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Spectral characterization of noise environments that lead to the decoherence of qubits is critical to
developing robust quantum technologies. While dynamical decoupling offers one of the most
successful approaches to characterize noise spectra, it necessitates applying large sequences of π
pulses that increase the complexity and cost of themethod. Here, we introduce a noise spectroscopy
method that utilizes only the Fourier transform of free induction decay or spin echo measurements,
thus removing the need for the applicationmanyπpulses.We show that ourmethod faithfully recovers
the correct noise spectra for a variety of different environments (including 1/f-type noise) and
outperforms previous dynamical decoupling schemes while significantly reducing their experimental
overhead.Wealsodiscuss the experimental feasibility of our proposal anddemonstrate its robustness
in the presence of statistical measurement error. Ourmethod is applicable to awide range of quantum
platforms and provides a simpler path toward a more accurate spectral characterization of quantum
devices, thus offering possibilities for tailored decoherence mitigation.

Nearly all current quantum technology applications rely on a two-level
quantum system (qubit) that is subject to environmental noise. In the pure
dephasing limit this environmental noise causes fluctuations in the fre-
quency of the qubit that lead to decoherence. Spectral characterization of
such environments is the most crucial step in successfully controlling and
suppressing decoherence. Indeed, characterizing the noise spectrum allows
for a filter-design approach that suppresses the noise and improves the
coherence of the qubit1–4. Therefore, developing methods that can recover
the noise spectrum of qubit environments has been one of the most active
fields of research over the past two decades5–8. Among these efforts, dyna-
mical decoupling noise spectroscopy (DDNS)9–12 has been one of the most
successful approaches. In thismethod, applying a sequenceofπ-pulses turns
the qubit into a noise probe (approximated as a frequency comb) that
isolates contributions from particular frequencies of the noise spectrum.
The dynamical decoupling framework has been studied extensively theo-
retically and implemented experimentally in various platforms such as
superconducting circuits13,14, ultracold atoms15, quantum dots16–18, and
nitrogen-vacancy (NV) centers indiamonds19,20. ADDNSprotocol basedon
the Carr-Purcell-Meiboom-Gill (CPMG) sequence21,22 was proposed by
Álvarez and Suter9 which would ideally yield a system of equations and
unknowns from the measured values of the qubit coherence
CðtÞ ¼ j ρ01ðtÞ

� �j=j ρ01ð0Þ
� �j, and specific frequencies of the spectrum.

However, this method offers reasonable performance only when the
number of π-pulses in each sequence is large. Beyond a pulse economy
standpoint, other difficulties, such as deviations from the ideal frequency
comb approximation23, have recently inspired utilizing neural networks as

‘universal function approximators’ to reconstruct the noise spectrum from
the coherence function of the qubit24. The success of this deep learning
method suggests the existence of a one-to-one mapping between the two
quantities.

Here, we present a simple and inexpensivemethod that uniquelymaps
the measured coherence function of a qubit to its noise power spectrum,
removing the need for long sequences of π-pulses at the heart of DDNS or
turning to neural networks. In fact, we show that the map obtained using
neural networks in ref. 24 can be found explicitly and analytically and then
translated to a simple and effective noise spectroscopy method. This
approach only requires free induction decay or spin echo measurements of
the qubit and employs a simple Fourier transform to accurately reconstruct
the noise spectrum of the system. While Fourier spectroscopy has been
implemented in Nuclear Magnetic Resonance and on different types of
quantum processors7,25,26, it has not been utilized in the context of pure
dephasing with the filter function formalism. Here, we combine the Fourier
transform technique with the filter function formalism to introduce an
approach we call Fourier transform noise spectroscopy (FTNS) that sig-
nificantly enhances one’s ability to reconstruct the power spectrum while
dramatically reducing the required experimental overhead. We show that
FTNS enables the reconstruction of the noise spectrum over a frequency
range that is otherwise inaccessible through DDNS — information that is
critical for effective noise mitigation. We then extend the FTNS method to
directly extract the noise spectrum from a spin echo signal, which becomes
necessarywhen the systemof interest is dominated by strong low-frequency
noise. While this FTNSmethod requires taking two time derivatives of the
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signal and is therefore sensitive to measurement errors in the time domain,
we show that simple signal processing steps can mitigate the effect of such
errors and yield accurate results.

Results and discussions
Theoretical description
Webegin by laying out the theoretical basis for the filter function formalism
in a pure dephasing setup1,6,10,27. In this case, the qubit relaxation process
(quantified byT1) takesmuch longer than phase randomization (quantified
by T?

2), implying that the decoherence time T�1
2 ¼ ð2T1Þ�1 þ T?�1

2 ≈T?�1
2

becomes a measure of how fast the phase information is lost due to envir-
onmental fluctuations. Frequency fluctuations of a qubit subject to a sta-
tionary, Gaussian noise, β̂ðtÞ, can be described by the Hamiltonian
Ĥ ¼ 1

2 ½Ωþ β̂ðtÞ�σ̂z , whereΩ is the natural frequency of the qubit.Here, the
coherence function is C(t) = e−χ(t), where the attenuation function χ(t) is
given by the overlap of the noise spectrum and a filter function that
incorporates the effect of the pulses on the system:

χðtÞ ¼ � ln ½CðtÞ� ¼ 1
4π

Z 1

�1
dω SðωÞFðωtÞ: ð1Þ

The noise spectrum, SðωÞ ¼ R1
�1 dt eiωtSðtÞ, is the Fourier transform of the

equilibrium time correlation function of the environmental noise,
SðtÞ ¼ hfβ̂ðtÞ; β̂ð0Þgi=2, where {A, B} =AB+ BA is the anticommutator.
The filter function, F(ωt), encodes the sign switching (±1) of the environ-
mental fluctuations upon application of each π pulse in the sequence1.

The use of the absolute value in the definition of CðtÞ / j ρ01ðtÞ
� �j

merits further comment. Without the absolute value, ~CðtÞ ¼ ρ01ðtÞ
� �

contains both a real and an imaginary component,which is the output of the
full coherencemeasurement, i.e., 〈σx(t)〉+ i〈σy(t)〉.Here, 〈σx(t)〉 refers to the
Ramsey measurement of the real part that involves the sequence RY(π/
2)− t− RY(− π/2), giving access to Re[ρ01(t)], whereas 〈σy(t)〉 refers to the
Ramsey measurement of the imaginary part that involves the sequence
RY(π/2)− t− RX(π/2), giving access to Im[ρ01(t)]

14. For quantum noise
sources that obey Gaussian statistics, this measurement can be written as
~CðtÞ∼ e�χðtÞþiΦðtÞ28–31. We consider the absolute value of this measurement,
which leads to CðtÞ ¼ j~CðtÞj∼ e�χðtÞ. While removing the dependence on
Φ(t) may appear to cause information loss, it is not so as Φ(t) contains the
same information about the noise spectrum as χ(t). Indeed,Φ(t) is related to
χ(t) via detailed balance, with:

ΦðtÞ ¼
Z 1

�1
dω SðωÞ coth ω

2kBT

� �
GðωtÞ; ð2Þ

where G(ωt) encodes the effect of the DD sequence on the imaginary-part
Ramsey procedure,T denotes temperature, and kB the Boltzmann constant.
Hence, knowledge of either χ(t) or Φ(t) implies knowledge of the other.
Other noise spectroscopy works have distinguished between classical and
quantum noise sources, with classical noise leading to a signal where C(t)
~e−χ(t). However, such a measurement would indicate the breakdown of
detailed balance. Instead, we articulate the problem in terms of CðtÞ ¼
j~CðtÞj and emphasize that such a measurement does not imply that the
source of noise is classical. We also note that previous work has shown that
Φ(t) appears in the case of biased coupling29 or in theM2model28, when the
interaction of the qubit with the bath has the form 1

2 λðσ̂z þ ηÎÞ � V̂ , where
V̂ is a bath operator and η ≠ 0. This case is particularly relevant for qubits
based on the m = 0, ±1 levels of the NV center in diamond.

