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Tight Lieb–Robinson Bound for
approximation ratio in quantum annealing
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Quantum annealing (QA) holds promise for optimization problems in quantum computing, especially
for combinatorial optimization. This analog framework attracts attention for its potential to address
complexproblems. Its gate-basedhomologous,QAOAwithprovenperformance, hasattracteda lot of
attention to the NISQ era. Several numerical benchmarks try to compare these two metaheuristics,
however, classical computational power highly limits the performance insights. In this work, we
introduce a parametrized version of QA enabling a precise 1-local analysis of the algorithm. We
develop a tight Lieb–Robinson bound for regular graphs, achieving the best-known numerical value to
analyze QA locally. Studying MaxCut over cubic graph as a benchmark optimization problem, we
show that a linear-schedule QA with a 1-local analysis achieves an approximation ratio over 0.7020,
outperforming any known 1-local algorithms.

Quantum annealing (QA), firstly introduced by refs. 1,2, is one of the most
promising quantumalgorithms to solve optimizationproblems3,4. It runs on
the quantum analog computational framework. Known as adiabatic
quantumcomputing (AQC), itwas coinedbyFahri et al.5 in 2000 and stands
for the analog part of the gate-based model. Although the two frameworks
are known to be equivalent (one can efficiently simulate the other)6, their
studies rely on different theoretical tools. QA has gained a lot of attention in
the last decade because it seems well-suited to solve combinatorial opti-
mization problems. A gate-based algorithm that has been largely studied,
namely QAOA7, is QA-inspired and has brought a lot of attention to the
NISQ era8–10. The goal of quantum annealing is to let a quantum system
evolve along a trajectory according to the Schrödinger equation subject to a
problem-dependent Hamiltonian.

A recent study from ref. 11 suggests that QAOA, even in theNISQ era,
may bring a quantum advantage over classical algorithms for approxima-
tion in optimization problems. Several numerical studies like12 suggest that
QA performs well compared to QAOA. However, numerical studies in QA
are rarely convincing because the size of the instance is limited by the
classical computational power required to solve the Schrodinger equation or
by the largest available quantum annealer. The downside of the approach is
that, due to the limited size of the input data for numerical experiments, it is
not possible to deduce a reliable asymptotic scale. To tackle this comparison,
some researchers tried to develop new mathematical tools to derive an
analytical bound on the algorithmic performance of QA. As it has been
widely used to benchmark metaheuristics, we choose to focus on the
approximation ratio of MaxCut over cubic (3-regular) graphs13. With one
layer, standard QAOA achieves a ratio of 0.69257, i.e., for any input, the

algorithm outputs a solution whose number of cut edges is at least 0.6925
times the number of edges cut by the optimal solution. A zoo of variants13 of
this algorithm has been proposed since but as in the original QAOA, we use
the same initial and final Hamiltonians. A recent study in ref. 14 gives lower
bounds on the number of rounds needed for some variants of QAOA to
achieve a given ratio. In ref. 15, the authors manage to formally prove that
constant timeQA achieves a ratio of 0.5933 and, based on empirical studies,
conjectured that the actual ratio is 0.6963. This last result has been improved
by Banks, Brown and Warburton in ref. 16 to 0.6003. In ref. 17, Hastings
shows a simple classical local algorithm that outperforms QAOA with an
approximation ratio of 0.6980 (Fig. 1). By local algorithm, wemean that the
decision of the algorithm on each node only depends on a ball of nodes at a
constant distance from that node.Thedifficulty in comparingQAtoQAOA
or other local algorithms is thatQA is non-local by nature. However, we can
still make a local analysis of it. In 1972, Lieb and Robinson18 showed the
existence of an information speed limit inside a quantum system. This
means that, for a short enoughevolution timeT, the correlationbetween two
remote sites of the quantumsystemdecreases exponentially fastwith respect
to their distanceq, typically inOðTq

q! Þ. Thisobservation canbeused to analyze
QA as a local algorithm by taking into account this exponential decrease in
correlation strength. We refer the reader to ref. 19 for a recent extensive
review on the Lieb–Robinson bound.

In this work, we develop a super tight Lieb–Robinson (LR) bound by
using the commutativity graph construction from20 over general regular
graphs. This LR bound is adapted to linear-scheduleQA applied toMaxCut
as we will define in Section Results. In that setting, previously known state-
of-the-art LR bounds19,21 achieve interesting numerical values for q≃ 100
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when ours only needs q = 3 to reach similar values. We also slightly modify
the standard initial Hamiltonian with a free parameter α in front of it. It
appears that this additional degree of freedom in the algorithm (formula-
tion) allows for a tighter performance analysis. Eventually, we end up
proving that a 1-local analysis of QA brings the approximation ratio above
0.7020. This value shows that constant-time QA outperforms both single-
layer QAOA and the best-known classical 1-local algorithm. Schedule
optimization should bring further improvements, and we have suggested
one with a cubic function. The global overview of the different steps used to
derive an approximation ratio is detailed in Fig. 2.

The first step consists of deriving a formula of the ratio that depends
only on local balls Bp(X) centered on some edge X of a regular graph G. By
local ball, wemean the subgraph ofG generated by adding edges and nodes
aroundXup to distance p fromX (see SectionResults for formal definition).
In step 2, we turn a worst-case analysis over all possible graphs G into a
worst-case analysis over a finite set of relatively small graphsBq thanks to a
Lieb–Robinson bound. Steps 3 and 4 deal with finding the minimum of
interest by filtering the different balls after applying the global bound ε and
the local one εloc on the leftovers. Eventually, these steps allowus to compute
a numerical value for the approximation ratio depending on the running
time T and the free parameter α.

