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We propose a mechanism for reaching pseudorandom quantum states, computationally
indistinguishable fromHaar random,with shallow log-ndepth quantumcircuits, where n is the number
of qudits. We argue that log n depth 2-qubit-gate-based generic random quantum circuits that are
claimed to provide a lower bound on the speed of information scrambling, cannot produce
computationally pseudorandom quantum states. This conclusion is connected with the presence of
polynomial (in n) tails in the stay probability of short Pauli strings that survive evolution through such
shallow circuits. We show, however, that stay-probability-tails can be eliminated and pseudorandom
quantum states can be accomplished with shallow log n depth circuits built from a special universal
family of “inflationary” quantum (IQ) gates. We prove that IQ-gates cannot be implemented with
2-qubit gates, but can be realized either as a subset of 2-qudit-gates inU(d2) with d ≥ 3 and d prime, or
as special 3-qubit gates.

The focus of this paper is on addressing the following question: what is the
lowest-depth quantum circuit that can generate computationally pseudor-
andom quantum states, i.e., quantum states that cannot be distinguished
fromHaar random by an adversary limited to polynomial resources? For us
this question was motivated by two conjectures concerning scrambling by
quantum circuit models of black hole dynamics that have emerged in the
context of decades-old efforts of reconciling general relativity with quantum
mechanics. The first, due to Susskind and collaborators, is that black holes
are the fastest scramblers in naturewith a scrambling time τsc ∼ log n, where
n is the number of degrees of freedomof the system1, a conjecture supported
by holography-based calculations2–4. The second conjecture is that black
holes must be also thorough scramblers of information5–7. In a nutshell, the
idea is that black holes are also efficient generators of (computational)
pseudorandomness: that they scramble information efficiently (i.e., in
polynomial time) but that unscrambling (decoding) that information
requires superpolynomial (in n) effort. While convincing arguments have
been advanced for eachof these conjectures, the question ofwhether one can
achieve both “speed” and “thoroughness” at the same time—namely whe-
ther a quantum circuit of log n depth (corresponding to a “computational
time” scaling as log n) can create pseudorandom states indistinguishable
fromHaar random for an adversary with polynomial resources—has, to our
knowledge, not been discussed explicitly in the black hole literature.

Irrespective of whether or not satisfying both “speed” and “thor-
oughness” conditions is critical tounderstanding thequantummechanics of

black holes, the question of the level of scrambling by log n-depth circuits is
conceptually and practically important to a number of areas of quantum
information. In particular, the issue has been discussed in the context of t-
designs. In their comprehensive studies, Harrow and Mehraban8 con-
jectured that complete-graph-structured log n-depth random circuits dis-
play the propertyof anti-concentration, namely that the probability that two
different realizations of the circuit lead to identical outcomes is exponen-
tially small in n, and at most a constant multiple of the value obtained by
averaging over the Haar measure. They also conjectured that log n-depth
long-range circuits are sufficient for reaching 2-designs. While the anti-
concentration conjecture was recently proved for a few circuit con-
nectivities, anti-concentration is not sufficient for proving 2-design9,10. In
particular, we show below that log n-depth long-range 2-qubit circuits lead
to polynomial (rather than superpolynomial) decay of a 4-point out-of-
time-order correlator, and therefore these shallow circuits cannot produce
2-designs. We note that being a 2-design is a stronger (statistical) condition
than computational indistinguishability based on measurements of 2-time/
4-operator correlations. The notion of t-design refers to “statistical indis-
tinguishability” fromHaar-random, which is determined using the distance
between probability distributions or the difference between the correlations
they produce. By contrast, the discussions of pseudorandomness and all
arguments of this paper are limited to “computational indistinguishability”,
a more physical notion referring to adversaries who are limited to a poly-
nomial number of measurements. Building computational pseudorandom
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Boolean functions with log n-depth (NC1) circuits, a closely related classical
version of the question we ask of quantum circuits, has been addressed by
the cryptography community11–13. These classical constructions, however,
involve pre-processing and non-trivial storage considerations that are not
obviously amenable to low-depth quantum implementations.

