
npj | quantum information Article
Published in partnership with The University of New South Wales

https://doi.org/10.1038/s41534-024-00834-9

Verifying the security of a continuous
variable quantum communication
protocol via quantummetrology

Check for updates

Lorcán O. Conlon 1,2,3 , Biveen Shajilal 1,2,3, Angus Walsh1, Jie Zhao 1, Jiri Janousek1,
Ping Koy Lam 1,2 & Syed M. Assad1,2

Quantummechanics offers the possibility of unconditionally secure communication betweenmultiple
remote parties. Security proofs for such protocols typically rely on bounding the capacity of the
quantum channel in use. In a similar manner, Cramér-Rao bounds in quantum metrology place limits
on how much information can be extracted from a given quantum state about some unknown
parameters of interest. In this work we establish a connection between these two areas. We first
demonstrate a three-party sensingprotocol,where the attainable precision is dependent on howmany
parties work together. This protocol is then mapped to a secure access protocol, where only by
working together can the parties gain access to some high security asset. Finally, we map the same
task to a communication protocol where we demonstrate that a higher mutual information can be
achieved when the parties work collaboratively compared to any party working in isolation.

Non-classical correlations have been shown to enable a range of quantum-
enhanced tasks1,2. One such example is quantum metrology, which utilises
quantum resources to achieve a better measurement sensitivity than is
classically possible. This could be in the form of quantum probe states3–8, or
quantum-enhanced measurements9–12. Indeed, the connection between
entanglement and quantum enhanced sensing has been widely studied13–18.
More recently, it has been shown that quantummetrology tasks can be used
to witness steering19. The connection between Bell correlations20 and
quantum sensing has also been investigated21,22.

Quantum resources also offer the promise of unconditionally secure
communication. This can be done through quantum key distribution
(QKD), which involves the sharing of a secret key between two parties in a
manner such that no possible malicious evesdropper can access the key.
The first such protocol was introduced by Bennett and Brassard in 1984,
where information was encoded in the polarisation degree of freedom of
photons23. An entanglement-based QKD protocol was later proposed by
Artur Ekert in 199124. Over the subsequent decades, there has been much
progress towards QKD networks in various scenarios25–32. A related area,
which also uses the laws of quantum mechanics for its security, is that of
secret sharing. This involves the sharing of either classical or quantum
information between a number of trusted parties. There has been a great

deal of work on the secret sharing of both classical and quantum infor-
mation using both discrete variable (DV)33–37 and continuous variable
(CV) systems38–46. Secret sharing can be used to ensure that only trusted
parties gain access to highly confidential information such as bank
accounts or missile launch codes.

In this work we design and implement a variant of conventional
secret sharing protocols, allowing only certain sets of trusted parties to
access confidential information. We use techniques from quantum
metrology to bound the information which can be attained by the
untrusted parties. Our protocol involves distributing a quantum statewith
unknown displacements among three parties. When considering quan-
tum sensing, wewill treat the unknowndisplacements as parameters to be
estimated and when considering quantum communication, we will treat
the unknown displacements as the secret information encoded in the
quantum state. This enables us to draw a direct connection between these
two tasks.

The layout of this paper is as follows. In ‘Preliminary material’,
we introduce the preliminary material needed. In ‘Theoretical results’
and ‘Experimental results’, we present our theoretical and experi-
mental results respectively. Finally, we conclude the paper in
‘Discussion’.
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Results
Preliminary material
A CV quantum state can be described by observables in an infinite
dimensional Hilbert space which have a continuous spectrum of possible
eigenvalues47. Gaussian states are those with Gaussian measurement sta-
tistics. In our experiments, the variables of interest are the amplitude and
phase quadratures of the electromagneticfield, denoted x̂ and p̂ respectively.
These quadrature variables are defined in terms of the creation and anni-
hilation operators, denoted â and ây respectively, as x̂ ¼ âþ ây and
p̂ ¼ �iðâ� âyÞ. As the creation and annihilation operators satisfy
½â; ây� ¼ 1, the x̂ and p̂ quadrature operators satisfy ½x̂; p̂� ¼ 2i. From the
uncertainty principle48–51, the variances in both quadratures must satisfy

Δx̂2Δp̂2 ≥ 1; ð1Þ

where Δx̂2 is the variance in measuring the x̂ quadrature and similarly
for Δp̂2.

There do exist non-classical Gaussian states which can violate
this uncertainty principle in certain settings. For example, by mixing
two squeezed vacuum states on a 50:50 beam splitter one can create a
two mode squeezed vacuum (TMSV) state. The two modes of this
state are correlated in the x̂ quadrature and anti-correlated in the p̂
quadrature. With sufficiently high squeezing, low antisqueezing, and
low loss, this state can be entangled or steerable in the x̂ and p̂
quadratures. With such states, it is possible to achieve a measurement
sensitivity better than what is allowed by Eq. (1), see e.g. ref. 52. The
non-classical correlations of the TMSV enable uniquely quantum
mechanical tasks such as quantum teleportation53,54, quantum
illumination55,56, quantum enhanced sensing52,57–60 and QKD61,62 to be
carried out.