In SectionResults, we state ourmain result.We showhow the different
elements follow each other by formally defining the notion of approxima-
tion ratio, the parameterized version of QA(α), the notion of p− local
analysis of QA, and presenting how a Lieb–Robinson bound can be used to
compute the numerical value of the ratio. In Section Discussion, we discuss
this result and the meaning of the parameter α, introduced for the tightness
of the analysis. Although the construction is problem-dependent, we give
some insight on the generalization of the construction for other degree,
schedule and problems. We also hint a possible improvement with a non-
linear schedule. In SectionMethod,wederive themethod toprove the result.
We demonstrate the derivation of the global and local LR bounds. In par-
ticular in Subsection Application to approximation ratio of MaxCut, we
perform steps 3,4 and 5 of Fig. 2 to finish the proof of the theorem.

Results
The statement of our main result is the following:

Theorem (QAApprox.). With a 1-local analysis, the approximation ratio
reached by QA to solve MaxCut over cubic graphs is above 0.7020.

In this section, we define the approximation ratio which attests to the
performance of QA and allows us to compare it with other algorithms. We
then introduce the parametrized version of the QA process we will analyze
and define a p− local analysis in the case of quantumannealing. Eventually,
by introducing theLieb–Robinsonbound,we explainhowQAcanbe locally
analyzed in order to compare it to QAOA.

Approximation ratio
Givenan input graphGonwhichwewant to solve, anoptimizationproblem
C, and a probabilistic algorithmA that outputs a solution x for the problem
C applied toG. One way to qualify the performance is to look at the average
value reached by the output distribution of algorithmA, writtenEA½CðGÞ�.
Themetric used is the ratio of the latter quantity normalized by the optimal
cost value Copt(G) for the specific input. In practice, we are interested in the
worst case scenario and define the approximation ratio as:

ρC;A ¼ min
G

EA½CðGÞ�
CoptðGÞ

ð1Þ

For the rest of this work, wewill focus on quantum annealing to solve a
particular optimization problem calledMaxCut over cubic graphs. The goal
of MaxCut problem is to find a bi-partition that maximizes the number of
edges across the bi-partition. Unless stated otherwise, we fix A ¼ QA and
wewill remove its dependency on the variable notations for clarity.MaxCut
is a well-known problem in fundamental computer science and has several
applications in physics and electrical circuits22. It admits a natural encoding
into a Hamiltonian that has the same interaction topology as the graph
instance.

Fig. 1 | Some approximation ratios for MaxCut
over cubic graphs. Only blue/greenish colored
values result from 1-local algorithms. The highest
proved ratio for MaxCut over cubic graphs is pre-
sented in24.

Fig. 2 | Overview of the analysis steps.
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Parametrized QA
Given a graph G(V, E) in G, a family of graph, on which we want to solve

MaxCut, the target hamiltonian isHG
1 ¼ �P

X2EOX whereOX ¼ 1�σðaÞz σðbÞz
2

for the edgeX = (a, b).With aminus, this Hamiltonian encodes−C, so the
goal is to minimize this function. Starting from the uniform superposition
∣ψ0

�
we are interested in the mean of HG

1 of the final state
∣ψGðT; αÞ� ¼ UG

T;α∣ψ0

�
. Here,UG

T;α denotes the unitary evolution operator

under the time-dependent Hamiltonian Hðt;GÞ ¼ ð1� t
TÞH0ðαÞ þ t

T H
G
1

and T the total annealing time. We chose a parameterized initial Hamilto-

nian H0ðαÞ ¼ �P
i
σðiÞx
α , where α > 0. This operator U

G
T;α, corresponds to a

Schrödinger evolution, i.e. is a solution of:

8t 2 ½0;T�; i_ dU
G
t;α

dt
¼ Hðt;GÞUG

t;α

The expected value at the end of the annealing process is hHG
1 iG;α ¼

ψGðT; αÞ�
∣HG

1 ∣ψGðT; αÞ� and thus, our metric of interest is

ρMC ¼ max
T;α

min
G2G

�hHG
1 iG;α

CoptðGÞ
:

Sincewe are interested in using local arguments to bound this quantity,
wewill restrict the family of graphsG to the set of 3-regular graphs. The goal
is to find a good lower bound for this ratio. This can be achieved by sepa-
rately upper bounding the denominator and lower bounding the numera-
tor. By linearity, the numerator can be written as a sum over the
edges

P
X2EhOXiG;α.

p− local analysis
Due to its analog nature, QA is non local, so to compare it to other opti-
mization solver likeQAOAor to local classical algorithms,weneed to define
a way to analyze it as a local algorithm. For any X∈ E(G) and any positive
integerp, wenoteBp(X) the subgraphcomposedbynodesandedges situated
onpathsof length atmostp fromanyendpoint ofX.WenoteBp the set of all
possible ballsBp(X) over all graphsG 2 G and all possible edgesX.We call a
p− local analysis of QA, an analysis that produces an approximation ratio
that depends only on balls inBp. Let us develop the construction of a 0-local
and 1-local analysis.

0-local. For any X∈ E, a trivial lower bound of the summands in the
numerator of the ratio is min

G2G
hOXiG ¼ hOXiG, where G is the set of all

3-regular graphs. With the trivial bound on Copt < ∣E∣, it gives the fol-
lowing lower bound on the approximation ratio:

ρMC ≥ max
T;α

hOXiG:

Finding the latter value constitutes the approximation ratio of QA with
0-local analysis.

