum mechanics imposes on the maximal quasiparticle
scattering rate, or equivalently on the minimal mean free path.
In our model, the inverse electron lifetime increases without bound
as Σ′′(k,0)∝(T)1/2; this is clearly not the mechanism for saturation.
However, the origin of the saturation is quantum mechanical—it
relies on the finite bandwidth Λ of the system, and the saturation
value is proportional to Planck’s constant h [Eq. (19)].
We can also address the question of whether the correct

criterion for saturation is ‘ � a or ‘ � 2π=kF, by looking at the low
density limit where EF≪ Λ. In this regime, we find two distinct
crossovers that occur when T becomes comparable to EF/λ and Λ/
λ, respectively. In the first of these crossovers, where the Boltzman
approach breaks down, the slope of the linear increase of ρ
deviates from its low-T value;33 in the second crossover, where the
extrapolated mean free path satisfies ‘ � a, the saturation occurs.
If EF and Λ are parametrically different from each other (as in
lightly doped semiconductors), the resistivity may rise beyond the
saturation value and then approach it from above (see Fig. 1).
The value of the resistivity at saturation is had−2/e2 times a

numerical factor [Eq. (19)] that depends on the electron density
and the electron–phonon coupling form factor. The saturation
value is not universal, although it is independent of the overall
electron–phonon coupling strength.

Relation to other works
The (T)1/2-dependence of the self-energy at high temperatures has
been found by Millis et al.30 for an N = 1 electron–phonon system,
using DMFT. The importance of the coupling of the phonons to
the electronic kinetic energy was recognized by Calandra et al.24

They used QMC to compute the resistivity of a five-fold
degenerate electron band coupled to optical phonons via the
hopping matrix elements and observed resistivity saturation. In
contrast, in a model in which the phonons couple to the site
energies, the resistivity did not saturate. They also observed that
the resistivity saturation depends on the number of degenerate
electronic bands.
Our analysis clearly elucidates why coupling to the kinteic

energy is important; it is the conductance channel which
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Fig. 6 Numerical results for the resistivity as a funciton of
temperature. These results were obtained using a Monte Carlo
simulation, treating the phonons classically and the electrons
quantum mechanically
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originates form this coupling that causes the saturation. This gives
a natural physical interpretation of the phenomenological parallel
resistor formula. We note that the mechanism described in this
work for resistivity saturation is different from the interpretation
given in ref. 39, which is based on the conductivity f-sum rule. In
particular, within our model, the integral of σ(ω) increases with
temperature. This is due to an increase of the effective bandwidth
with temperature (see Fig. 5).
The present results have potential relevance in a broader

context. Recently, it has been conjectured that there is an upper
bound to the rate of “scrambling” in any quantum system, given
by Γ≤ Γmax≡ 2πT.40 A similar bound has been proposed for the
“dephasing” rate, Γφ 	 CT with C of the order of unity.41 However,
the relation of this rate—and consequently of the corresponding
bound—to important equilibration rates in solids remains an open
question. In particular, the system we consider here displays
relaxation rates that exceed this bound for large λ; in the
temperature range ω0≪ T≪ EF/λ, both the single particle scatter-
ing rate and the current relaxation rate (i.e. the width of the Drude
peak) are given by λT, while for EF/λ≪ T≪ EF the inverse of the
single particle lifetime is (λT/ν)1/2. It would be interesting to study
the scrambling dynamics in our model, and examining its relation
to the physical response functions.
Another issue concerns phonon-drag, processes in which the

momentum that has been transferred to the phonon bath is
coherently returned to the electron fluid are suppressed by a
power of 1/N in the present problem, (Phonon drag effects are
also suppressed in powers of ω0.) but can be studied by keeping
higher order terms in the 1/N expansion. In the absence of a
lattice, the total momentum of the system is conserved, and
therefore the 1/N contribution to the conductivity would contains
a δ-peak at ω = 0. However, umklapp processes are not expected
to be small in the present system, as the phonons are thermally
occupied throughout the Brillouin zone for T≫ω0. These umklapp
processes render the 1/N contribution at ω = 0 finite, enabling us
to expand the conductivity order by order in 1/N. We plan to
explore the 1/N corrections further in the near future.

Conclusions
We present a tractable electron–phonon model that displays
resistivity saturation. At low temperatures, ω0 ≪ T ≪ EF/λ, the
resistivity increases linearly with temperature, according to the
semiclassical formula. At high temperatures, T≫ Λ/λ, the resistivity
saturates to a temperature and coupling strength-independent
value. The saturation is not a result of a limit on the scattering rate,
but due to the existence of an additional phonon-assisted
conductivity channel that becomes effective at higher tempera-
ture. This gives a natural microscopic interpretation for the
phenomenological parallel resistor formula.
Beyond the possible implications for the resistivity of metals,

the analysis presented here, together with the one presented in
ref. 33, provides examples of metallic transport in a regime that
cannot be described in terms of coherent quasiparticles. It may be
possible to extend this analysis, using an appropriate large-N limit,
to other problems of unconventional transport, e.g., where the
scattering is dominated by electron–electron interactions. We
leave such extensions to future work.

METHODS
In all analytic calculations, we have used the two dimensional tight-binding
model presented in Eq. (6). Equation (9) for the self energy Σ(k, ω) was
solved iteratively for a large number of ωs, and the chemical potential μ
found by fixing the density, as described in Eq. (10). Vertex corrections
were obtained through self-consistent equations, exact to lowest order in
1/N.
In the numerical simulation, a slightly different tight-binding model was

used, with a next-nearest neighbor hopping parameter t′ = −t; this

hopping parameter was introduced to suppress any instabilities arising
from nesting of the Fermi surface. The phonon displacements were treated
as classical fields, and the free energy was given by

F ¼ 1
2
K

X
i;j;α;β;r

ðXr
i;j;α;βÞ2 � T

X
n

logð1þ eð�εn�μÞ=T Þ; ð23Þ

where Xr
i;j;α;β are the phonon displacement of flavor αβ at site i,j, of

mode r, ϵn are the eigenvalues of the single-particle Hamiltonian
for the given phonon configuration, and μ is the chemical potential
obtained by demanding constant filling. The ϵn’s are obtained by exact
diagonalization.
All the calculations, in much more detail, appear in the supplementary

material.

CHANGE HISTORY
A correction to this article has been published and is linked from the HTML
version of this article.
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