Theoretical results
We consider the set-up shown in Fig. 1. The classical information that
the dealer wishes to share with the three parties are displacements in
the x̂ and p̂ quadratures, denoted as αx,i and αp,i, respectively (The
rational behind using subscript i will become evident later in the
manuscript). In an ideal experimental implementation of our pro-
tocol, the dealer prepares a TMSV state and introduces displacements
on one arm. After mixing one mode of the TMSV on a second 50:50
beamsplitter with an ancilla vacuum state, the three parties in Fig. 1
share a continuous variable state with the mean vector
0 0 0 0 αx;i αp;i
� �T

where the modes are ordered as
hx̂Ci hp̂Ci hx̂Bi hp̂Bi hx̂Ai hp̂Ai
� �T

, where ĥiji denotes the
expectation value of the î quadrature for party j. The corresponding
covariance matrix is

where r is the squeezing parameter. We now wish to investigate various
quantum information tasks which can be achieved with this state and the
connection between these tasks.

Multiparameter estimation—simultaneous estimation of displace-
ments in both quadratures. We first compute the theoretical limits on
how precisely the displacements shown in Fig. 1 can be simultaneously
estimated. This is done for one party working alone, parties working in
pairs, and all three parties working together. For a single party working
alone, we shall use the Holevo Cramér-Rao bound (HCRB) to evaluate
the precision which can be achieved. This is done as the HCRB provides
the ultimate limit on the variance which can be achieved in multi-
parameter estimation63,64. In general, the HCRB may require an entan-
gling collective measurement on infinitely many copies of the probe state
to be saturated65–68, suggesting that other Cramér-Rao bounds may be

Fig. 1 | Schematic of the experimental set-up for demonstrating metrological
tasks with a connection to secure communication. a Conceptual schematic of the
experiment. Highly sensitive information, depicted here as access to a bank account,
is shared among three parties in such a manner that only trusted groups of parties
can access the information. b Experimental set-up. The dealer (e.g. the banker in a))
mixes two squeezed states on a 50:50 beamsplitter to generate a two-mode squeezed
vacuum (TMSV) state. One mode is split on a second 50:50 beamsplitter and these

modes are sent to parties B and C. The dealer implements a displacement (αx,i, αp,i)
in the x̂ and p̂ quadratures on the final arm of their state before this mode is sent to
party A. Depending on whether the parties work cooperatively or independently
differing amounts of information can be extracted about the unknown displace-
ments (αx,i, αp,i). AM and PM represent amplitude and phase modulators
respectively.
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more experimentally relevant69–71. However, in the specific case of esti-
mating Gaussian displacements, the HCRB can be saturated by linear
measurements64. When considering two and three parties working
together, we shall evaluate the precision attainable by a specific mea-
surement strategy. This is done to allow us to compare the experimentally
attained two and three party precisions to the ultimate theoretical limits
on the precision attainable by a single party.

The average mean squared error (MSE) that the party or parties can
achieve when estimating αx,i is given by

MSEx ¼ ðαx;i � ~αx;iÞ2; ð3Þ

where we use a tilde to denote the estimated value and MSEp is defined
similarly. When m parties work together, we will denote the average MSE
with which αx,i and αp,i can be measured as vαx ;m and vαp ;m respectively.
Clearly we have vαx ;1 ≥ vαx ;2 ≥ vαx ;3.

OnepartyMSE. From Fig. 1, it is evident that only party A will be able to
access any information about the unknown displacements whenworking
in isolation.Without any information from the other two parties, party A
will receive a displaced thermal state, obtained by tracing out the first and
second modes of the shared state in Eq. (2). In the ideal case, party A
obtains a thermal state with variance coshð2rÞ in both quadratures. More
generally, we may have a slight asymmetry between the two quadratures,
and so we write the covariance matrix of the state accessible by party A as

v1 0

0 v2

� �
¼ 1þ 2n1 0

0 1þ 2n2

� �
; ð4Þ

where ni characterises the thermal variance. If n1 = n2, then this quantity
represents the mean thermal photon number. Note that without loss of
generality we can assume that v1≥ v2. In themethods section, we show that,
for this state, the HCRB for estimating the amplitude and phase displace-
ments simultaneously is

vαx ;1 þ vαp ;1 ≥ CH ¼ 4þ 2n1 þ 2n2: ð5Þ
Note that this MSE is normalised for the number of probe states used.

In the scenario shown in Fig. 1, this represents the smallest possible average
sum of the MSE that party A can attain using an unbiased estimator.