1-local. To improve this bound, we will consider the neighboring
structure of each edge. For a p = 1-local analysis, we look atB1(X), the ball
of radius 1 around X. In 3-regular graphs, there are three such B1(X),Ω1

the square, Ω2 the triangle and Ω3 the double binary tree (see Fig. 3).
Coming back to our edge energies hOXiG for all X∈ E: we can bound

these terms by one of the following quantities hOXiΩi
G ¼ minfhOXiGj

G 2 G;X 2 EðGÞ s.t.B1ðXÞ ¼ Ωig. Let us define ni as the number of con-
figurations Ωi in G. Using the regularity constraints, we have that the
numbern3 of edges in configurationΩ3 isn3 = ∣E∣− 5n1− 3n2 (see refs. 7,15
for more details). The final expected energy can thus be lower bounded as:

�hHG
1 iG ≥ n1hOXiΩ1

G þ ð4n1 þ 3n2ÞhOXiΩ2
G þ ðjEj � 5n1 � 3n2ÞhOXiΩ3

G

This expression still depends on the input graph through the variables ni, and
thus, still needs to be minimized over the positive integers ni’s with the
constraint that 4n1+ 3n2 ≤ ∣V∣. The upper bound on the optimal value Copt

can be refined by observing that at least one edge is uncut in the MaxCut
solution in configuration Ω1 and Ω2, i.e. Copt ≤ ∣E∣− n1− n2, where
∣E∣= 3∣V∣/2.This gives the following lower bound for the approximation ratio:

ρMC ≥ max
T;α

min
n1;n2 st

4n1þ3n2 ≤ Vj j

n1 OX

� �Ω1

G þ 4n1 þ 3n2
� �

OX

� �Ω2

G þ Ej j � 5n1 � 3n2
� �

OX

� �Ω3

G
Ej j � n1 � n2

ð2Þ

Given a quite loose condition on the value of hOXiΩi
G which is satisfied in our

case (see Supplementary Note 1 and Application to approximation ratio of
MaxCut), the minimization gives n1 = n2 = 0 and the approximation ratio
becomes ρMC ≥ max

T;α
hOXiΩ3

G . However, as in the 0-local analysis, the
difficulty lies in computing theminimumover all graphs tofind the values of
hOXiΩi

G . Even for 3-regular graphs, because G is infinite, this minimum is
intractable.

Lieb–Robinson bound
QA is a priori non-local, however Lieb and Robinson demonstrated
that the information flow has a bounded speed inside a quantum
system. In other words, limiting the amount of time during which the
quantum system evolves also limits the distance at which two sites can
strongly correlate. Using this on a QA process allows us to analyze QA
locally. For a graph G(V, E), the idea is to approximate hOXiG by the
energy of hOXiBqðXÞ. This step will ease theminimization task as nowBq
is a finite family of graphs.

Local bound. Suppose that for any graph G, and any edge X of G, there
exists a εloc(Bq(X), T, α) > 0 that upper bounds the absolute difference:
jhOXiG � hOXiBqðXÞj<εlocðBqðXÞ;T; αÞ. The local aspect lies in the fact that
εloc depends on the ball Bq(X). If such a bound exists, we have that
hOXiG ≥ hOXiBqðXÞ � εlocðBqðXÞ;T; αÞ. This lower bound is satisfied for all
graphsG 2 G. The only dependence on the input graph now lies in Bq(X).
We can rewrite the minimization over G as:

min
G2G

hOXiG ≥ min
BqðXÞ2Bq

hOXiBqðXÞ � εlocðBqðXÞ;T; αÞ
� �

ð3Þ

) hOXiG ≥ hOXi�Bq
ð4Þ

where hOXi�Bq
¼ min

BqðXÞ2Bq

ðhOXiBqðXÞ � εlocðBqðXÞ;T; αÞÞ. Therefore, the

approximation ratio becomes, for QA as a 0-local algorithm,

ρMC ≥ max
T;α

hOXi�Bq ð5Þ

We can do the same for the 1-local analysis, when taking advantage of the
neighborhood at radius 1 around the edge X. So we have that

hOXiΩi
G ≥ min

Bq
ðXÞ 2 Bq hOXiΩi

BqðXÞ � εlocðBqðXÞ;T; αÞ
� �

¼ hOXi�Bq;i ð6Þ

Fig. 3 | All possible balls B1(X) for X an edge (in green) in a 3-regular graph.

https://doi.org/10.1038/s41534-024-00832-x Article

npj Quantum Information |           (2024) 10:40 3



where Bq;i is the family of graphs BqðXÞ 2 Bq restricted to balls Bq(X) for
whichB1(X) =Ωi. The approximation ratio can bewritten as a newequation
that depends only on these epsilons and worst edge energy among “small”
ball of radius q:

ρMC ≥ max
T;α

min
n1;n2 st 4n1þ3n2 ≤ jVj

n1hOX i�Bq;1þð4n1þ3n2ÞhOX i�Bq;2þðjEj�5n1�3n2ÞhOX i�Bq;3
jEj�n1�n2

ð7Þ

This method only helps the minimization task if q is small enough. Indeed,
the size of Bq grows exponentially with q and and so does the size of ball.
Computing hOXiBq

requires to solve the Schrodinger equation on balls of
sizeup toOð2qÞ. For cubic graphs,q = 3 seems reasonable: all balls inB3 plus
all the regular ones inB2 amounts for 930449balls.However, we still need to
have a large enoughp so that the εloc(Bq(X), T, α) quantities are small enough
to not degrade our lower bound (7) (typically, we want
εloc(Bq(X), T, α) ≈ 10−2). Using state-of-the-art generic LR bounds19,21 would
require considering balls of radius q ≈ 100 in order to reach such a precision.
SectionMethod is dedicated to the derivation of a tighter LR bound tailored
exactly for the purpose of having reasonable εloc(Bq(X), T, α) values for q = 3.