To demonstrate the advantages of our proposed FTNS, we first con-
sider what is arguably the state-of-the-art approach to noise spectroscopy:
theÁlvarez-Suter protocol. Themain insight of theÁlvarez-Sutermethod is
that when the number of pulses is sufficiently large, the filter function
reaches the spectroscopic limit. In this limit, one can approximate the filter
function by a δ-function (frequency comb) with various harmonics:
χðtÞ≈tPkc

k¼1 ∣Akω0
∣2S kω0

� �
, where Akω0

are the Fourier coefficients for a
given pulse sequence, truncated at kc (for theCPMGsequence,Akω0

¼ 0 for

even k). Applying many π-pulses is necessary for each peak to better
resemble a δ-function. The extreme case of kc = 1 approximates the filter
function as a single δ function, discarding many details of the noise spec-
trum. This is referred to as the single δ-function approximation or the first
harmonic approximation. Often, one can still account for a limited number
of harmonics (set by the cut-off kc), which attenuates the loss of spectral
information6,24. In the latter case, by appropriately varying the delay time
between pulses and the total time of the sequence, one can form a linear
system of equations consisting of coherence values at selected times and a
matrix of contributing Fourier coefficients. Inverting this system of equa-
tions yields the noise spectrum at the probed frequencies, which are
bounded by π=τmax ≤ jωDDNSj≤ π=τmin. Here, τmax(min) is the maximum
(minimum) delay between consecutive π-pulses required to minimize the
overlap between subsequent pulses and validate the instantaneous pulse
assumption. Furthermore, sinceA(k=0) = 0 for balanced pulse sequences like
CPMG, the zero-frequency part of the spectrumcannot be accessed directly.
Thus, going beyond the π=τmax ≤ jωDDNSj≤ π=τmin limit and extracting
S(ω = 0) requires imbalanced sequences such as concatenated dynamical
decoupling (CDD)11. Hence, the experimental overhead, frequency
restrictions, and accuracy dependence on harmonic inclusions of Álvarez-
Suter23 motivate the development of a more accessible scheme.

FTNS directly maps FID coherence to the noise spectrum
We introduce a radically more straightforward approach by inverting Eq.
(1) directly to obtain the noise power spectrum.We first demonstrate this in
the context of free induction decay, noting that FFIDðωtÞ ¼
ð4=ω2Þsin2ðωt=2Þ1. Substituting FFID(ωt) in Eq. (1), and differentiating
twice with respect to time, we obtain

€χFIDðtÞ ¼
1
2π

Z 1

�1
dω SðωÞ cosðωtÞ: ð3Þ

We Fourier transform both sides to find

SðωÞ ¼
ffiffiffiffiffi
2π

p F €χFIDðtÞ
	 


; ð4Þ

noting that S(−ω) = S(ω). This straightforward derivation demonstrates
that there is a simple and invertible one-to-one map between the noise
power spectrum S(ω) and the second time derivative of the logarithm of the
experimentally measured coherence function.

To illustrate this method for an analytically solvable case, we adopt a
Gaussian-shaped noise power spectrum SðωÞ ¼ Ae�ðω=σÞ2 . The coherence
function of this noise profile can be obtained analytically:

CðtÞ ¼ exp �A
σ

tσ
2

Erf
tσ
2

� �
þ e�

t2σ2
4 � 1ffiffiffi
π

p
" #( )

; ð5Þ

where Erf ðzÞ ¼ 2π�1=2
R z
0 e

�x2 dx is the Error function. The second deri-
vative of the attenuation function takes the expected Gaussian form,

€χFIDðtÞ ¼
Affiffiffiffiffi
2π

p e�
t2σ2
4 ; ð6Þ

as does its Fourier transform,

F Affiffiffiffiffi
2π

p e�
t2σ2
4

 �
¼ Affiffiffiffiffi

2π
p e�ðω=σÞ2 ; ð7Þ

suggesting SrecðωÞ ¼ Ae�ðω=σÞ2 . This simple example illustrates that the
FTNS method retrieves the original noise spectrum.

Eq. (3) has important implications for the asymptotic behavior (i.e.,
lim t ! 1) of €χFIDðtÞ. Specifically, we may invoke the Riemann-Lebesgue
lemma32 for integrable noise spectra— a physically reasonable assumption.
This behavior ensures that limt!1 €χðtÞ ! 0 and, therefore, that the
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long-time limit of the attenuation function must grow linearly with time,
limt!1 χðtÞ / t. This linear t scaling of limt!1 χðtÞ has important
implications that we exploit below to provide a theoretically justified and
practical approach to inverting experimentally measured coherences, C(t),
to well-behaved power spectra, S(ω).

Translating the above insights into a noise spectroscopy procedure is
straightforward. First, one measures the coherence function C(t) from free
induction decay by performing Ramsey measurements at various times,
yielding an array of coherence values in [0,Tmax]witha sampling interval, or
resolution, δt. One then takes a logarithm of the data and numerically
performs a double derivative on the sampled χFID(t) values. A Fourier
transform of the resulting data yields the noise spectrum S(ω). For this, one
can employ a discrete Fourier transform or numerical quadrature to obtain
equivalent results.

Advantages of FTNS
To illustrate the power of the FTNS approach, we assess its ability to
reconstruct single-,

SðωÞ ¼ s0
1þ 8ω=ωc

� �2 ; ð8Þ

and double-Lorentzian spectra,

SðωÞ ¼ s0
1þ 8ω=ωc;1ð Þ2 þ

s1
1þ 8ð8½ω�d�=ωc;2Þ2

þ s1
1þ 8ð8½ωþ d�=ωc;2Þ2

;
ð9Þ

that are relevant to bulk19 and near-surface20 NV centers, respectively. Here
s0 and s1 represent the average coupling strength of the bath to the qubit, and
1/ωc is the correlation time of the bath.

Figure 1(a) shows a single Lorentzian peak (gray, shaded) and its
spectrum reconstruction using the Álvarez-Suter method with a CPMG
sequence with 32 π-pulses total henceforth referred to as the 32-pulse
Álvarez-Suter (red circles), the single δ-function approximation of the 32-
pulse Álvarez-Suter (light blue crosses), and FTNS (dark blue line and
squares), respectively, in units of 1/T2.We assume idealπpulseswith perfect
fidelity and infinitely short duration throughout the article. In thisfigure, we

aim to show the advantages that each method offers in principle. For this
reason, we use a large number of coherence measurements and a long final
measurement time. In subsequent figures, we introduce practical con-
siderations to demonstrate how eachmethod can be expected to perform in
an experimental setting. The absolute error of the reconstructed spectrum
compared to the true spectrum is computed as Δ(ω) = ∣S(ω)− Srec(ω)∣. As
Fig. 1 demonstrates, FTNS outperforms the 32-pulse Álvarez-Sutermethod
at low-frequencieswhile only requiring free inductiondecaymeasurements.

Wenote that forFigs. 1–4,T2 is definedas the inverse of the slopeofχ(t)
at sufficiently long times when χ(t) scales linearly in time. This definition
ensures that the T2 time measures the time constant associated with expo-
nential decay, which can only be expected to arise at sufficiently long times.
For Figs. 5 and 6, the forms of the spectra make it hard to apply the same
definition. In these cases, we employ an alternative definition of T�

2 as the
time when the coherence crosses the value e−1≈0.3678 for the first time,
under a spin echo pulse sequence.

Noting the difficulties of the DDNS approach in accessing the noise
spectrum in bothπ=τmax ≤ jωDDNSj≤ π=τmin and S(ω→0) limits, it is worth
considering if and how similar limitations may hinder the FTNS approach.
Since our protocol for FTNS relies on the discrete Fourier transform, two
quantities determine the highest accessible frequency (ωFTNS

max ) and its
spectral resolution (δωFTNS), which in turn determines the lowest accessible
frequency (ωFTNS

min ): the sampling interval, δt, of the coherence function
measurement, and the total measurement time, Tmax. Specifically,
jωFTNS

max j ¼ π=δt and jωFTNS
min j ¼ δω ¼ 1=Tmax. While δt is determined by

limitations of state-of-the-art measuring devices, Tmax depends on the
physical problem. Yet, formany cases of physical interest,€χðtÞ ! 0 at times
earlier than Tmax (“Methods” section C). This allows one to zero-pad
€χðt ≥TmaxÞ to a new effective ~Tmax≫Tmax, offering sufficient spectral
resolution to access S(ω→0).