TwopartyMSE.When considering two parties working together, wewill
not use the HCRB to bound the MSE. Rather, we shall directly compute
the MSE attainable when using homodyne detection as this is what was
implemented in our experiment. Let us consider the ideal case, with no
loss or thermal noise. Note that when fitting to experimental data later in
themanuscript we take such imperfections into account. In this scenario,
parties A and B (also parties A and C) share the following covariance
matrix
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Interestingly, by recombining themeasurement results of partiesAand

B (scaling the measurement results of party B by an optimised factor), it is
possible to always achieve a MSE of vαx ;2 ¼ vαp ;2 ¼ 1, regardless of the
squeezing level. In this case, the estimator used for the unknown Gaussian
displacement is

~αx ¼ xA � gBxB; ð7Þ

where we use xj to denote the x̂ quadrature measurement results for party j
and gB is a constant chosen to minimise the MSE. As gB depends on the

experimental parameters, such as r, it must be optimised for every data
point. Quantities for the p̂ quadrature are similarly defined.

For a fair comparison with the single party case, in the two party case
wemeasure each quadrature with half of the total states, which increases the
MSE by a factor of 2, giving

vαx ;2 þ vαp ;2 ≥ 4: ð8Þ

In any experimental implementation with imperfections, the variance
achieved by any two parties can only be larger than this.

Three party MSE. As before, we consider the ideal case, with no loss or
thermal noise. In this scenario, if all three parties measure the same
quadrature, parties B andC can recombine their results, scaled by a factorffiffiffi
2

p
, so that all three parties effectively share an ideal two mode squeezed

vacuum state. Hence, in this case, the estimator that is used is

~αx ¼ xA � gBCðxB � xCÞ=
ffiffiffi
2

p
; ð9Þ

where gBC is a constant optimised to minimise the MSE, and a similar
estimator is used for αp. Note that when there are no experimental imper-
fections, the optimal value of gBC is gBC ¼ tanhð2rÞ72. However, with
experimental imperfections gBC must be optimised for every data point.
Using this information, it is easy to calculate that in the ideal case all three
parties can achieve a MSE of

vαx ;3 þ vαp ;3 ≥
8

e2r þ e�2r
; ð10Þ

whic goes to 0 in the limit of infinite squeezing. A comparison of the MSE
which can be attained by the different combinations of parties is shown in
Fig. 2.

Secure access protocol. We are now in a position to introduce our
secure access protocol. For this, we draw a comparison with existing
quantum secret sharing protocols. Note that we are considering the
sharing of classical information using quantum states, as opposed to
sharing the quantum state itself. In conventional (k, n) secret sharing, the
dealer encodes information in such a way that any k parties, out of the
total n parties, can work together to reconstruct the information encoded
by the dealer. The remainingn− kparties cannot access any information.

Fig. 2 | Theoretical limits on the MSE in an ideal experiment when we restrict to
the set-up shown in Fig. 1.We show how the attainable MSE changes as a function
of the squeezing level for one party working independently, two parties working
together and three parties working together.
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In practice, however, such perfect secret sharing is hampered by
experimental imperfections and the finite entanglement available. We
consider the protocol secure, only if the groups of k parties acquire more
information than the groups of n− k parties. Note that we can also
consider approximate secret sharing, where k parties acquire some
approximate information about the secret, as do the remaining n− k
parties73,74.

Our protocol differs slightly from existing protocols. In the ith
round of the protocol the dealer implements displacements
αi = (αx,i, αp,i). In each round the parties, either working together or
independently, estimate either αx,i or αp,i. As different measurements
are needed to acquire information about αx,i and αp,i, the parties must
announce at the end of the entire protocol which parameter they were
trying to measure in each round, αx,i or αp,i. Any rounds in which the
parties measured different parameters can then be discarded. We use
(αx, αp) to denote the two-dimensional vector of αx,i and αp,i values that
are not discarded. After the reconciliation step, if we have Mx

remaining rounds of data in which αx,i was measured by all parties, the
average MSE that the parties achieve is given by

MSEx ¼
1
Mx

X
i

ðαx;i � ~αx;iÞ2; ð11Þ

and MSEp is defined similarly.
As discussed in the previous section, given a certain input state, the

dealer can use bounds from quantum metrology to place limits on how
small vαx ;m and vαp ;m can be. This allows the dealer to define a threshold
averageMSE vT, belowwhich the protocol is declared secure. In our setting,
if we wish to ensure that no single party can access the trusted information,
we shall refer to a protocol as δ secure if

Prðvαx ;1 þ vαp ;1 ≤ vTÞ≤ δ; ð12Þ

where Pr(X) is the probability of the event X occurring. Intuitively, δ
represents the likelihood of any single party obtaining an average MSE
below a certain threshold, or equivalently acquiring an amount of infor-
mation about the displacements above a certain threshold. Although the
MSE attainable by any party working independently (Eq. (5)) is larger than
when the parties work together (Eqs. (8), (10)), this is only true statistically,
i.e. on any given experimental run there is some finite probability that a
party working alone predicts a value for α which is very close to the true
value. Hence, in any practical setting with finite statistics, security can only
be guaranteed up to some probability, Eq. (12). The MSE values attained
follow a scaled χ2 distribution. When using N probe states to measure each
quadrature, if the meanMSE is denoted μM, then the probability density of
MSE’s which will be attained is given by

PðMSE ¼ xÞ ¼ 2N
μM2

NΓðNÞ
2xN
μM

� �N�1

e�
xN
μM ; ð13Þ

see ‘Methods’ section for the derivation.
Given the quantum state generated by the dealer, we can use the above

equation to compute Prðvαx ;1 þ vαp;1 ≤ vTÞ for all possible vT. From this
definition alone, we can trivially choose vT = 0 to ensure that maximum
security is achieved.However, in this case theprotocolwill never succeed, i.e.
although any individual party cannot achieve an MSE of 0, with any prac-
tical resources, all of the parties working together also cannot achieve an
MSE of 0. Thus, it is necessary to also define the success rate as

Ps;2ð3Þ ¼ Prðvαx ;2ð3Þ þ vαp ;2ð3Þ ≤ vTÞ: ð14Þ
A good protocol should minimise δ and maximise Ps,2(3).