Global bound. To avoid having to develop too many bounds εloc as the
number of Bq(X) explodes exponentially, it can be useful to apply a global
bound for most of the balls in the minimization task. We define it as

εðq;T; αÞ ¼ max
BqðXÞ2Bq

εlocðBqðXÞ;T; αÞ ð8Þ

Wewill see in SectionMethod that thismaximum is easy to derive from the
analytical expression of the local bound. The global bound is used as follows:

hOXiBqðXÞ � εlocðBqðXÞ;T; αÞ
� �

≥ hOXiBqðXÞ � max
BpðXÞ2Bq

εlocðBqðXÞ;T; αÞ

¼ hOXiBqðXÞ � εðq;T; αÞ
) hOXi�Bq

≥ hOXiBq
� εðq;T; αÞ

Then for ballsBq(X) forwhich hOXiBqðXÞ is large enough, the global bound is
sufficient in the minimization task over Bq.

In this sections we introduced different concepts and their role for
obtaining the approximation ratio of QA solving MaxCut on cubic graphs,
based on local analysis. This construction leads to the result state in The-
orem QA Approx. In Section Method, we formally prove that the approx-
imation ratio of QA for MaxCut on cubic graphs is greater than 0.7020 by
finishing the steps 3,4 and 5 highlighted in Fig. 2. For that purpose we
provide tighter LR bounds than the existing ones in the literature, leading to
explicit numerical values for quantities ε, εloc and hOXi�Bq

.

Discussion
In this section, we discuss the role of α in the tightness of Theorem QA
Approx, potential improvements and some directions for generalization.

First, we discuss the effect of parameter α. In addition to the use of the
commutativity graph, the exact value of the nested integrals alonewould not
have brought the ratio above the targeted numerical values of QAOA and
Hastings local algorithm as we see in Fig. 8 (b) at α = 1. The introduction of
the “hyperparameter” α significantly enhances the precision of the analysis.
To attest this point, in Fig. 4, we plot the evolution of both the local
εloc(g, T, α) and global ε(q, T, α) bounds against α for pairs (T, α) for which
hOXig ¼ 0:7092 and gdenotes the ball of Fig. 9. The value of 0.7092 is totally
arbitrary and similar plots are achieved with different values. So we clearly
see in Fig. 4 that the LR bound is minimal around α = 1.5 whichmeans that
the analysis of QA is tighter around this point.

We would like to draw readers’ attention to the fact that both the
Hastings algorithmandQAOAalso includeoneor twohyperparameters for
obtaining their best ratio value. In this sense, our parameterizedQAanalysis

is nothing more complex. However, although these two other algorithms
produce a tight ratio value, QA’s is not tight simply because it is impossible
to construct a graph such that every edgeX has the g fromFig. 9 as itsB3(X).

On the LR bound itself, we can see from Fig. 8a that for many of the
balls, the curves of the edge energy are indistinguishable. Indeed, at the pair
(T, α) looked at, there is no visible difference in the value of the average edge
energy. Even two balls in B2 can have the same trajectory. Informally, this
suggests that LR bound is not yet tight, as the layer at distance 3 from the
edge X does not impact the edge energy. As noted in ref. 15, neglecting the
initial state greatly affects the accuracy of the bound. In order to strongly
improve the analysis it would be crucial to be able to take into consideration
the initial state; unfortunately, at this stage we lack ofmathematical tools for
this purpose. Another lead is indicated in ref. 19, in path counting. In fact, it
seems that only direct paths contribute to LR bound.We explored this idea
and the bound would reach 0.7041. However the result of ref. 19 cannot be
adapted as is to our framework, sowe cannot claim this approximation ratio
at this stage.

How to improve the ratio?
An important field in the improvement of QA’s performance is the opti-
mization of the schedule. Indeed, all the construction above works for a
linear interpolation with no specific optimization but one can look at the
Hamiltonian

Hðt;GÞ ¼ ð1� f ðt=TÞÞH0ðαÞ þ f ðt=TÞHG
1

with f(t) such that f(0) = 0 and f(1) = 1. It is important to note that it also
modifies the LR bound in the nested integrals. In commutativity graph
notation, we have the hv(t) = 1− f(t/T) and he(t) = f(t/T). The challenge of
this optimization is that onehas to evaluate the energy on eachof the 930449
balls for each tested schedule to formally prove an improvement of the ratio.
However, a good insight can be reached by looking only at the 123 balls in
B2. For instance, we tried few cubic functions to already see that with
f(s) = 3.2s3− 4.8s2+ 2.6s, we should obtain a ratio above 0.7165 at T = 2.77
and α = 1.6.

Let us discuss some directions for generalizing the construction. We
derivedLR-typeboundsapplied toMaxCutoncubic graphs.Webelieve that
our tools can be extended in several directions.
1. This work can be directly adapted to look for a other d− regular

graphs. A formal derivation of this bound for any d− regular graphs
requires to enumerate all the balls in B3 that can be completed in a
d− regular graphs. The code can be easily edited for this purpose.
However large balls are certainly too big to solve Schrodinger equation
for d ≥ 4. It is still possible to get an intuition extrapolating the worst

Fig. 4 | Tightness analysis. Evolution of εloc(g, T, α) and ε(q = 3, T, α) against α for
pairs (T, α) for which hOXig ¼ 0:7092 and g being the ball of Fig. 9.
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ball for d = 3 (Fig. 9). For example, the 1− local approximation ratio
for MaxCut over 4-regular graphs may be close to 0.67.