Given the importance of δt in allowingFTNS to access high frequencies
and the analogous role that the minimum delay time, τmin, plays in DDNS,
we now consider their connection in greater detail. τmin determines the
earliest time (after t = 0)where one canmeasure the coherence function, i.e.,
CðτminÞ. Since the discrete Fourier transform requiresmeasurements ofC(t)
at regular intervals, one might be tempted to assume that δt ¼ τmin. This
neednot be the case.After all, for t ≥ τmin, themeasurement interval δt is not
determined by τmin and can be set such that δt<τmin.While the resolution of
the coherence function measurements at later times can be made as fine-
grained as desired, one still needs to perform measurements in ½0; τmin� to
achieve a consistent δt through [0, Tmax]. To achieve this, we suggest
employing the limit ωt≪ 1, which reveals that the attenuation function
behaves as χ(t)≈αt2+ βt4+ γt6, to fit C(t) at early times (“Methods” section
B). This guarantees that FTNS can be implemented even when constrained
to the sameminimumdelay time of dynamical decoupling pulse sequences.

We are now in a position to illustrate the ability of FTNS to capture a
spectrum composed of a sum of Gaussians (Fig. 2(a)), and a double-
Lorentzian spectrum (Fig. 2(b)), each compared to a reconstruction using a
32-pulse and a 16-pulse Álvarez-Suter subject to the same τmin and Tmax
constraint: Cðt ≤TmaxÞ≥ 0:005 (“Methods” section B). To compare our
FTNS results to the best possible Álvarez-Suter output, the results shown in
Fig. 2 are a combination of results from a 32 (16)-pulse Álvarez-Suter
procedure, and additional iterations of the 32 (16)-pulse single-δ function
approximation procedure at frequency values between those evaluated by
the Álvarez-Suter method. We have done this to artificially increase the
frequency resolution of the reconstructed Álvarez-Suter spectra, although,
to our knowledge, this adds a significant experimental expense. Without
this, the spectrum reconstruction obtained from the Álvarez-Suter proce-
dure would have a much poorer frequency resolution. We also employ this
approach to compare against the best possible Álvarez-Suter results in
Figs. 5, 6.

Even in this optimal (but experimentally expensive) Álvarez-Suter
implementation, both panels of Fig. 2 show that the Álvarez-Suter spectra
(red dashed line, light blue dots) cannot access their respective jωj <ωDDNS

min .
To go beyond these limits in DDNS, one can employ complex CDD

Fig. 1 | Comparison of a simple noise spectrum reconstruction between the FTNS
andDDNSmethods. aALorentzian spectrum and its reconstruction using 32-pulse
Álvarez-Suter (AS), the 32-pulse single δ-function approximation (kc = 1), and
FTNS. Álvarez-Suter method: 3662 frequencies have been reconstructed but only
selected points have beenmarked for clarity and only a subset of these fall within the
frequency range shown as most fall in the high-frequency regime. FTNS: only fre-
quencies corresponding to themarkedÁlvarez-Suter ones are shown. bThe absolute
error compared to the true spectrum. The spectrum parameters are given in the
“Methods” sectionA. The coherence function contains 1930 points with a resolution
of δt/T2 = 0.00314 and a final measurement time of Tmax=T2 ¼ 6:06 for the FTNS
method and 3662 points with a minimum measurement time of Tmin=T2 ¼ 0:101
and a final measurement time of Tmax=T2 ¼ 368:1 for the AS and δ-function
methods. While DDNS requires many pulses to achieve comparable accuracy and a
much longer maximum measurement time for comparable resolution, FTNS out-
performs DDNS and uses only free induction decay measurements.
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sequences or relax the constraint on the Tmax imposed. In contrast, FTNS
only has difficulty resolving the feature atω~ ± 1.27 [1/T2] in Fig. 2(a)which
is another consequence of the Tmax restriction. Going beyond this max-
imummeasurement time is required to recover this feature using the FTNS
method. Further, while reducing the number of pulses used in the Álvarez-
Suter method allows lower frequencies to be probed, there is a limit to how
much the pulse number can be reduced, as at a sufficiently low pulse
number, the assumptions underlying the Álvarez-Sutermethod fail to hold.
Thus, FTNS uses a simple free induction decay measurement that suc-
cessfully reconstructs the spectrum in the frequency range that is inacces-
sible to the DDNS method, giving access to information that would be
otherwise lost.

Since smaller δt gives access to higher ωFTNS
max but raises the cost of the

experimental procedure, we turn to the trade-off in FTNS accuracy and the
sampling interval δt. Figure 3 depicts FTNS spectrum reconstructions using
sets of coherence measurements for a fixed measurement time Tmax with
varying δt. Clearly, increasing the resolution of coherence measurements
(i.e., decreasing δt) improves the accuracy of the FTNS reconstruction,
especially at higher frequencies. As expected, even low sampling rates
accurately reconstruct the low-frequency part of the spectrum while the
high-frequencypart canbe systematically improvedwithfinerδt. The ability
of FTNS to capture the low-frequency component even at low sampling
rates is particularly advantageous for decoherence mitigation purposes as
low-frequency noise often dominates decoherence33,34. Thus, even when
measurement resolution is limited, FTNS canbe expected to performwell at
low-frequencies and one can systematically assess its accuracy by mon-
itoring convergence with finer δt.

Robustness against errors
Since FTNS requires performing two numerical derivatives, it is sensitive to
errors that occur during the initialization andmeasurement phase (e.g., state
preparation and measurement (SPAM) errors, and statistical uncertainty
due to finite measurement repetition) of the protocol. There are multiple
sources of errors that can compromise themeasured value of the coherence
function at a given time. These include background and shot noises, and
imperfect fidelity of the applied pulses35,36. In optical setups, photon losses
can also reduce the number of effective measurements. Nevertheless, var-
ious methods to perform controlled numerical derivatives of noisy data are
available37,38. As an example, here we utilize a simple denoisingmethod that
mitigates the effect of noise and preserves all the advantages of FTNS even
on structured noise spectra. Figure 4 shows examples of FTNS spectra
reconstructed from artificially noisy data corresponding to an effective fixed
measurement error of 0.1% of the range (difference betweenmaximumand
minimum) of the coherence function (for examples of the same recon-
struction with higher error rates, see Fig. 7). This Gaussian-distributed
statistical noise is meant to mimic all uncorrelated errors in coherence
measurements, including readout errors, which can be grouped with the
shot noise. By increasing the number, N, of repetitions (i.e., individual
measurements of the spin coherence function via ensemble readout at each
control condition), the statistical variation of the signal diminishes as
1=

ffiffiffiffi
N

p
. We perform linear fitting of χ(t) at long times (consistent with the

asymptotic behavior of€χðtÞ establishedusing theRiemann-Lebesgue lemma
in the section on the Theoretical Description) and apply low-pass filters to
recover the approximate noise spectrum,which shows good agreementwith

Fig. 3 | Systematic improvement of the noise spectrum reconstructions using
FTNS as the sampling interval is decreased. FTNS reconstructions of the multi-
Gaussian spectrum in Fig. 2a for different values of the sampling interval, δt, for a
fixed Tmax/T2 = 6.291 (other parameters are the same as Fig. 2a). The legend shows
the values of δt/T2 used to obtain the FTNS results shown.

Fig. 4 | Noise spectrum reconstructions using the FTNSmethod under simulated
measurement error. Spectrum reconstruction using FTNS assuming 0.1% mea-
surement error in the coherence measurements for the same spectra shown in Figs.
1a and 2b in (a) and (b), respectively (with the same parameters). Even subject to
SPAM errors, utilizing simple denoising techniques allows FTNS to quantitatively
capture the height and frequency of the peaks nearω = 0 and qualitatively obtain the
peaks at higher frequencies, in the spectrum.