Our own interest in information scrambling and the issues raised in
this paper stem fromourwork onn-input/n-output reversible-circuit-based
classical block ciphers and, in particular, on the question of what is the
fastest, lowest-depth block cipher that is secure to attacks by polynomially-
limited adversaries. In ref. 14 we proposed a cipher design that is capable of
scrambling informationwith onlyOðlog nÞ layers of gates, on a par with the
conjectured fastest scrambling time by black holes, but, we argued, to
cryptographic level: the special log n-depth cipher produces a permutation
which is computationally indistinguishable from pseudorandom to an
adversary with polynomial resources. [We stress that the Oðlog nÞ-depth
cipher design in ref. 14 meets necessary conditions for indistinguishability
from a pseudorandom permutation. These conditions are based on quan-
titative measures of chaos and irreversibility in quantum systems (such as
out-of-time-order correlators and string entropies). We do not establish
sufficiency of these measures as this would be equivalent to proving that
P ≠NP.] It is alsoworth noting that these ciphers areNC1 reversible circuits,
implemented without the need for preprocessing or additional storage11–13.

At first sight, classical ciphers seem only distantly related to the pro-
blem of information scrambling by quantum circuits. However, our pro-
gress in designing fast classical ciphers was based on amapping of reversible
classical computations into the space of Pauli strings.Within the framework
of strings, the notions of irreversibility and chaos and their quantitative
measure in terms of string entropies and out-of-time-order correlators
(OTOCs) used in studies of quantum scrambling translate naturally to the
problem of scrambling by reversible classical circuits. It is the string space
picture that allows us to use the intuition gained from the study of one
problem to the study of the other.

In particular, in the context of random reversible classical circuits, the
repeated forward and backward propagation that defines OTOCs involving
a polynomial number of string operators naturally describes arbitrary
polynomial measurements carried out by an adversary on inputs and/or
outputs of the circuits. Security to such attacks—referred to as differential
attacks in cryptoanalysis—requires that all OTOCs describing correlations
between results of such alternating measurements vanish faster than any
polynomial (and ideally exponentially) in the number of bits acted on by the
circuit. However, as discussed in ref. 14 for unstructured classical random
circuits of universal reversible gates and as explained in the body of the paper
for 2-qubit-gate-based random quantum circuits, the typical OTOC van-
ishes exponentially with “computational time”—the number of layers of

gates applied. (The same exponential decay of the OTOC with time is the
generic behavior expected for scrambling of information and the approach
to chaos in quantum systems described by unitary Hamiltonian evolution4.)
As a result, generic circuits of log n depth lead to polynomial decays of the
OTOCs, and thus are not secure to polynomial attacks (in the classical case)
and do not generate computationally pseudorandomquantum states (in the
quantum case).

Thefirstmessage of this paper is that generic randomquantum circuits
of 2-qubit gates like those used as simple models of black hole dynamics
cannotproducecomputationallypseudorandomquantumstateswhile at the
same time saturating the log n lower bound on the scrambling time pur-
ported to qualify black holes as the fastest scramblers in nature. The root of
the problem is the presence of polynomial tails of the stay-probabilities for
low-weight Pauli strings, illustrated schematically in Fig. 1. In turn, for
generic log n-depth random circuits, these tails translate into a polynomial
decayofOTOCswithn. Using the intuition gained from the studyof shallow
classical ciphers in ref. 14,weargue that ensuring a superpolynomial decayof
OTOCs in log n-depth quantum circuits requires employing special “infla-
tionary gates” that eliminate the stay-probability of weight-1 strings and
accelerate the spreading of string operators (see the inset of Fig. 1).

Our second message is that, while inflationary gates do not exist as
2-qubit gates inU(4), they can be realized as 2-qudit gates with local Hilbert
space dimension d ≥ 3 and d prime, or as 3-qubit gates. Circuits built from
these gate sets would implement cryptographic level scrambling at the log n
“speed limit”, performance one might like to ascribe to a supreme “super-
scrambling” black hole.

Finally, we note that, while saturating the log n scrambling time
lower bound may not be critical for resolving black hole paradoxes,
reaching computationally pseudorandom permutations at the log n
“speed limit” for scrambling was crucial in our own work on classical
ciphers. As discussed in a recent paper15, ciphers of log n-depth
enable Encrypted Operator Computing (EOC), a gate-based poly-
nomial complexity approach to secure computation on encrypted
data that offers an alternative to Fully Homomorphic Encryption. For
larger-depth circuits (and even for circuits of log2n depth), the
implementation of the EOC scheme would become superpolynomial
in n and thus computationally intractable.

Results
Our contributions
The principal conclusions of this paper are that:
• Due to polynomial tails in the stay-probability for weight-1 Pauli

strings, 2-qubit-gate-based random quantum circuits of depth
Oðlog nÞ cannot produce pseudorandom states.