Attainable mutual information. Finally, let us consider how to quantify,
the amount of classical information that the dealer can share with these

three parties. Assume the dealer chooses the displacements α from a
Gaussian distribution with variance Vdist. The parties involved in the
protocol then attempt to estimate αx,i and αp,i as well as they possibly can.
Averaging over all (αx, αp) allows the correlation matrix, between the
dealer and any number of parties to be constructed as

σ ¼

Vdist 0 Vdist 0

0 Vdist 0 Vdist

Vdist 0 Vdist þ vαx ;m 0

0 Vdist 0 Vdist þ vαp;m

0
BBBB@

1
CCCCA; ð15Þ

where σ i;j ¼ h~αi~αji � h~αiih~αji and we use the mode ordering
ð~αx;D; ~αp;D; ~αx;p; ~αp;pÞ where (in an abuse of notation) the second subscript
now denotes whether we are considering either the dealer or the players
estimate. Thus, the first two diagonal elements represent the variance of the
parameters to be estimated, and the second twodiagonal elements represent
this variance plus the error associated with the imperfect measurement of
the unknown displacements. The off-diagonal elements represent the
correlation between the dealer’s estimate (i.e. the true value) and the
estimate made by the players. Note that in this way multiple different
covariance matrices can be constructed, between the dealer and any single
party, between the dealer and anypair of parties, and between the dealer and
all three parties. From these covariance matrices the mutual information
between the dealer and the different parties can be constructed. Let usmake
the assumption that vαx ;m ¼ vαp ;m ¼ vα;m. Then the mutual information
can be calculated as

MI ¼ logðVdist þ vα;mÞ � logðvα;mÞ: ð16Þ
Therefore, to achieve amutual informationof cbits ormore,we require

a MSE less than or equal to

vα;m ¼ Vdist

2c � 1
: ð17Þ

From this equation and Eq. (13), we can determine the probability of
obtaining a mutual information above a certain value.

This allows us to compare the mutual information when different
numbers of parties work together. We note that, due to the asymmetry of
our scheme, when parties C or B work individually or as a pair, they can
access no information. Hence, we will ignore these combinations going
forward. In this sense, we are not implementing ‘real’ secret sharing, as not
all subsets of two or more parties can access the secret information.

Experimental results
In this section, wewillfirst describe our experimental set-up, and then verify
that the quantum statewe are using is entangled.Wenext present results for
the sensing task described in the previous section. Finally, we connect these
results to the secret sharing of classical information. Secret sharing usingCV
states has been investigatedmany times in the past38–46 and so the idea is not
novel in and of itself. However, we shall analyse the security through the
HCRB. For DV systems, the analogy between secure quantum sensing and
quantum secret sharing was noted in ref. 75. In this work security was
obtained by preparing check states with a certain probability, as opposed to
measuring conjugate parameters as is the case here.

Experimental set-up. A schematic of the experimental set-up is shown
in Fig. 1b). The dealer, generates two squeezed states andmixes themon a
50:50 beam splitter. Details on the squeezed light sources used can be
found in ref. 76. One mode of this state is subject to a second 50:50 beam
splitter from which the two output modes are respectively distributed to
parties B and C. A displacement in each quadrature is implemented on
the remaining mode, before this is distributed to party A. In practice this
displacement is implemented through an auxiliary beam which is
amplitude and phase modulated and then mixed with party A’s mode of
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the TMSV state on a 98:2 beam splitter. The aim of the three parties,
either working together or independently, is to measure the displace-
ments as accurately as possible. In our experiment, each party imple-
ments homodyne detection on either the x̂ or p̂ quadrature. However, in
our security analysis, we do not place such restrictions on any party.

Entanglement-enabled metrology task. We next perform an entan-
glement witnessing task, to ensure that no party is intercepting the
quantum state and sending on a different state. The requirement on a CV
state to be entangled, see refs. 77,78, allows us to design an entanglement-
enabled quantum metrology task. When all three parties work together,
we can construct the following quantities x� ¼ xA=

ffiffiffi
2

p � ðxB � xCÞ=2
and pþ ¼ pA=

ffiffiffi
2

p þ ðpB � pCÞ=2, which are unbiased estimators for
ðαx; αpÞ=

ffiffiffi
2

p
. In the ideal case, using these estimators, it is possible to

achieve a MSE for estimating ðαx; αpÞ=
ffiffiffi
2

p
of

vα0x þ vα0p ¼ 4e�2r; ð18Þ

see Methods for the derivation. If the initial two mode state created by the
dealer is not entangled, then vα0x þ vα0p ≥ 4, where we use vα0x to denote that
we are considering theMSE in estimating αx=

ffiffiffi
2

p
and similarly for vα0p . We

can therefore use this task to verify thatweareusing anon-classical resource.
Our experimental results when using this estimator are shown in Fig. 3.