2. For p− local analysis of QA with p ≥ 2, the method developed here
runs short as the time atwhich the best approximation ratio is achieved
is certainly too large for the LR bound at q = 3. For a p = 2− local
analysis, our estimation gives that we would need to go up to q = 5 to
achieve sufficiently small LR bound at time T≃ 6.1, time for which the
expected edge energy value seems to maximize. Nevertheless, by
extrapolating at p = 2 the worst-case balls for p = 1 and by numerical
experiments on these cases, we believe that the approximation ratio for
MaxCut over cubic graphs is close to 0.77.

3. As discussed in the previous paragraph, the schedule can also be
changed, the main work remains in the computation of the nested
integrals of the schedule. Analytical bounds on these integrals are
certainly too difficult to derive, but only numerical values are required
to prove the bound. For any polynomial schedule, those integrals are
easy to evaluate.

4. This construction can be applied to other combinatorial graph pro-
blems. For instance, in ref. 15, the authors applied a similar analysis to
the Maximum Independent Set problem over cubic-graphs. More
work is needed to adapt derive an ad hoc analytical formula for LR
bound for this new problem Hamiltonian.

To conclude, in this workwe developed amuch tighter Lieb–Robinson
bound compared to refs. 19,21 by carefullymanipulating the commutativity
graph and the nested integral of the QA schedule. Despite the continuous
aspect ofQA,wedefinedthenotionofp− local analysis of themetaheuristic
by approximating the full algorithm using its restriction to bounded radius
subgraphs. Our 1-local analysis of QA allows us to analytically compare its
performances with the performances of single-layer QAOA for MaxCut
over cubic graphs. The tightness of the LRboundwehave derived enables us
to reduce the exhaustive numerical simulation to a tractable task that can be
completed in a few weeks. Finally, we introduced a parameter in the stan-
dard QA, enabling us to optimize the value of the ratio obtained and thus
pass the 0.7 mark with a ratio going beyond 0.7020. This puts us ahead of
single-layer QAOA and Hastings’ 1− local algorithm for MaxCut over
cubic graphs. The comparisonhas its limits, as the processwe are studying is
continuous andnot intrinsically local, unlike the two algorithmsmentioned.
This work should be seen as a step forward in the study of quantum
annealing, bringing more analytical tools to assess its algorithmic
performances.

For futurework, LRbound improvement canbe tackledby considering
the initial state information, which is not arbitrary. In ref. 15, the authors
show that there is a considerable lost in tightness of the bound by neglecting
the initial state. Also, as mentioned above, a slight improvement can be
made topath counting.Then, our tightnumerical resultmight be applied for
a practical implementation of some Hamiltonian simulation schemes,
e.g. ref. 21.

Methods
In this section we prove Theorem QA Approx in two steps. First we
develop a tight enough LR bound using the commutativity graph
structure introduced in ref. 20 and by computing the exact values of the
schedule’s nested integrals. This determines the required value of q to
achieve the best provable ratio. The second step is purely numerical and
requires to enumerate each ball Bq(X) and get the minimum of the final
expected energy of the edgeX inside these balls for eachΩi, corrected by
the LR bound. Our approach follows the algorithm presented in the last
section of ref. 15.

Tight LR bound on regular graphs in QA
As mentioned in section Results, the minimization to obtain the approx-
imation ratio is intractable when performed over the entire graph family.
However, the LR bound helps to reduce the size of the set onwhich we have
to minimize to a finite subfamily of graphs, namely Bq (see Eq. (4)).

First we seek to develop a local bound εloc(Bq(X), T, α) such that
jhOXiG � hOXiBqðXÞj<εlocðBqðXÞ;T; αÞ for all d-regular graphs G such that

the ball at distance q around edge X corresponds to Bq(X). Let G be such a
graph. It happens to be very difficult to manipulate this expression con-
sidering the initial state ∣ψ0

�
so the first step (however costly in terms of

tightness) is to get rid of this dependency by working directly with the
evolution operator:

jhOXiG � hOXiBqðXÞj≤ OG
XðTÞ � O

BqðXÞ
X ðTÞ

��� ���
where we introduce the evolved observable under UG

T and U
BqðXÞ
T respec-

tively, once again dropping theα in the notation for clarity. They are defined
as:

OG
XðTÞ ¼ ðUG

T Þ
y
OXU

G
T

ð9Þ

O
BqðXÞ
X ðTÞ ¼ ðUBqðXÞ

T Þ
y
OXU

BqðXÞ
T

ð10Þ

In ref. 23, the authors demonstrate that the evolution over a subset of nodes
can also be expressed as :

O
BqðXÞ
X ðTÞ ¼

Z
dμðUÞUOG

XðTÞUy

whereμ(U) denotes theHaarmeasure over unitaryoperatorU supported on
S =V\V(Bp(X)). Noticing that UOG

XðTÞUy ¼ OG
XðTÞ þ U½OG

XðTÞ;Uy�, we
can bound the quantity of interest kOG

XðTÞ � O
BqðXÞ
X ðTÞk≤ R

dμðUÞ
k½OG

XðTÞ;U�k for any unitary U supported on S. We are then left to bound
the norm of this commutator.

Let us introduce a helpful tool presented in ref. 20: the commutativity
graphG(V, E) associated to aHamiltonianH(t,G) having local interactions.
In general, we can write H(t) =∑jhj(t)γj where γj are hermitian operators
with norm less than unity and hj(t) are time-dependent scalars. The com-
mutativity graph of H(t) is constructed such that each operator γj is
represented by a node j and two nodes j and k are connected if and only if
[γj, γk] ≠ 0. The structure of the graph captures the commutative and non-
commutative relationships between the operators in the Hamiltonian.