Fig. 2 | Comparison of structured noise spectra reconstructions between the
FTNS andDDNSmethods. Examples of two structured noise spectra reconstructed
using FTNS (solid dark blue line), a 32-pulseÁlvarez-Suter (AS)method (red dashed
line), and a 16-pulse ASmethod (light blue dots). The parameters for each spectrum
and early-time fitting parameters are given in the “Methods” section A. The
coherence function used to implement our FTNS protocol in (a) contains 596 points
with a resolution of δt/T2 = 0.006291. Only select points have been marked for the
16-pulse AS results, for clarity. For the spectrum in (b) our FTNS coherence function
contains 599 points with a resolution of δt/T2 = 0.005156. The red and light blue
vertical lines indicate the frequency limits up to which the 32-pulse and 16-pulse
Álvarez-Suter methods (respectively) can reconstruct the spectrum for the given
minimum delay time: jωDDNS

min j≥ π=τmax. Our free induction decay-based FTNS
accurately reconstructs the noise spectrum, even in the low-frequency regions
containing the main features of the spectra that the AS methods cannot capture.
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the true spectrum, revealing its essential features (see “Methods” section C
for details). Hence, our simple free induction decay-based noise spectro-
scopy approach can semi-quantitatively recover the frequency and the
height of the peaks of the noise spectrum, which constitute the minimum
required spectral information to design effective filter functions to mitigate
decoherence from a dynamical decoupling perspective.

While our analysis thus far accounts for the theoretical constraints of the
discrete Fourier transform, the experimental feasibility of FTNS is sensitive to
δt and the minimum delay time τmin. Controlling these parameters requires
flexibility in pulse design, which varies depending on the platform. For
instance, solid-state spins can be controlled either optically with pulses that
range from a few ps up to 1 ns39–42 or viamicrowave pulses as short as 12 ns43.
Such pulses allow for ns-scale minimum delay times, τmin, between pulses.
Furthermore, tuning the sampling interval δt to ps-order precision is also
achievable. For example, from an implementation perspective, two micro-
wave pulses with a controllable delay can be generated with an arbitrary
waveform generator and the delay between two optical pulses can be easily
controlled by varying the length of an arm in the Michelson interferometer.
To illustrate how these timescales satisfy our FTNS requirements, consider
the δt required to reconstruct the double-Lorentzian spectrum shown in Fig.
2b in the NV center parameter regime19,44–46 with T2 = 1.32 μs. To obtain the
accurate reconstruction shown in Fig. 2b, one would need to measure 599
points with δt≈7 ns. Thus, sufficiently high-resolution measurements that
faithfully reconstruct various noise spectra can be comfortably performed
with experimentally available technology.

Since the feasibility of FTNSalso relies on the ability to sufficiently reduce
statistical noise (~0.1%) within a reasonable time, we now consider what
current technologycanafford.Eachpoint on thecoherence curvearises froma
Ramseymeasurement at a given time, repeatedmultiple times to construct the
single-qubit ensemble average. To minimize statistical noise associated with
finite sampling, the repetition rate of such experiments needs to be sufficiently
high. To estimate the time required for the FTNS experiment, wemultiply the
time it takes to perform a single-shot experiment on a single data point along
the coherence curve by the number of independentmeasurements required to
bring the statistical noise level to the desired threshold, under the assumption
that independent random Gaussian fluctuations can satisfactorily model the
combined effects of the sources of statistical noise. We apply this protocol to
find the time required on available experimental setups to bring the statistical
error to the 0.1% value assumed in Fig. 4 in the measured coherence of NV
centers with T2~few μs19,44,45, with access to nanosecond microwave pulses.
This 0.1% error requires that each point along the coherence curve be mea-
sured ~106 times. A single measurement takes ~10 μs (including the initi-
alization and readout). Thus, requiring ~100 data points along C(t) takes
~2.8 h (assuming a modest photon collection rate of ~10%). Importantly,
these numbers represent a conservative estimate and can be expected to
improve significantly with better photon collection rates or through non-
uniform sampling techniques47–51. Further, by requiring only two π/2 pulses,
free induction decay-based FTNS avoids measurement error arising from
imperfect pulses, which accrues significantly in large dynamical decoupling
pulse sequences with many π pulses.

Spin echo FTNS
The FTNS protocol that we have discussed so far employs free induction
decay coherence measurements that decay sufficiently slowly so as to allow
enough measurements of the coherence curve to support a well-behaved
Fourier transform.A fast decaying behavior can arise from a sharply peaked
low-frequency noise component at ω = 0. In such scenarios, it is customary
to utilize a single π-pulse spin echo (SE) sequence to remove the effect of the
low-frequency component of S(ω) to prolong theT2 time. Itwould therefore
be beneficial to provide a one-to-onemapand anoise spectroscopy protocol
to perform FTNS based on the spin echo sequence. Below we derive this
one-to-one map and offer a practical protocol for spin echo-based FTNS.
We further show that while spin echo-based FTNS tends to be less accurate
at low-frequencies, it can outperform the free induction decay-based
method at higher frequencies, especially in the presence of strong low-

frequency noise. In addition, the spin echo-based method enables the
reconstruction of 1/f-type spectra which is not possible using the free
induction decay-based method.

The filter function of the spin echo sequence is FSEðω; tÞ ¼
ð16=ω2Þ sin4ðωt=4Þ. Following similar steps to those used for free induction
decay, we take a double derivative of the spin echo attenuation function to
find,

€χSEðtÞ ¼
1
2π

Z 1

�1
dωSðωÞ½cosðωt=2Þ � cosðωtÞ�; ð10Þ

and therefore,

ffiffiffiffiffi
2π

p F ½€χSEðtÞ� ¼ 2Mð2ωÞ; ð11Þ

where M(ω)≡ S(ω)− S(ω/2)/2. M(ω) corresponds to an array of mea-
surements that can be performed at regular values of
ωn 2 ½0; δω; 2δω; :::; nmaxδω�, where n 2 N, separated by an interval δω
that are accessible via the Fourier transform of the second derivative of the
spin echo coherence function. Hence, we writeM(ωn) =M(n × δω).

While the map in Eq. (11) provides the spectral function S(ω), it also
contains an unwanted part, S(2ω), whichweneed to isolate and remove.We
introduce a simple recursive method that allows us to extract the spectral
function S(ω) from our spin echo-based FTNS results:

Sð2nδωÞ ¼ Mð2nδωÞ þ 1
2
SðnδωÞ; ð12Þ

Sðð2nþ 1ÞδωÞ ¼ Mðð2nþ 1ÞδωÞ
þ 1

4 ðSððnþ 1ÞδωÞ þ SðnδωÞÞ: ð13Þ

To arrive at this result, we first exploit the fact that S(0) = 2M(0).While
the Fourier transform does not give access to M(ω = 0), it can be inter-
polated.We then approximate S(nδω/2) for odd n as the arithmetic average
of two adjacent points, S(nδω/2) ≈ (1/2)(S((n− 1)δω/2)+ S((n+ 1)δω/2)),
allowing us to find S(δω) = (4/3)(M(δω)− S(0)/4).