Quantummetrology results. In Fig. 4 we present theMSE in estimating
(αx, αp) for different combinations of parties working together. For two
and three parties working together, theMSE is obtained directly from the
experimental data. The experimental data differs significantly from the
ideal theoretical precision (see Fig. 2) due to loss and anti-squeezing
present in our experiment. For a single party working alone, the
experimental data presented corresponds to the inferred HCRB. In rea-
lity, the homodyne detection which we implemented is not sufficient to
reach theHCRB. Nevertheless, from the homodyne statistics we can infer
the HCRB. We present the inferred HCRB, as opposed to the MSE
obtained from homodyne detection, to place limits on the information
which could have been extracted by any potentially omnipotent party
working alone.

Secure access protocol. We now examine the security of our experi-
ment in the sense of Eqs. (12) and (14). Figure 5 shows the probability
density functions (PDFs) for the distribution of MSEs which could be
obtained in all three scenarios (one, two and three parties working
together) based on the rightmost data points in Fig. 4. The theoretical
PDFs are obtained using Eq. (13) and the experimentally observedMSEs.
The histograms show the experimental data analysed using different
numbers of probe states. The slight deviation between the theoretical
PDF and the observed PDF is potentially caused by the fact that the
experimental MSEs in the x̂ and p̂ quadratures are not identical, which is
assumed when deriving Eq. (13). It is evident that, as more probe states
are used, the overlap of the distributions of MSE values attainable with
multiple parties overlap less with the distribution of MSE values attain-
able by an individual party. Let us first compare theMSE attainable by all
three parties working together to the MSE attainable by a single party.
Choosing vT as the point where the two distributions are equally likely
(vT = 5.5 when comparing the three-party MSE to the single party MSE
and vT = 6.8 when comparing the two-party MSE to the single party
MSE), using 10, 50 and 100 probe states for each quadrature, we can
achieve a security given by δ = 0.18, δ = 0.013 and δ = 8 × 10−4 respec-
tively. The corresponding success rates are Ps,3 = 0.87, Ps,3 = 0.989 and
Ps,3 = 0.9993 respectively.Whenwe compare the two partyMSE to that of
a single party, using 10, 50 and 100 probe states for each quadrature, we
find δ = 0.39, δ = 0.22 and δ = 0.13 and Ps,2 = 0.68, Ps,2 = 0.81 and
Ps,2 = 0.89 respectively.

Let us now consider a scenario where this type of protocol could be
useful from a security viewpoint. One could imagine a trust fund bank
account which we want to be accessible when either two or three parties
work together and inaccessible when parties work individually. By dis-
tributingN quantum probe states with unknown displacements (αx,i, αp,i), a
bank manager could only allow access to the bank provided the MSE was

Fig. 3 | Entanglement-witnessing metrology task. The experimental data corre-
sponds to the MSE when estimating ðαx; αpÞ=

ffiffiffi
2

p
using the estimator described in

‘Experimental results’—Entanglement-enabled metrology task. The orange shaded
region shows MSE values smaller than 4 which indicates that the parties share an
entangled state. The x−axis shows the effective squeezing parameter. The alpha
values being estimated on average have ∣α∣ = 0.2. Each data point corresponds to at
least 107 measurement results and statistical error bars based on one standard
deviation are smaller than the marker size.

Fig. 4 | MSE attainable by different sets of parties working together.We show the
MSE attained experimentally for simultaneously estimating the displacements
(αx, αp). The solid blue line corresponds to theHCRB, Eq. (5), which sets the ultimate
limit on the MSE which can be attained by any party working individually. The blue
data points are theHCRB inferred from the experimentally reconstructed covariance
matrix. The dashed green line and data points correspond to the MSE attainable
when two parties work together. The upward and downward pointing green tri-
angular data points correspond to parties A and C, and parties A and B working
together respectively. The dot-dashed red line and data points correspond to the
MSEwhen all three parties work together. The theoretical lines are based on fitting to
a model. The shaded region represents 3% fluctuations in the optical loss on each
arm and thermal noise fluctuations of 0.02 shot noise units on each arm. The
displacements being estimated on average have ∣α∣ = 0.2. Each data point corre-
sponds to at least 107 measurement results and statistical error bars based on one
standard deviations are smaller than the marker size.
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below some threshold. Depending on the threshold chosen, either two or
three parties would be required towork together to access the bank account.
In this manner either a (2,3) or (3,3) access structure can be created with
security guaranteed up to the probabilities discussed above.