Fig. 1 | Evolution of weight-1 Pauli strings. An effective 2-qubit reversible gate
obtained by averaging uniformly over 2-qubit gates inU(4) leads to equal transition
amplitudes among the 15 (=42 − 1) non-trivial weight-1 and weight-2 string states,
including a finite stay probability, pw=1 < 1, for weight-1 strings (i.e., a finite
amplitude for the transition from a weight-1 to another weight-1 string state).
Applying log n layers of 2-qubit gates leads to a polynomial tail ðpw¼1Þlog n ¼

n� logð1=pw¼1Þ in the stay probability of weight-1 strings that, in turn, translates into
polynomial tails in OTOCs. Exponential decay of OTOCs in log n depth quantum
circuits requires the use of special “inflationary” gates that map all weight-1 strings
into weight-2 strings, thus eliminating the stay probability for weight-1 strings, as
depicted schematically in the inset.
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• Reaching pseudorandom quantum states withOðlog nÞ-depth circuits
becomespossible if one employs circuits comprised of special universal
3-qubit gates or 2-qudit gates with local Hilbert space dimension d ≥ 3
and d prime. These gates, which we refer to as “inflationary quantum
gates”, or IQ gates, both expand and proliferate Pauli strings.

These conclusions are built on the intuition gained from our work in
ref. 14 on classical ciphers based on reversible circuits of log n depth, which
we translate to the problem of information scrambling by quantum circuits.
The polynomial tails in the probability distribution of weight-1 strings also
occur in random reversible classical circuits and it is the elimination of these
tails that required the structured design of our log n-depth classical cipher.
This design involves a permutation P̂ expressed as a 3-stage circuit
P̂ ¼ L̂r N̂ L̂l , with each stage represented by tree-structured reversible
classical circuits built out of 3-bit permutations (gates), which enable uni-
versal classical computing. (The wiring of tree-structured circuits is
described in the “Tree-structured circuits” discussion in the “Methods”
section.) The bookends L̂l;r are comprised of log2n layers of special (clas-
sical) linear inflationary gates, that flip at least two output bits upon flipping
a single input. The implementation of inflationary gates in string space
eliminates the stay probability of weight-1 strings and accelerates the
spreading of their effect across then bitlines of the circuit. These inflationary
stages flank a reversible circuit N̂ , comprised of log3n layers of (classical)
nonlinear gates that maximize production of (Pauli)-string entropy. As
argued in ref. 14, the 3-stage circuit realizes a log n-depth cipher that satisfies
the necessary (and we conjecture sufficient) conditions for pseudor-
andomness. [We note that the tree structure mimics a system of infinite
dimension and, when combined with the inflationary property of the gates,
ensures that the weight of the strings grows exponentially with the depth or
number of layers of gates.]

The interplay between inflation and proliferation of strings leads to a
double exponential decayofOTOCsas a functionof the computational time,
i.e., the number of layers of gates. For our shallow log n-depth cipher this
double exponential behavior, which implies an infinite Lyapunov exponent,
translates into an exponential decay of OTOCs with n. We note that, in
classical circuits, inflation and proliferation of strings are implemented by
different families of gates and thus, as described above, fast and thorough
scrambling requires a structured 3-stage cipher. In this paper we exploit the
interplay of inflation and proliferation of strings in the context of quantum
circuits. Unlike the case of classical circuits, in the quantum case one can
build IQ gates that incorporate both string inflation and string proliferation.
As a result, fast and thorough quantum scrambling can be realized with
unstructured single-stage random quantum circuits comprised of IQ gates.

Generating pseudorandom quantum states with logn-depth
circuits
In this sectionwefirst argue that log n-depth randomquantumcircuits built
by sampling uniformly over 2-qubit gates in U(4) cannot produce pseu-
dorandomness.We thengive an example, schematically depicted inFig. 2, of
how to construct a pseudorandom state by employing a quantum circuit

comprising a layer of Hadamard gates followed by the log n-depth 3-stage
classical cipher of ref. 14. Given that the classical cipher produces a pseu-
dorandom permutation, an assumption tested via the Strict Avalanche
Criterion (SAC) for pseudorandomness of classical ciphers16–18, we show
that the resulting quantum state satisfies the pseudorandomness condition
expressed in Eq. (1) below.