To see the performance of the spin echo version of the FTNS, we apply
this protocol to an experimentally inspired, highly peaked low-frequency
double-Lorentzian spectrum given by

SðωÞ ¼ s0

1þ 8ω
ωc;0

� �2

þ P3
i¼1

si

1þ 8
8½ω�di �
ωc;i

� �2 þ si

1þ 8
8½ωþ di �
ωc;i

� �2 ;
ð14Þ

with parameter values as given in “Methods” section A. For this spectrum,
themaximummeasurement time (obtained by imposing the condition that
C(t) > 0.005 at all times) under the spin echo sequence is about 5.5 times
longer than that under free induction decay, corresponding to a moderate
scenario in which we envision the spin echo-based FTNS offering an
advantage. Figure 5 shows that the spin echo-basedFTNSentirelymisses the
presence of the narrow low-frequency peak but faithfully captures the tri-
peak structure of the mid-frequency feature in the 1− 5MHz range.
Instead, the free induction decay-based FTNS identifies a peak at low-
frequencybut is unable to capture any structure for themid-frequency peak.
The inability of the spin echo method to capture the sharp feature at ω≈0 is
likely because the application of the single π-pulse removes the
inhomogeneous (ω→0) contribution in the power spectrum. In contrast,
the inability of the free induction decay method to capture the mid-
frequency features likely arises from the fast decay of the signal and the
stringent limit on the measurement time. What is most remarkable is that
in such systems with a dominant inhomogeneous contribution, the spin
echo-based method can resolve the finer structure in the higher frequency
peaks compared to the free induction decay method. This illustrates a
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distinct benefit arising from an increased coherence time on the
performance of the FTNS method. In contrast to FTNS, 16-pulse DDNS
is again unable to capture many of the prominent features of the spectrum.
What is more, one needs to resort to a 16-pulse sequence instead of a 32-
pulse sequence to at least partially reconstruct the prominent feature of the
spectrum for both Figs. 5 and 6. Thus, both free induction decay and spin
echo FTNS methods perform better than DDNS, capturing an informative
description of both the central peak and the higher frequency components.

Another important advantage of spin echo FTNS is that it enables one
to reconstruct spectra that scale as 1/ωn at low-frequencies (termed 1/f
spectra), which are observed in many relevant systems24,52. The one-to-one
correspondence between the S(ω) and χSE(t) through the spin echo FTNS in
Eq. (11) provides a unique pathway to analytically derive an expression for
the attenuation function of a 1/f-type spectrum. Namely, for S1=f ðωÞ ¼
A=ωn, we find

χSE;1=f ðtÞ ¼ Ynt
nþ1; ð15Þ

where n is a positive value less than 3, Γ( ⋅ ) is the gamma function (see
“Methods” section E), and the coefficient function Yn is given by

A logð2Þ=4π n ¼ 1;

A=24; n ¼ 2;

�Aπ�1 1� 21�n
� �

sin πn
2

� �
Γð�n� 1Þ; otherwise:

8><
>: ð16Þ

The focus on n < 3 is motivated by experiments in spin qubits53. These
solutions reveal that χSE(t) due to a 1/f spectrum is proportional to tn+1. In
fact, the same asymptotic time dependence for the 1/f spectrum has been
approximately obtained for various pulse sequences, includingCPMG1, and
used to analyze the output of noisy dynamical decoupling data53. Thus, 1/f
noise spectra stand in contrast to integrable counterparts that remain finite
over the entire frequency range (e.g., Gaussian and Lorentzian peaks), for
which we used the Riemann-Lebesgue lemma to demonstrate that
limt!1 €χðtÞ ! 0, implying that χ(t) is proportional to t at long times
(see “Methods” section C). These distinctly different behaviors of finite
versus 1/f-type spectra enable one to distinguish the two, even at the level of

the asymptotic scaling of the response function, χ(t). Specifically, by
performing a polynomial fit of the t dependence of the measured χ(t), one
can obtain the parameters that characterize the 1/f response needed to fully
reconstruct S(ω) (see “Methods” section E). Finally, we note that for n ≥ 3,
the integral expression for χ(t) under spin echo, as given by Eq. (1), diverges.
This suggests that pulse sequences with higher numbers of pulses (and
therefore higher orders of sinðωtÞ in the filter function for CPMG, for
example) need to be applied to probe such noise spectra. In principle, the
procedure to arrive at the spin echo FTNS can be repeated for such alternate
pulse sequences for the ability to probe 1/f noise spectra beyond n = 3.
Furthermore, previous work has shown that multi-pulse CPMG sequences
with an even number of pulses have afilter function that scales as F(ωt)∝ω4

at low-frequencies1,53, implying that χ(t) isfinite forn < 5.When thenumber
of pulses is odd, the filter function scales as F(ωt)∝ω2 at low-frequencies1,53,
implying that χ(t) is finite for n < 3.

While this analysis shows that it is possible to distinguish the pre-
sence and ω-scaling of diverging contributions to the power spectra, we
now demonstrate that our spin echo-based FTNS also enables us to
quantitatively reconstruct both diverging and well-behaved contributions
to the power spectrum. Specifically, in Fig. 6, we interrogate the ability of
this procedure to disentangle and reconstruct a complex noise spectrum
consisting of 1/f-type and always-finite (Lorentzian) contributions. For
the spin echo FTNS, we process the coherence data as outlined in
“Methods” section E. The 1/f parameters that we extract, even under the
experimentally motivated constraint of setting CðtmaxÞ > 0:005, agree well
with the true spectrum parameters while the 16-pulse DDNS method is
again able to retrieve only part of the Lorentzian contributions to the
spectrum.What ismore, the total reconstructed spectrumobtained simply
through a spin echo measurement faithfully captures both the positions
and widths of the high-frequency peaks and the low-frequency 1/ω
behavior. Importantly, as a consequence of the Riemann-Lebesgue
lemma, this protocol for 1/f noise spectroscopy can be used to disentangle
spectra consisting of combinations of 1/f form and any other form f(ω), as
long as

R1
�1 jf ðωÞjdω<1. Hence, the combination of free induction

decay- and spin echo-based FTNS allows one to address complex spectra
consisting of combinations of the most commonly encountered func-
tional forms in physical systems.

Fig. 6 | Comparison of 1/f-type noise spectrum reconstruction between the SE
FTNS andDDNSmethods. Performance of the spin echo FTNS andASmethods in
reconstructing 1/f-type noise (as given in Eq. (47)), with T�

2 ¼ 2:524. The same
coherence measurement constraints of tmin ¼ 0:01 and tmax ¼ 4 are imposed on
bothmethods, leading to a 300-point reconstruction for the spin echo FTNSmethod
and a 330-point reconstruction for theASmethod. TheASmethod is again unable to
reconstruct relevant low-frequency characteristics of the spectrum due to the lim-
itations in maximum coherence measurement time, and the majority of the
reconstructed points lie in the higher frequency regions, for which zeros are eval-
uated. In contrast, the spin echo FTNSmethod accurately reconstructs both the low-
frequency 1/f behavior and the positions and widths of the finite peaks located at
high frequencies, with high resolution.

Fig. 5 | Comparison of structured noise spectrum reconstruction between the SE
FTNS, FID FTNS, and DDNSmethods. Performance of spin echo (SE) FTNS, free
induction decay (FID) FTNS, and 16-pulse AS for a sharply peaked low-frequency
double-Lorentzian spectrum, with T�

2 ¼ 1:646 (as defined in the main text). Only
every other point in the AS reconstruction has been plotted for clarity. The FTNS
methods identify some of the low-frequency and high-frequency components of the
spectrum. In particular, while the FID FTNS identifies the presence of peaks at ω~0
and atω~2, it cannot capture their details accurately. On the other hand, SE FTNS is
blind to the sharp peak at zero-frequency but resolves the finer structure in the
higher frequency peaks in the spectrum. In contrast, theDDNSmethod again fails to
reconstruct the relevant low-frequency regions of the spectrum due to the restric-
tions imposed by τmax.

https://doi.org/10.1038/s41534-024-00841-w Article

npj Quantum Information |           (2024) 10:52 6



Summary and outlook
We conclude the comparison of both versions of FTNS and state-of-the-art
DDNS with a few general remarks regarding their applicability. First, the
information about low-frequency components in S(ω) is encoded in the
long-time behavior of the coherence function C(t). However, since one
cannot measure arbitrarily small values of the coherence function C(t) at
long times, we set a measurement cut-off of C(t) > 0.005 for all methods
considered, i.e., Álvarez-Suter DDNS and free induction decay- and spin
echo-based FTNS (see “Methods” section D). This limits the number of
points that can be reconstructed via DDNS and can also lead to the
numerical instability of the Fourier transform. While this can lead to poor
resolution of the reconstructed spectrum for the DDNS method, we have
shown that FTNS can recover the prominent features of the noise spectrum,
albeit at the cost of sometimes introducing unphysical oscillations that can
be tamed with more extensive measurements. Second, one can invert
higher-order dynamical decoupling sequences via the FTNS method and
extract the noise power spectrum from the resulting Fourier transform via a
similar iterative approach as that outlined for our spin echo-based FTNS.
We show that in systems where the coherence time is greatly improved
through the application of a spin echo sequence, our spin echo-based FTNS
can outperform the free induction decay-based method in reconstructing
high-frequency spectral features, at the cost of discarding information about
the zero-frequency spectral features. Thus, while the accuracy of DDNS
requires a largenumberof pulses, simple free inductiondecay, and spin echo
measurements suffice for our FTNSprocedures.Aswehave shown, our spin
echo FTNS even enables one to disentangle and accurately reconstruct
spectra containing mixtures of 1/f-type and always-finite contributions. In
cases where the spectrum consists of only always-finite contributions,
simple free induction decay measurements provide the same spectral
information.Hence, even for systemswhose free induction decay coherence
decays rapidly, FTNS offers significant advantages over DDNS in terms of
resolution and simplicity of implementation.