In the case of MaxCut, the total time-dependent Hamiltonian writes

Hðt;GÞ ¼
X
i2V

ð1� t
T
Þ σ

ðiÞ
x

α
þ

X
ða;bÞ2E

t
T
1� σðaÞz σðbÞz

2

Asdescribed, the termsγjof theHamiltonian are represented asnodes in the
commutativity graphG. We can distinguish two types of nodes inV: those
corresponding to interaction operators over the edgesE of the original input
graph, and those corresponding to local operators over nodes of V. This

means that we have for e = (a, b)∈ E, γe ¼ 1�σðaÞz σðbÞz
2 and for v∈V, γv ¼ σðvÞx

α .
We can rewrite the total Hamiltonian as:

Hðt;GÞ ¼
X
v2V

hvðtÞγv þ
X
e2E

heðtÞγe

Our notation fixes the time-dependent scalars at heðtÞ ¼ t
T for e∈ E

andhvðtÞ ¼ 1� t
T for v∈V. Also, it is obvious to see that the commutativity

graph is bipartite. The only pairs that do not commute are pairs ðγv; γeÞv;e,
where node v is incident to edge e inG. An example of commutativity graph
is shown in Fig. 5.

For a unitary A supported on S, we want to upper bound the quantity
½OG

XðTÞ;A�
�� ��. This edgeX can be identified to a specific interaction term in
the commutativity graph. Let us defineX to be the node inG corresponding
to the edge X and consider the operator γAXðTÞ ¼ ½γXðTÞ;A� with
γXðtÞ ¼ ðUG

T Þ
y
γXU

G
T , dropping the dependency on G. Still following the
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first steps in ref. 20, we can arrive at a similar expression in the time-
dependent regime (see Supplementary Note 2 for details):

k γAXðTÞ k � k γAXð0Þ k ≤
P

v:hXvi2G

R T
0 hvðtÞ γXðtÞ; γAv ðtÞ

	 
�� ��dt
≤

P
v:hXvi2G

R T
0 ð1� t

TÞ γAv ðtÞ
�� ��dt ð11Þ

Now,we see on the right hand side of Eq. (11) that we have the normof
γv(t) for some node v adjacent to X in G. We can derive two update rules
which we will use alternately depending on the considered node of G, i.e.
dependingwhether it corresponds to anedge eofGor to anode vofG. These
two rules are as follows:

k γAe ðtÞ k � k γAe ð0Þ k ≤
X

v:hevi2G

Z t

0
ð1� t0

T
Þ γAv ðt0Þ
�� ��dt0 ð12Þ

k γAv ðtÞ k � k γAv ð0Þ k ≤
2
α

X
e:hvei2G

Z t

0

t0

T
γAe ðt0Þ

�� ��dt0 ð13Þ

where we used two inequalities that for any t and any U:

k γUe ðtÞ k¼k ½γeðtÞ;U� k ≤ 1
2 2 k σðiÞz σ

ðjÞ
z kk U k ≤ k U k

k γUv ðtÞ k ¼ k ½γvðtÞ;U� k ≤ 1
α 2 k σx kk U k ≤ 2

α k U k
where (i, j) is the edge on which γe is applied and we used the trivial com-
mutation of the identitywith anymatrix.Note that k γAj ð0Þ k¼ 0 as long as j
is inside Bq=k−1(X), so we can iterate up to 2k steps as the first node outside
Bq(X) is a red node corresponding to an interaction term (see Fig. 6):

k γAXðtÞ k ≤ 2
α

� �k P
v1:hXv1i2E

P
e1 :hv1e1i2E

. . .
P

ek:hvkeki2E

R t
0 hv1 ðt1Þ

R t1
0 he1 ðt2Þ . . .

R t2k�1

0 hek ðt2kÞ k γAek ðt2kÞ k dt2k . . . dt2dt1

ð14Þ

Now, let us introduce the followingnested integral I2k and I2k+1 that appears
in Eq. (14) where we replace each hj(ti) by its expression and we pull out the
integral the factorT2k andT2k+1 respectively so that the integrals dependonly
on k:

I2k ¼ R 1
0 1� u1

R u1
0 u2 . . .

R u2k�1
0 u2kdu2k . . . du2du1

I2kþ1 ¼ R 1
0 1� u1

R u1
0 u2 . . .

R u2k
0 1� u2kþ1du2kþ1 . . . du2du1

There is no known closed form for these integrals but we can easily have the
exact numerical values for at least the first 100 points and we can upper
bound it as we show in SupplementaryNote 3.We can thenwrite, following
Eq. (14):

k γAXðTÞ k ≤T2k 2
α

� �k

I2k
X

v1:hXv1i2E

X
e1 :hv1e1i2E

. . .
X

ek :hvkeki2E
max

t
k γAek ðtÞ k

where γAek ðtÞ corresponds to an interaction node of the commutativity graph
(i.e. red node) because we are at an even step. We used the fact that A is
unitary and the dependence onBq(X) lies in computing the sizeof the nested
sum. This bound can be improved by applying the update rule of Eq. (11)
and noticing that the first terms such that k γAek ð0Þ k ≠0 only include all
paths starting at X and ending in the first red node outside Bq=k−1(X) (the
green area in Fig. 6) in 2k steps in G. After iterating several times, we get:

k γAXðTÞ k ≤ T2k 2
α

� �k
I2k ×#f path of length 2k : Xv1e1 . . . vkekg k γAek ð0Þ k

þ T2kþ1 2
α

� �k
I2kþ1 ×#f path of length 2kþ 1 : Xv1e1 . . . vkekvkþ1g

k γAvkþ1
ð0Þ k

þ T2kþ2 2
α

� �kþ1
I2kþ2 ×#f path of length 2kþ 2 : Xv1e1 . . . vkþ1ekþ1g

k γAekþ1
ð0Þ k

þ T2kþ3 2
α

� �kþ1
I2kþ3 ×#f path of length 2kþ 3 : Xv1e1 . . . vkþ1ekþ1vkþ2g

k γAvkþ2
ð0Þ k

þ T2kþ4 2
α

� �kþ2
I2kþ4 ×#f path of length 2kþ 4 : Xv1e1 . . . vkþ2ekþ2g

k γAekþ2
ð0Þ k

þ T2kþ5 2
α

� �kþ2
I2kþ5 ×#f path of length 2kþ 5 : Xv1e1 . . . vkþ2ekþ2vkþ3g

k γAvkþ3
ð0Þ k

þ T2kþ6 2
α

� �kþ3
I2kþ6

P
v1:hXv1i2G

P
e1:hv1e1i2G

. . .
P

ekþ2:hvkþ1ekþ2i2G
max

t

k γAekþ3
ðtÞ k

¼ εlocðBq¼k�1ðXÞ;T; αÞ
ð15Þ

Westop at the seventh iteration because numerically it appears that the
bound reaches a minimum before increasing again. Each path considered
above ends outside Bq(X), because for the others we have k γAj ð0Þ k ≠0 for
j∈ [ek, vk+1, ek+1, vk+2, ek+2, vk+3]. We also implicitly extend Bq(X) so as to
maximize the numberof paths inEq. (15). Thanks to the upper boundof the
integrals detailed in Supplementary Note 3, it is easy to see that the derived
bound is decreasing with k and thus with q meaning that we have the
following corollary:

Corollary. For any q > 0 and any edge X inside a d− regular graph,

8j > 0; εlocðBqþjðXÞ;T; αÞ≤ εlocðBqðXÞ;T; αÞ

the same goes for the global bound as taking the max preserves the
inequality:

8j > 0; εðqþ j;T; αÞ≤ εðq;T; αÞ

For the local bound,we need to compute for each ballBq(X) the number
of paths. Inpractice, a subroutine counting thenumberofpathsof a given size
is used to compute the local bound. The last term with the multiple sums is
counting for (2d)k+3 as at each interaction term there are d possible choices of
nodes andonly 2 at the others. In this subsectionwe detailed the derivation of

Fig. 6 | Commutativity graphmaximizing the LR bound.Commutativity graph of
the cubic graph that maximizes the LR bound. The shaded area shows an example
for q = 2 = k− 1.

Fig. 5 | Example of a commutativity graph. Example of a commutativity graph for

the following Hamiltonian:Hðt;GÞ ¼ P3
i¼1ð1� t

TÞ σ
ðiÞ
x
α þ t

T
1�σðiÞz σðiþ1Þ

z
2 where index i is

taken modulo 3. Blue nodes represent 1-local operators and red nodes represent
2-interaction terms. In particular, blue nodes of G correspond to nodes of the
original graph G, and red nodes correspond to its edges.
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the LR local bound Eq. (15). In the next subsection, we pursue the derivation
to get the global bound by taking the maximal number of paths.

Global LR bound
In this subsection, we use Eq. (15) to derive the global LR bound. As defined
in Section Results, the global bound is obtained by considering the max-
imumof the local boundEq. (15)over all balls inBq. To this end,weconsider
the worst-case scenario, i.e. the ball maximizing the possible number of
paths. It is trivial to see that this corresponds to the cycle-free ball (Fig. 6).

In this cycle-free ball, we can count the number of paths corresponding
to each term in LR bound’s equation. In Fig. 7, we depict example paths for
each of the necessary cases that we detail below.

For the first two terms, only direct simple paths reach the outside of
Bq(X), and there are 2(d−1)k of them. The factor 2 comes from the initial
choice at node X, you can go either left or right in Fig. 6. Once the side has
been chosen, at each blue node (node vr), there are d− 1 possibilities, as the
path cannot gobackwardsbydefinitionofdirect singlepaths. In apath from
X to the first node outsideBq=k−1(X), i.e. of length 2k, there are k blue nodes,
bringing the total number of direct simple paths to 2(d−1)k (path Fig. 7a).
The same number of paths is found for direct paths of length 2k+ 1.

Then, for the third and fourth terms, we can distinguish simple direct
paths that go one step further in G, i.e. of length 2k+ 2 and 2k+ 3
respectively, from non-direct paths, i.e. passing several times through the
same node or edge. For the third term counting paths of length 2k+ 2,
similarly to above, there are 2(d−1)k+1 direct paths. For the non-direct ones,
we need to count every edge that can be used at least twice in the path (path
Fig. 7b.Atfirst, there are the two edges that start fromX, then (d− 1) at each
blue node on the path and+ 1 at each red node, making a total of
2+ ((d− 1)+ 1)*k edges that can be used twice in the 2(d−1)k

possible paths. Therefore, the total number of paths in the third term is
2(d−1)k+1+ (2+ dk)*2(d−1)k. For the fourth term, we use similar rea-
soning to arrive at 2(d−1)k+1+ (dk+ 2+ d− 1)*2(d−1)k paths.

Let us see how the last two terms are derived. For the fifth term, we
need to count all paths of length 2k+ 4 that lead to a red node outside the

shaded area. There are three types of path: direct paths up to ek+2 counting

for 2(d−1)k+2, those with exactly one edge taking two or three times, i.e.

reaching ek+1 counting for (d(k+ 1)+ 2)*2(d−1)k+1 and those reaching ek

counting for ðdkþ 2Þ þ dkþ 2
2

� �
þ 2ðd � 1Þ þ k

 �
� 2ðd � 1Þk. In the

latter, a distinction ismade: either an edge is used 4 or 5 times, or 2 different
edges at a distance atmost one from the direct path can be used 2 or 3 times

(path Fig. 7d), or finally choose a branch of length 2 far from the direct path
(path Fig. 7c). Similar reasoning is used for the sixth term.