Weproceedby relating quantumexpectation values of string operators
toOTOCs, an identitywhich turns out to be useful in establishing the results
of this section. We consider a quantum state ∣ψ

�
on the Hilbert space of n

qubits that is obtained through the evolution via a unitary transformation Û
applied to an initial product state ∣ψ0

�
: ∣ψ

� ¼ Û ∣ψ0

�
. If the state ∣ψ

�
is

pseudorandom, then the expectation values of (non-trivial) Pauli string
operators must vanish faster than any polynomially bounded function η(n)
of the number of qubits, n:

j ψ
�

∣ Ŝα ∣ψ
�j2 < ηðnÞ ; ð1Þ

where a Pauli string:

Ŝα ¼
Y
j2αx

σ̂xj
Y
k2αz

σ̂zk ; ð2Þ

is labeled by the set α = (αx, αz) of qubit indices present in the string. By
adding a phase iα

x�αz to Ŝα—picking up an i each time both a σ̂xj and σ̂zj
appear at the same j, or basically deploying the σ̂y s aswell—wouldmake the
string operator Hermitian. Here we prefer the definition Eq. (2) for the
applications we consider, and work explicitly with both Ŝα and Ŝy

α when
needed. (When convenient, we also use the equivalent notation αx;zi ¼
1 $ i 2 αx;z and αx;zi ¼ 0 $ i=2αx;z, as for example in the definition of the
dot product a ⋅ b≡∑iaibi.)

We next move the unitary transformation onto the string operators to
rewrite the left hand side of Eq. (1) in terms of “time”-evolved Pauli strings,
ŜαðτÞ � Û

y Ŝα Û , and Ŝαð�τÞ � Û Ŝα Û
y
(Ŝαð0Þ � Ŝα). Without loss

of generality, we consider an initial product state in the computational basis,
∣ψ0

� ¼ ∣xi, where x is an n-bit binary vector. We can then write:

∣ xh ∣ŜαðτÞ∣xi∣
2 ¼ tr P̂x Ŝy

αðτÞ P̂x ŜαðτÞ
h i

¼ 1
4n

P
βz ;β0z

ð�1Þðβz�β0zÞ�x tr Ŝβz Ŝ
y
αðτÞ Ŝβ0z ŜαðτÞ

h i
;

ð3Þ

where P̂x is the projector onto the state ∣xi, expressed in terms of Pauli
strings as:

P̂x ¼
Y
i

1þ ð�1Þxiσzi
2

� �
¼ 1

2n
X
βz

ð�1Þβz�x Ŝβz : ð4Þ

If the correlator in Eq. (3) decays superpolynomially in n for all initial states
∣xi, then the superpolynomial decay carries over to the average over all initial

Fig. 2 | The circuit architecture that generates the
pseudorandom quantum state with depth
Oðlog nÞ. This construction uses the three-stage
(computationally) pseudorandom permutation of
ref. 14, which is built out of three circuits, L̂l=r and N̂ ,
comprised of linear inflationary gates and nonlinear
proliferation gates, respectively. Each block contains
Oðn log nÞ three-qubit gates organized into a tree
structure ofOðlog nÞ layers (see the “Tree-structured
circuits” discussion in the “Methods” section).
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states.Thus, averagingEq. (3)overx, andusing
P

xð�1Þðβz�β0zÞ�x ¼ 2n δβz ;β0z ,
yields:

QαðτÞ � 1
2n
P
x

∣ xh ∣ŜαðτÞ∣xi∣
2

¼ 1
2n
P
βz

1
2n tr Ŝβz Ŝ

y
αðτÞ Ŝβz ŜαðτÞ

h in o

¼ 1
2n
P
βz

1
2n tr Ŝy

βz ð�τÞ Ŝy
α Ŝβz ð�τÞ Ŝα

h in o
;

ð5Þ

where we shifted the time-dependence from τ to −τ by using the cyclic
property of the trace and the fact that the z-string operator Ŝβz isHermitian.
Notice that the expression within parentheses in Eq. (5) represents an
OTOC of Pauli string operators.

Equation (5) can be translated into amore intuitive formbywriting the
τ-dependent string, U Ŝα U

y ¼ P
β Aαβð�τÞ Ŝβ in terms of string

amplitudes, Aαβ(−τ), and then expressing Qα(τ) as:

QαðτÞ ¼ 1
2n
P
βz

P
γ;γ0

A�
γβz ð�τÞ Aγ0βz ð�τÞ 1

2n tr Ŝy
γ Ŝy

α Ŝγ0 Ŝα

h in o
¼ 1

2n
P
βz

P
γ;γ0

A�
γβz ð�τÞ Aγ0βz ð�τÞ δγ;γ0 ð�1Þαx�γz ð�1Þαz�γx

¼ 1
2n
P
βz

P
γ

jAγβz ð�τÞj2 ð�1Þαx�γz ð�1Þαz�γx :