In summary, we have introduced a noise spectroscopy method that
significantly outperforms current DDNSmethods and is significantly easier
to implement from both experimental and theoretical perspectives. Our
work demonstrates the existence of a direct one-to-one invertible map
between the pure dephasing coherence function within the filter function
formalism and the noise power spectrum. Noting that current technology
allows one to minimize measurement and statistical errors, it is clear that
FTNS provides a promising route to accurately and inexpensively measure
noise power spectra. Our FTNS performs efficiently when free induction
decay occurs sufficiently slowly, as in trapped-ion systems54,55. We have
further developed a spin echo FTNS protocol that enables the character-
ization of fast decaying systems exhibiting 1/f-type noise, allowing us to
reconstruct even spectra dominated by strong inhomogeneous contribu-
tions, as in most NV centers19,20. Therefore, our FTNS protocol should be
applicable to a wide range of quantum platforms and can be utilized as a
powerful tool to deduce information about the environmental interactions
that lead to the decoherence of qubits or quantum sensors.

Methods
Figure parameters
Here, we list the spectrum parameters for each figure.

For Fig. 1, the Lorentzian spectrum is given by Eq. (8) with s0 = 2.000/
T2 and ωc = 10.186/T2.

For Fig. 2(a), we employed a combination of four Gaussians,

SðωÞ ¼
X
i

Aie
�ðω�μiÞ2=σ2i ; ð17Þ

where Ai∈ {1.998, 0.3995, 0.7990, 0.9988}/T2, σi∈ {0.9537, 0.1272, 0.9537,
0.9537}/T2, and μi∈ {0.000, 1.272, 4.769, 2.543}/T2. The parameters we
obtained from the early-time fitting are {κ(0), κ(1), κ(2)} = {0.7667, −0.5827,
0.3903}. For Fig. 2b, we used a double-Lorentzian given by Eq. (9) with
parameters s0 = 1.939/T2, ωc,1 =ωc,2 = 19.39/T2, d = 12.12/T2, and

s1 = 6.093/T2. We obtained the following early-time parameters {κ(0), κ(1),
κ(2)} = {3.777,−117.1, 59380}.

For Fig. 5, the spectrum is given by Eq. (14), with parameter values
si∈ {150π, 2π, π, 2}, ωc,i∈ {0.02, 6, 2, 1}, and di∈ {15/8, 20/8, 10/8}.

For Fig. 6, S(ω) is given by

SðωÞ ¼ A
ωn

þ B

1þ ω�d
ωc

� �2 þ
B

1þ ωþd
ωc

� �2 ; ð18Þ

with parameter values A ¼ 1; B ¼ 1; n ¼ 2:5; ωc ¼ 1:5; d ¼ 12:5.

Early-time measurement fitting
Here we report the parameters we have used for the figures in themain text.
However, before turning to each figure, we first detail the fitting procedure
we employ to access the short-time values of the coherence function, C(t),
when the measurement resolution is smaller than the minimum delay time
of the π/2 pulses, i.e., δt < τ.

As discussed in the main text, since our sampling interval δt is smaller
than the minimum delay time τ, we obtain effective coherence function
measurements at early times [0, τ] by employing the smallωt limit of the free
induction decay attenuation function, χFID(t). For early times (i.e., when
ωt≪ 1), one can expand χFID(t) as

χFIDðtÞ ¼ 1
π

R1
�1 dω 1

ω2 SðωÞsin2 ωt
2

� �
≈ 1

π

R1
�1 dω 1

ω2 SðωÞ ðωtÞ2
22 � ðωtÞ4

24 � 3 þ 2ðωtÞ6
26 � 45

h i
� κð0Þt2 þ κð1Þt4 þ κð2Þt6;

ð19Þ

where

κð0Þ ¼ 1
22π

Z 1

�1
dω SðωÞ; ð20Þ

κð1Þ ¼ 1
24 � 3π

Z 1

�1
dωω2SðωÞ; ð21Þ

κð2Þ ¼ 1
25 � 45π

Z 1

�1
dωω4SðωÞ; ð22Þ

correspond to the integral over the power spectrum and its first two
moments. Since onedoesnot have access to {κ(0),κ(1),κ(2)} a priori,we employ
a polynomial fitting procedure subject to the functional form in Eq. (19) to
obtain values for the attenuation function, χFID(t), over the interval [0, τ]. To
ensure physically correct behavior for the interpolated χFID(t) in the short-
time region,we employ twoadditionalfitting constraints:C(t→0) = 1and in
the region at and beyond τ, thefitting proceduremust alignwith thefirst few
measured values. Thus, we perform the polynomial fitting in the interval [0,
τ+ ϵ] where ϵ contains the first few points accessible via direct
measurement of the coherence curve. This ensures that the inferred values
of these constants are correctly reconstructing the expected coherence curve
well into the ϵ interval that one can directly measure. We expect that,
depending on the structure of the noise and the resulting coherence
function, one might need to keep more terms in the expansion above to be
able to infer the points in the [0, τ+ ϵ] interval in future applications.

We apply similar expansion to the spin echo sequence to reconstruct the
early-time behavior of the corresponding attenuation function. In this case,

χSEðtÞ ¼ 4
π

R1
�1 dω 1

ω2 SðωÞsin4 ωt
2

� �
≈ 4

π

R1
�1 dω 1

ω2 SðωÞ ðωtÞ4
24 � ðωtÞ6

26 � 32
þ ðωtÞ8

28 � 5

h i
� κð0Þt4 þ κð1Þt6 þ κð2Þt8:

ð23Þ

Here, one can find the parameters via the same fitting procedure as
described above. This early-time reconstruction of the spin echo sequence
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both enables the implementation of the FTNS protocol and allows the spin
echo DDNS to go beyond the spectral limit set by theminimum delay time.
This can be seen in Figs. 5 and 6 where we remove the frequency limitation
of the DDNS reconstruction set by the minimum delay time.

Furthermore, depending on the quality of the obtained fit, it may be
necessary to modulate the transition between the fitted data and the mea-
surement data if the resulting first and second numerical derivatives show
large fluctuations at the boundary. This can be done by multiplying the
measured data by a shifted Error function which has a transition length of
about 5δt and a transition point at about 5δt þ τmin, and also multiplying
the fitted data by the negative of the same Error function. These two sets of
data can now be added to give a modulated time series data with a sup-
pressed effect of any discontinuities arising in the transition from the fitted
data to the measured data. We employed this procedure in the early-time
reconstruction implemented in Fig. 2.

In all examples shown in this paper except for Fig. 1, we have restricted
the total measurement time such that the coherence value does not become
less thanC(t) = 0.005. This ensures that the measured values remain within
the reasonable experimentally accessible range.

Linear behavior of χ(t) at long times
Here, we demonstrate that €χFIDðtÞ ! 0 at t→∞for any spectrum whose
integral over all frequencies remainsfinite. Todo this,we recall theRiemann-
Lebesgue lemma, which states that the Fourier transform of a function f(ω)
vanishes as t→∞, as long as

Z 1

�1
jf ðωÞj dω <1: ð24Þ

In FTNS, €χFIDðtÞ is equal to the inverse Fourier transform of SðωÞ= ffiffiffiffiffi
2π

p
.