We can then substitute the path counting in Eq. (15) to derive the
following closed-form:

k γAXðtÞ k ≤ T2k 2
α

� �k
I2k × 2ðd � 1Þk þ T2kþ1 2

α

� �kþ1
I2kþ1 × 2ðd � 1Þk

þ T2kþ2 2
α

� �kþ1
I2kþ2 × 2ðd � 1Þk dðkþ 1Þ þ 1½ �

þ T2kþ3 2
α

� �kþ2
I2kþ3 × 2ðd � 1Þk dðkþ 2Þ½ �

þ T2kþ4 2
α

� �kþ2
I2kþ4 × 2ðd � 1Þk d2 ðkþ1Þ2þ3

2 þ d 3kþ2
2 þ k

h i

þ T2kþ5 2
α

� �kþ3
I2kþ5 × 2ðd � 1Þk d2 ðkþ2Þ2þ3

2 þ d kþ1
2 þ k� 1

h i

þ T2kþ6 2
α

� �kþ3
I2kþ6 × ð2dÞkþ3 ¼ εðq ¼ k� 1;T; αÞ

ð16Þ

In this subsection, we developed the proof of our LR bound for any
d− regular graph on which we want to solve MaxCut with a quantum
annealing process. This bound achieves the best numerical value compared
to the state-of-the-art ofLRbounds.This is due to the fact thatwehavefinely
evaluated the nested integral with the standard schedule and used the
commutativity graphof theHamiltonian to tighten the bound.Here the free
parameter α plays an important role: optimizing over its value will allow us
to control the tightness of the bound (16). This point is further discussed in
Section Discussion. In the next subsection, we apply the derived bounds
(global and local) to obtain a numerical value of the approximation ratio for
a 1-local analysis of QA.

Application to approximation ratio of MaxCut
In this subsection,weuse thepreviouslyderivedLRbounds todetermine the
approximation ratio of MaxCut over cubic graph with QA analyzed as a
1− local algorithm. The proof of the Theorem QA Approx proceeds with
step 3, 4 and eventually 5, as illustrated in the overview of Fig. 2.Wewill use
the Eq. (7) to derive the approximation ratio with the 1− local analysis.

For this purpose, after rigorous errors and trials, we set specific values
T = 3.33, α = 1.53 and q = 3, that establish the global bound ε(q, T, α). In
order to compute the required minimums of Eq. (6), hOXi�B3;i

, we need to
enumerate all balls inB3 and all cubic graphs inB2.We followa smart hash-
based iterative algorithm detailed in Supplementary Note 4. The algorithm
generated 930449 balls. Employing the AnalogQPU simulator of Eviden
Qaptiva see Supplementary Note 4), we solve the Schrödinger equation to
get thefinal state ∣ψB3ðXÞðT; αÞ� as described in theparagraph “Parametrized
QA” of Section Results. This allows to explicitly evaluate the value of

Fig. 7 | Paths counting. Example of different paths
starting at X on the commutativity graph for the
global bound with k = 3. a A simple path
(Xv1e1v2e2v3e3) in pink of length 2k, b a green path
(Xv1e1v2ebv2e2v3e3) of length 2k+ 2 with a back-
and-forth on one edge, c in orange a path
(Xv1ervrerv1e1v2e2v3e3) of length 2k+ 4 with a back-
and-forth on a branch of two edges and d in blue a
path (Xv1erv1e1v2e2v3e2v3e3) of length 2k+ 4 with
two back-and-forth on two edges at distance at most
one from the simple path.

https://doi.org/10.1038/s41534-024-00832-x Article

npj Quantum Information |           (2024) 10:40 7



hOXiB3ðXÞ for eachball inB3.We subtract the valueof the global LRbound to
the expected edge energy for each ball. To narrow down our selection, we
retain only those balls for which jhOXiB3ðXÞ � εðq;T; αÞj<0:7020. This
initial step corresponds to step 3 of Fig. 2 and leads to the values for
hOXi�B3;1

¼ 0:5502 and hOXi�B3;2
¼ 0:6265. These values satisfy the condi-

tion (see Supplementary Note 1) where the ratio reduces to ρMC ≥ hOXi�B3;3
.

In otherwords, the critical balls correspond to configurationsΩ3 (see Fig. 3),
as it usually happens in QA and QAOA algorithms for MaxCut7,15. Con-
sequently, our goal is to maximize this minimum.

We are left with 7071 balls B3(X) with configuration Ω3 at distance 1
around X, to which we apply the local bound. To compute the local bound,
we have access to a path-counting algorithm as there is no closed form like
the global bound. To find the maximum over parameters T and α, in Fig. 8,
we plot the evolution of (a) max

T
ðhOXiB3ðXÞ � εð3;T; αÞÞ and (b)

max
T

ðhOXiB3ðXÞ � εlocðB3ðXÞ;T; αÞÞ against α for the 18 worst balls B3(X)

according to the global and local bounds respectively.

The analysis reveals that around α = 1.5 all these balls surpass the
thresholdof 0.7020,with theworstball depicted inFig. 9.Thisplotfinallyfixes
the value of hOXi�B3;3

¼ 0:70208 . . . which proves Theorem QA Approx.
To sum up, the constant-time analysis of Quantum Annealing (QA)

for MaxCut over cubic graphs, analyzed as a 1-local algorithm, achieves an
approximation ratio exceeding 0.7020. This result goes beyond any known
ratio of 1-local algorithms, whether quantum or classical.

Data availability
The Open Source code for reproducibility of this work is made
available to readers on GitHub https://github.com/Arts-Braido/LR-
bound-for-approximation.
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