Mutual information. Finally, we shall discuss how this protocol could be
extended to sharing a continuous stream of information. As discussed in
‘Theoretical results’, we can imagine that the dealer chooses (αx,i, αp,i) from a
Gaussian distribution with variance Vdist. Then the correlation matrix
between the dealer and any number of collaborating parties is given by Eq.
(15). From this the mutual information between the dealers input and the
final estimate of (αx, αp) can be calculated using Eq. (16). We emphasise that
we have not actually implemented this protocol, as in our experiment, we do
not change (αx,i, αp,i) in every run, rather we use a fixed value throughout the
experiment. This is a technical limitation of our experiment which can be
avoided and does not change any of the main results or conclusions. In Fig.
6a) and b) we show the mutual information which could have been attained
in theory, basedon theparameters inour experiment, hadwedrawn(αx,i, αp,i)
from a Gaussian distribution.

Finally we investigate how the probability of attaining a mutual infor-
mation above a certain value changes as a function of the number of probe
states used. This is shown in Fig. 6c), based on the MSE values obtained
experimentally. Note that in the experiment, vαx ;m≠vαp ;m (although this is
approximately true), and so we use the average MSE in Fig. 6c).

Potential security flaws and issues. Before concluding, we point out
some potential security loopholes and other potential issues. To guar-
antee security in the above protocols, all three parties will need verify that
the state they share is entangled, as in Fig. 3. This is easily done by using a
small subset of the data to verify entanglement. It will also be important to

check that the parties are using unbiased estimators of (αx, αp), as
otherwise it can be possible to violate the HCRB. This can be easily
checked by the dealer using a small fraction of the experiments. We also
note that partyA could claim to have observed high loss on theirmode. In
this case, in order to ensure the estimates are unbiased, we need to scale
the estimate by the inverse of the loss, which increases theMSE attainable.
However, party Amay not be telling the truth about the loss on their arm.
Nevertheless, this issue can be avoided by aborting the protocol if the loss
is too high. Additionally, in order to perform homodyne detection at
remote stations, it will be necessary for the different parties to share a
common phase reference. One approach for this is to distribute a local
oscillator to the different parties, a well established technique previously
demonstrated over distances greater than 200 km79. Alternatively, the
parties could use a local local oscillator80. If the excess noise introduced by
the use of a local local oscillator is sufficiently low, it would still be possible
to demonstrate quantum-enhanced sensitivity.

Finally, it is important to point out that the HCRB sets a limit on the
sumof theMSEs in the local estimation settingwhenparameters are a priori
known to within some range. It stands to reason that by removing this
information and assuming the parameters to be estimated are unknown no
better estimation is possible. The HCRB also in general only applies in the
limit of a large number of probe states. This isn’t an issue, as we can simply
scale all the (αx,i, αp,i) down by a factor

ffiffiffiffi
N

p
, and sendN copies of this state.

Thenwe can useN large enough for theHCRB to be applicable. In this case,
everything from above holds true. A problemwith this is it requiresN times
more channel uses to send the same number of bits of information.

Discussion
We have theoretically and experimentally examined the role of
quantum metrology in a secure access protocol and a quantum

Fig. 6 | Mutual information between the dealer and different numbers of parties
working together. a) The dot-dashed red, dashed green and solid blue lines show the
mutual information which would be attainable for different input modulation
variances when three parties work together, two parties work together and one party
works alone respectively. In our experiment, we did not actually implement any
randommodulations. However, the plot is based on the experimental parameters of

the rightmost data points in Fig. 4b) The mutual information which can be attained
forVdist = 2 as a function of the squeezing. This plot is also based on the experimental
parameters. Note that the blue line assumes that any individual party is capable of
reaching theHCRB. c) Probability of obtaining amutual information ofmore than 1
bit, assuming Vdist = 4 based on the rightmost data points in Fig. 4.

Fig. 5 | Probability density functions (PDFs) for the mean squared error (MSE)
attainable by different groups of parties using differing numbers of probe states.
The red, green and blue PDFs show the theoretical distribution of MSE values
attainable when three parties work together, twoparties work together and one party

works alone respectively.N is the number of probe states used for estimating both αx
and αp. The histograms show the corresponding experimental data based on
1.85 × 107/N data points. The theoretical PDFs are inferred from Eq. (13), using the
rightmost experimental data points from Fig. 4.
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communication protocol. We envisage these results to be of impor-
tance to both the quantum metrology and secure quantum commu-
nication communities. In particular, the use of tools from quantum
metrology to bound the security of quantum secret sharing may help
to connect these two areas and may prompt the search for a more
fundamental connection between these two areas. Along this line,
Hayashi and Song have recently shown a connection between quan-
tum secret sharing and symmetric private information retrieval81.
Furthermore, as our multiparameter estimation involves multiple
distinct parties, it may be of relevance for distributed quantum
sensing82 or other scenarios where a remote parameter is being pro-
bed, such as gravitational field sensing83. Our sensing protocol may
also be beneficial for the remote sensing of confidential information,
such as medical information, as has been discussed for secure
quantum enhanced sensing75,84–91 (see also Refs. 92,93). The fact that our
protocol and the corresponding analysis naturally incorporates finite
size effects, as discussed earlier, is another practical benefit compared
to conventional quantum secure communication protocols, where
finite size effects have to be added in94,95.