Thus, €χFIDðt ! 1Þ ! 0 is simply a consequence of the Riemann-
Lebesgue lemma so long as the noise spectrum S(ω) is of a functional form
whose area under the curve is finite, which is a condition many physical
noise spectra are expected to obey. This result guarantees that under such
conditions, χFID(t) can only grow at most linearly in t at t→∞. This ensures
that fitting χFID(t) to a linear function at long t is a valid method for
mitigating the effects of measurement error for many physical systems.

For concreteness, we now explicitly show that χFID(t) behaves linearly
at t→∞ for the Lorentzian and the Gaussian spectra, which are two com-
monly encountered spectral shapes. To do this, we consider a generic form
for S(ω) and obtain an expression for χFID(t). The t→∞ behavior of this
χFID(t) reveals the expected linear behavior. We reiterate that these are
specific examples of a general result that holds for any realistic noise spectrum
whose integral over all frequencies remains finite.

We first consider a Lorentzian spectrum:

SðωÞ ¼ A
1

1þ ω�d
ωc

� �2 þ
1

1þ ωþd
ωc

� �2

0
B@

1
CA: ð25Þ

This formensures that it is symmetric. Taking the inverse Fourier transform
of SðωÞ= ffiffiffiffiffi

2π
p

, we obtain,

€χFIDðtÞ ¼ Aωce
�tωc cosðdtÞ: ð26Þ

Clearly, this is a function that decays exponentially to zero at long times.
From this we can obtain _χFIDðtÞ and χFID(t):

_χFIDðtÞ ¼
Aωce

�tωc ðd sinðdtÞ � ωc cosðdtÞÞ
d2 þ ω2

c

þ C1; ð27Þ

χFIDðtÞ ¼
Aωce

�tωc ω2
c � d2

� �
cosðdtÞ � 2dωc sinðdtÞ

� �
d2 þ ω2

c

� �2 þ C1t þ C2; ð28Þ

where C1 and C2 are integration constants, which we can find by enforcing
the appropriate boundary conditions. The coherence should start at 1 at
t = 0, so we expect χFID(t = 0) = 0. We can also examine the boundary
condition for _χFIDðtÞ:

_χFIDðtÞ ¼ 1
π

R1
�1 dω SðωÞ

ω sin ωt
2

� �
cos ωt

2

� �
; ð29Þ

which implies that _χðt ¼ 0Þ ¼ 0. We impose these by evaluating _χð0Þ and
χ(0):

_χFIDð0Þ ¼ � Aω2
c

d2 þ ω2
c

þ C1 ¼ 0; ð30Þ

χFIDð0Þ ¼
Aωc ω2

c � d2
� �

d2 þ ω2
c

� �2 þ C2 ¼ 0: ð31Þ

Hence,

χFIDðtÞ ¼
Aωce

�tωc ω2
c � d2

� �
cos dtð Þ � 2dωc sinðdtÞ

� �
d2 þ ω2

c

� �2
þ Aω2

c

d2 þ ω2
c

t � Aωc ω2
c � d2

� �
d2 þ ω2

c

� �2 :

ð32Þ

Thus, the long-time limit of the attenuation function is a linear func-
tion in t,

lim
t!1

χFIDðtÞ ¼
Aω2

c

d2 þ ω2
c

t � Aωc ω2
c � d2

� �
d2 þ ω2

c

� �2 : ð33Þ

One can perform a similar analysis for a Gaussian spectrum,

SðωÞ ¼ A exp � ω� d
σ

� �2
( )

þ A exp � ωþ d
σ

� �2
( )

: ð34Þ

Wecanagain take the inverseFourier transformofSðωÞ= ffiffiffiffiffi
2π

p
toobtain,

€χFIDðtÞ ¼
A

2
ffiffiffi
π

p jσj exp � 1
4
tð4id þ tσ2Þ

� �
1þ e2idt
� �

; ð35Þ

which goes to zero at long times. We then integrate Eq. (35) to obtain
expressions for _χðtÞ and χ(t) subject to their constraints at t→0, i.e., χ(0) = 0
and _χð0Þ ¼ 0:

_χFIDðtÞ ¼ Ae�
d2

σ2Re Erf
id
σ
þ σt

2

� �� �
; ð36Þ

χFIDðtÞ ¼ �
2A σþie

�d2

σ2
ffiffi
π

p
d Erf id

σð Þ
� �

ffiffi
π

p
σ2

þRe
Ae

�d2

σ2 2σe
d
σþ iσt

2ð Þ2 þ i
ffiffi
π

p
2dþ iσ2tð Þ Erf id

σ�σt
2ð Þ

� �
ffiffi
π

p
σ2

0
@

1
A;

ð37Þ

whereℜ( ⋅ ) denotes the real part, and Erf( ⋅ ) is the error function. Noting
that limt!1 Erf ðtÞ ! 1, it is clear that the long-time limit of the
attenuation function becomes,

lim
t!1

χFIDðtÞ ¼
A
σ2

e�
d2

σ2 �2id Erf
id
σ

� �
þ σ2t

� �
� 2σffiffiffi

π
p

� �
: ð38Þ

Hence, the long-time behavior of χFID(t) for a Gaussian-shaped power
spectrum is also linear in t, as expected from theRiemann-Lebesgue lemma.
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Error mitigation protocol
Herewe outline the details of our approach tomitigatemeasurement errors.
In particular, we detail the protocol we developed and employed to generate
Fig. 4 from noisy coherence measurements. As a demonstration, we have
used Mathematica, but our protocol is general and can be implemented
withinother computational software.Weemphasize that this is one example
of a denoising protocol; other procedures may be more appropriate for
different data and physical problems.

InFig. 4,wemodel the noise in the coherence function as arising froma
normal distribution with mean 0 and standard deviation 0.001 at each
measurement point. The noise has been adjusted such that for early times,
the acquired value for C(t) does not exceed unity, and at later times it does
not fall below zero.

We now summarize our denoising protocol:
1. Mirror the coherence data around t = 0 to get an effective coherence

profile from�Tmax to Tmax. This allows the numerical time derivative
to obtain a better value of χ(t) at t = 0, which helps to improve the
performance of the Fourier transform near ω = 0.

2. Process thenoisy coherencedata througha low-passfilter,with the cut-
off frequency set to half of the sampling rate. All instances of the low-
pass filter are implemented using the Mathematica built-in
LowpassFilter.

3. Take the logarithm of the smoothed coherence to get effective
χ(t) values.

4. Plot the resulting data to visually discern whether the late-time
behavior appears linear and within what range a linear fit appears
suitable. In this case, we determined that linear fits from t/Tmax = 0.577
to t/Tmax = 0.990 for Fig. 4a and the 0.5% and 0.1% effective error
panels for the Gaussian spectrum in Fig. 7, and from t/Tmax = 0.539 to
t/Tmax = 0.987 for Fig. 4b and the 0.5% and 0.1% effective error panels
for the Lorentzian spectrum in Fig. 7, were appropriate. The
justification for this linear fitting at long times is given in Sec. II of
this SM. For the linear fitting in the 1.0% effective error panels, we used
t=Tmax ranges [0.577, 0.825] for the Gaussian spectrum and [0.359,
0.718] for the Lorentzian spectrum.

5. Perform a linear fit on the ranges selected. We employed the Fit
function in Mathematica.

6. Replace the data within the selected range with the linear fit. This leads
to a modified χ(t), which we denote by ~χðtÞ.

7. Optional: After applying a linear fit, one can extend the ~χðtÞ data to
arbitrarily long times, which results in a longer effective measurement
time,which in turnprovides improved resolution in frequency space of
the FTNS approach. This step was not implemented in the generation
of Fig. 4 in the main text and its implementation would only increase
the frequency resolution of the spectrum.

8. Perform a numerical time derivative of ~χðtÞ. To obtain the numerical
time derivatives, we implemented first order forward and backward
difference approximation on the first and last data points, and a second
order centered-difference approximation on the rest of the points. This

is the algorithm behind various differentiation packages, such as
numpy.gradient, which we used for the simulations in Figs. 1, 2,
and 3 in the main text.

9. If the linear fitting causes a discontinuity, we remove its effect on the
derivative by setting the value of the first derivative at the discontinuity
to the derivative of the linear fit.

10. Apply another low-pass filter at a cut-off frequency at 1/4 of the
sampling rate. Note that this step was implemented for all Gaussian
spectra in Figs. 4 and 7, but not for the Lorentzian spectra in
Figs. 4 and 7.

11. We take a second numerical time derivative of the data.
12. We apply a Fourier transformon the data as discussed in themain text:

one can, for example, use any FFT implementation available in
numerical packages (e.g.,numpy) or implement the Fourier transform
manually by performing an integral of the quantity €~χðtÞeiωt= ffiffiffiffiffi

2π
p

over
time, where the integration is approximated by the trapezoidal rule
without changing the result.

13. For the Fourier transform, we employed a frequency range from ± half
of the sampling rate of the coherence, with δt=Tmax ¼ 0:002 for Fig.
4a, b. Finally, this is divided by

ffiffiffiffiffi
2π

p
to obtain the denoised spectra seen

in Fig. 4.

We can study the performance of FTNS using this particular
denoising protocol at various effective measurement error percentages.
Figure 7 gives examples of this for the two spectra used Fig. 4 in themain
text at effective noise values of 1.0%, 0.5%, and 0.1%. As expected, lower
noise values give better agreement with the true spectrum. Yet, the
agreement between FTNS and the true spectrum demonstrates that
FTNS can robustly capture the major peaks in the spectrum in all cases.
Strikingly, the artifacts of the Fourier transform of noisy data, which are
most prominent in the examples with 1.0% noise levels, systematically
decrease with increased sampling. Thus, to robustly identify features of
the true spectrum in an experimental implementation of FTNS, it would
be helpful to compare averages of smaller batches of measurements for
common peaked features that appear consistently. Such comparisons
can also be used to check the convergence of the reconstructed spectrum
as a function of the extent of averaging done during the measurement
process.

Noise spectroscopy protocol for 1/f-type spectra
Here,we show the long-timebehavior of χSE(t) under both1/f and integrable
spectra and use these results to formulate a noise spectroscopy protocol for
spectra consisting of both 1/f and finite peaked features.

First we show the long-time behavior of χSE(t) under 1/f noise. From
Eq. (11),

F ½€χSEðtÞ� ¼
ffiffiffi
2
π

r
Mð2ωÞ ¼

ffiffiffi
2
π

r
Sð2ωÞ � SðωÞ=2� �

;

Fig. 7 | Noise spectrum reconstructions using the
FTNS method under different values of effective
simulated measurement error. FTNS in the pre-
sence of various effective measurement errors, for
the two examples demonstrated in Fig. 4. Specifi-
cally, the noise levels for the panels are 1.0% for
(a, b), 0.5% for (c, d), and 0.1% for (e, f). While
performance improves for lower effective noise, the
peaked spectral features remain more or less robust
under all three cases.
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we can derive the analytic form of χSE(t) expected for 1/f-type spectra in the
long-time limit, in a similar manner to what was shown in “Methods”
section C.

For

S1=f ðωÞ ¼ A=ωn ð39Þ

with the constraint that 0 < n < 3, we obtain for χ(t) using spin echo FTNS

χSE;1=f ðtÞ ¼ Ynt
nþ1; ð40Þ

whereYn is given inEq. (16).Note the characteristic t
n+1 dependencewhich,

under our assumption that n > 0, grows faster than linear in t.
These results allow us to perform noise spectroscopy on spectra con-

sisting of a linear combination of such functions, and therefore on gen-
eric∝ 1/ωn type spectra.

We now study the long-time behavior of χSE(t) under integrable noise
spectra. For generic noise spectra which satisfy

Z 1

�1
jMð2ωÞjdω<1; ð41Þ

the result

€χSEðt ! 1Þ ! 0 ð42Þ

holds as a consequence of the Riemann-Lebesgue lemma (see “Methods”
section C). This means that χSE(t→∞)∝ t should hold as long as Eq. (41) is
satisfied. Note that this condition is explicitly violated for a 1/f-type noise
and so 1/f noise does not exhibit linear t dependence at t→∞.

The above results indicate that if we assume the total noise spectrum to
be a linear combination of instances of spectra satisfying either category, we
may be able to isolate the 1/f contribution through a fit of themeasured χ(t)
to a function of the form

χfitðtÞ ¼ αjtjγ þ βt þ δ: ð43Þ

Eq. (40) shows that the parameters α and γ fully characterize the 1/f com-
ponent. Knowing these parameters, one can subtract off the contribution
due to the 1/f component to obtain any residual structure in the noise
spectrum. That is, if

χðtÞ ¼ χ1=f ðtÞ þ χresidualðtÞ; ð44Þ

one can fit χ(t) to Eq. (43) to obtain values for α and γ, which can then be
used to find the parameters characterizing the 1/f noise,A and n, like

n ¼ γ� 1; ð45Þ

A ¼ � 2γπα csc 1
2 πðγ� 1Þ� �

2γ � 4ð ÞΓð�γÞ ; ð46Þ

from Eqs. (39) and (40). One can then use these parameters to reconstruct
χ1/f at the time points corresponding to those obtained in the measurement
χ(t). A pointwise difference between the measured χ(t) data and the
reconstructed χ1/f(t) data yields an effective χresidual(t).After removing the 1/f
component, the residual response should only have a linear dependence in
time at long times. At this point, one can apply the iterative spin echo FTNS
procedure outlined in the “Spin Echo FTNS” section in the main text to
reveal any additional structure in the noise spectrum.

For the specific examples shown in Fig. 6, we employed the following
procedure:

1. Extract χ(t) from the measured C(t) using Eq. (1). In our numerical
example in Fig. 6, we used S(ω) given by

SðωÞ ¼ A
ωn

þ B

1þ ω�d
ωc

� �2 þ
B

1þ ωþd
ωc

� �2 ; ð47Þ

with example parameter values A ¼ 1; B ¼ 1; n ¼ 2:5; ωc ¼ 1:5;
d ¼ 12:5, and the spin echo filter function. In our demonstration, the
experimentally motivated constraint that only measurements up to a final
time such that all C(t) < 0.005 should be taken was implemented.
2. We then fit this measured χ(t) data to a function of the form given by

Eq. (43). In our demonstration, we employed the FindFit function in
Mathematica to obtain parameter values

α ¼ 0:0385433; β ¼ 0:0223275;

δ ¼ 0:0167974; γ ¼ 3:51096:

3. We use the α and γ values obtained from the fit to construct the 1/f part
of the spectrumviaEqs. (45) and (46). Forourdemonstration,weobtain

S1=f ðωÞ ¼ 0:974526=ω2:51095: ð48Þ

Note that the effectiveA andn values obtained from thefit are in reasonable
agreement with their exact values, A ¼ 1 and n = 2.5.
4. From the effectiveA and n values obtained from the previous step, we

generate a time series data of χ1/f(t) at time points corresponding to the
measurement times of the original data, via Eq. (40).We then subtract
these values, pointwise, from the original measurement data χ(t) to
obtain χresidual(t). χresidual(t) corresponds to the component of the
attenuation function that is due to all except the 1/f component of the
noise spectrum.

5. We then perform the spin echo FTNSprotocol, as outlined in themain
text, on χresidual(t). This provides an additional contribution to the total
noise spectrum, Sresidual(ω).

6. Finally, we add the resulting S1/f(ω) and Sresidual(ω) to obtain the total
reconstructed spectrum. We show in Fig. 6 of the main text that this
noise spectroscopy protocol can sufficiently characterize the nature of
the 1/f approach of the spectrum at ω→0, as well as identify the pre-
sence of any additional high-frequency peaks whichmay be present in
the noise spectrum.

Data availability
The data that support the findings of this study are available from the
authors upon request.

Code availability
The code used to generate the results of this study are available from the
authors upon request.
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