There are many ways to extend this research. In the limit of infinite
squeezing, our protocol becomesperfectly secure. This suggests that in aDV
setting it may be possible to demonstrate perfectly secure secret sharing,
with the security guaranteed through quantum metrology. The results in
this paper could be strengthened if the dealer implemented displacements
on all threemodes. Additionally, CV graph states, which have recently been
shown to demonstrate an advantage for secret sharing in a quantum net-
work setting96, may further enhance the performance of our protocol. It
could also be beneficial to investigate the MSE which can be attained by a
malicious party performing commonly considered attacks in QKD.

Methods
Holevo Cramér-Rao bound for simultaneous displacement esti-
mation using an unbalanced thermal state
We consider the simultaneous estimation of a displacement in both the x̂
and p̂ quadratures using the Gaussian state with covariance matrix given in
Eq. (4).We follow the approach of ref. 52, where the calculation of theHCRB
for estimating Gaussian displacements64,97, was recast as a semi-definite
programme. We now provide the solutions to both the primal and dual
problem, verifying that our solution is correct. Rather than defining many
new terms, we shall use all of the same terminology and definitions as ref. 52.
We shall use the following basis.

e1 e2
� � ¼ 0 1ffiffiffi

v2
p

1ffiffiffi
v1

p 0

" #
; ð19Þ

which satisfies α(ej, ek) = δj,k. This lets us calculate

M ¼
1ffiffiffi
v1

p 0

0 1ffiffiffi
v2

p

" #
ð20Þ

and

D ¼
0 2ffiffiffiffiffiffi

v1v2
p

�2ffiffiffiffiffiffi
v1v2

p 0

" #
: ð21Þ

In order to write our solution, we need to define a basis for 2 × 2 real
symmetric matrices. We shall use

A1 ¼
1 0

0 0

	 

; A2 ¼

0 0

0 1

	 

; A3 ¼

0 1

1 0

	 

ð22Þ

and Aj ¼ 0 for j = 4, 5, 6. We also define Bj ¼ 0 for j = 1, 2, 3, B4 ¼ A1,
B5 ¼ A2 andB6 ¼ A3. Finally, we have b = [0, 0, 0, 1, 1, 0]. This allows us
to provide the solution to the primal and dual problems.

Primal problem. The primal problem can be written as

vαx þ vαp ¼ max
X

trfXCg; ð23Þ

subject to trfXBg ¼ bj where X is a positive Hermitian matrix. We define

C ¼ 02 I2
I2 02

� �M
04
M

C; ð24Þ

where Id is the d × d identity matrix, 0d is the d × d zero matrix
andC ¼ ð1þ iD=2Þ�1.

The solution to the primal problem is given by.

X ¼ X1

M
X2; ð25Þ

where

X1 ¼

1 0 �2� 2n1 0

0 1 0 �2� 2n2
�2� 2n1 0 4ð1þ n1Þ2 0

0 �2� 2n2 0 4ð1þ n2Þ2

0
BBB@

1
CCCA ð26Þ

and

X2 ¼

0 0 0 0

0 0 0 0

0 0 c i
ffiffiffiffiffi
cd

p

0 0 �i
ffiffiffiffiffi
cd

p
d

0
BBB@

1
CCCA; ð27Þ

where c ¼ 4ð1þ n2Þ2=v2 and d ¼ 4ð1þ n1Þ2=v1. The non-zero eigenva-
lues of X1 are

5þ 4n1ð2þ n1Þ ð28Þ

and

5þ 4n2ð2þ n2Þ: ð29Þ
The only non-zero eigenvalue of X2 is given by c+ d. Therefore all the

eigenvalues of X are non-negative. It is easily verified that the other con-
dition on X, trfXBg ¼ bj, is satisfied by this solution. We can then verify
that trfXCg ¼ 4þ 2n1 þ 2n2.

Dual problem. By showing that the dual problem has the same solution,
we confirm the optimality of our result. The dual problem can be written

vαx þ vαp ¼ min
y

yTb; ð30Þ

subject to∑j yj Bj ≥C. A solution is given by

y ¼ v2
2þ 2n2

;
v1

2þ 2n1
; 0; 2þ 2n1; 2þ 2n2; 0

	 

: ð31Þ

The matrix∑j yj Bj−C is given by

X
j

yjBj � C ¼ Y1

M
Y2

M
Y3; ð32Þ

https://doi.org/10.1038/s41534-024-00834-9 Article

npj Quantum Information |           (2024) 10:35 7



where

Y1 ¼

2ð1þ n1Þ 0 1 0

0 2ð1þ n2Þ 0 1

1 0 1
2þ2n1

0

0 1 0 1
2þ2n2

0
BBBB@

1
CCCCA; ð33Þ

Y2 ¼
1� 1

2ð1þn2Þ 0

0 1� 1
2ð1þn1Þ

 !
; ð34Þ

and

Y3 ¼
1

2ð1þn2Þ þ
1

2n1þ2n2þ4n1n2

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ2n1Þð1þ2n2Þ

p
2n1þ2n2þ4n1n2

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ2n1Þð1þ2n2Þ

p
2n1þ2n2þ4n1n2

1
2ð1þn1Þ þ

1
2n1þ2n2þ4n1n2

0
B@

1
CA: ð35Þ

We first consider Y1 and rewrite it as

Y1 ¼

e 0 1 0

0 f 0 1

1 0 1
e 0

0 1 0 1
f

0
BBBB@

1
CCCCA; ð36Þ

which has eigenvalues

1þ e2
e

and 1þ f 2

f :
ð37Þ

We can then substitute in from above, to see that there are two non-
zero eigenvalues given by

2ð1þ n1Þ þ 1
2ð1þn1Þ

2ð1þ n2Þ þ 1
2ð1þn2Þ ;

ð38Þ

which are clearly both positive. Similarly it is obvious that both eigenvalues of
Y2 are positive. Finally, there is only one non-zero eigenvalue of Y3, given by

1þ ð2þ n2
2 Þn2 þ n21ð12 þ n2Þ þ n1ð2þ n2ð4þ n2ÞÞ

ð1þ n1Þð1þ n2Þðn1 þ n2 þ 2n1n2Þ
; ð39Þ

which is guaranteed to be positive. Therefore, the solution y satisfies the
constraints, and gives the same solution as the primal problem. Hence, we
can be sure our solution is optimal. Therefore, the HCRB for the simulta-
neous estimation of a displacement in the x̂ and p̂ quadrature with an
unbalanced thermal state is given by

CH ¼ 4þ 2n1 þ 2n2: ð40Þ
For equal variances in both quadratures this reduces to the known

results of refs. 57,98,99

Probability density function for distribution of MSE values
We wish to derive the probability density function (PDF) for
obtaining a certain MSE given N repetitions of the experiment with
mean MSE of μM in each quadrature. The error in each estimate, xi or
pi, will be randomly distributed following a normal distribution with
zero mean and standard deviation of

ffiffiffiffiffiffi
μM

p
. The quantity we are

interested in is the mean of this quantity squared

~μM ¼ 1
N

XN
i¼1

x2i þ
1
N

XN
i¼1

p2i ; ð41Þ

where ~μM is the observed mean MSE. If ~μM is repeatedly sampled, the
distribution will follow a scaled χ2 distribution. Assuming that the MSE in
both quadratures is the same, we can rewrite ~μM as

~μM ¼ μM
N

X2N
i¼1

x2i ¼
2μM
2N

X2N
i¼1

x2i : ð42Þ

The PDF for a χ2 distribution with k degrees of freedom is well known
and given by

PðxÞ ¼ 1

2k=2Γðk=2Þ ðxÞ
k=2�1e�

x
2: ð43Þ

Recognising Eq. (42) as a scaled χ2 distribution with 2N degrees of
freedom and using the change of variables formula for PDFs, with the
function g(y) = yμM/N, we arrive at the PDF for the observed MSE values.

PðMSE ¼ xÞ ¼ 2N
μM2

NΓðNÞ
2xN
μM

� �N�1

e�
xN
μM : ð44Þ

Derivation of Eq. 18
In this section, we show that the estimator described in ‘Experimental
results’ for estimating ðαx; αpÞ=

ffiffiffi
2

p
, can achieve aMSE given by Eq. (18). To

do this we will use the standard rules for adding random variables. Assume
we have three random variables X, Y and Z which are drawn from the
following multivariate normal distribution

μ ¼
μX
μY
μZ

0
B@

1
CA and σ ¼

σ2X σX;Y σX;Z
σX;Y σ2Y σY ;Z
σX;Z σY ;Z σ2Z

0
B@

1
CA: ð45Þ

Then it is known that the new variable aX+ bY+ cZ is normally
distributed with mean aμX+ bμY+ cμZ and variance a2σ2X þ b2σ2Yþ
c2σ2Z þ 2abσX;Y þ 2acσX;Z þ 2bcσY ;Z . Using Eq. (2) we can calculate the
variance of the random variables x� ¼ xA=

ffiffiffi
2

p � ðxB � xCÞ=2 and pþ ¼
pA=

ffiffiffi
2

p þ ðpB � pCÞ=2 to be e−2r. Aswe can only assignhalf of the resources
to measuring x− and half for p+, we scale these variances by a factor of 2.
Summing the variance, then shows that the MSE is given by
vα0x þ vα0p ¼ 4e�2r , in agreement with Eq. (18).

Finally, it only remains to show that x− and p+ are unbiased estimators
for ðαx; αpÞ=

ffiffiffi
2

p
. As the mean of xB, xC, pB and pC are 0, themean of x− and

p+ are equal to themean of xA=
ffiffiffi
2

p
and pA=

ffiffiffi
2

p
respectively. Therefore, the

estimator is unbiased.
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