ð6Þ
For simplicity we consider a local z-string, Ŝα ¼ σ̂zi (i.e., α

x ¼ 0; αzj ¼ δij),
in which case, Qσ̂zi

ðτÞ � 1
2n
P

xj xh ∣ σ̂zi ðτÞ ∣xij2 is given by:

Qσ̂zi
ðτÞ ¼ 1

2n
P
βz

� P
γjσ̂xi =2Ŝγ

jAγβz ð�τÞj2 � P
γjσ̂xi 2Ŝγ

jAγβz ð�τÞj2
�

¼ 1
2n
P
βz

�ðpi;1ð�τ; βzÞ þ pi;zð�τ; βzÞÞ � ðpi;xð�τ; βzÞ þ pi;yð�τ; βzÞÞ� ;
ð7Þ

where pi;1ð�τ; βzÞ; pi;zð�τ; βzÞ; pi;x �τ; βz
�

and pi;y(−τ; βz) are the prob-
abilities that, at position i (and computational time −τ), the Pauli string
contains, respectively, an identity, a σ̂z, a σ̂x, or the product σ̂xσ̂z.
[Throughout we keep track of the initial non-trivial string state βz defining
the transition amplitudes Aγβz ð�τÞ in Eq. (7).]

Unstructured random quantum circuits. We will now make use of
Eq. (7) to address the following question: can a log n-depth random
quantum circuit built from 2-qubit gates (2-local) in U(4) representing
the unitary operator Û in ∣ψ

� ¼ Û ∣ψ0

�
lead to pseudorandom states for

which Qσ̂zi
satisfies the pseudorandomness condition in Eq. (1)? We

answer this question by considering the average string weight, which is
obtained by averaging Eq. (7) uniformly over circuits and over the axis of
quantization, whereby we can write pi;xð�τ; βzÞ ¼ pi;yð�τ; βzÞ ¼
pi;zð�τ; βzÞ ¼ 1

3 ρð�τ; βzÞ, where ρ(−τ; βz) is the string density. As a
result:

Qσ̂z ðτÞ ¼ 1
2n
P
βz

1� 4
3 ρð�τ; βzÞ� �

: ð8Þ

The averaging in Eq. (8) is carried out over random 2-qubit-gate-based
universal circuits in which case the superpolynomial bound onQσ̂zi

ðτÞ for a
given random circuit remains valid for the averageQσ̂z ðτÞ. Here we assume
thatQσ̂zi

ðτÞ obtained for a typical random circuit coincides with the average
over circuits,Qσ̂z ðτÞ. [Note that considering the average quantity eliminates
the pathological behavior of individual atypical circuits—such as for
example one comprised of only identity gates—because their contribution
are only included in the average with vanishingly small probability.]
Moreover, the average of the string density over circuits depends on the
initial condition, βz, but is independent of the site index i. Also, note that we

kept the subscript σ̂z on Qσ̂z ðτÞ as a reminder of the initial σ̂z-string
expectation value in Eq. (7). Parametrizing the τ dependence in terms of the
number of layers of gates ℓ (the depth) of the circuit describing the unitary
transformation Û that generated the evolution of string amplitudes up to
time −τ, we can define:

ϵð‘; βzÞ � 1� 4
3 ρð‘; βzÞ ; ð9Þ

towriteQσ̂z ðτÞ ¼ 1
2n
P

βzϵð‘; βzÞ. A lower bound on the function η(n) in Eq.
(1) is determined by how fast ρ(ℓ; βz) reaches its asymptotic value of 3/4
starting from an initial condition associated with the arbitrary (non-trivial)
initial string state βz.

The equation describing the evolution of the average string weight
ρ(ℓ; βz) can be derived by following all 15(=4 × 4− 1) non-trivial two-site
strings through the unitary evolution with consecutive layers of effective
(average) gates which connect with equal amplitude each of these states to
themselves and to each other. Here we shall make a mean-field approx-
imation, which is equivalent to the assumption that the densities at different
positions along the string are uncorrelated. It then follows that, since the
identity string does not scatter into a non-trivial string, a configuration
involving identity operators on both sites, which occurs with probability
(1− ρ)2, cannot contribute a Pauli operator on a given site. Otherwise, with
probability 1− (1− ρ)2, non-trivial 1-site and 2-site string states scatter into
a configuration with a Pauli operator on a given site with transition prob-
ability 12/15 = 4/5, accounting for the fact that only 12 (3 weight-1 strings
and 9 weight-2 strings) out of the 15 non-trivial string states feature a Pauli
operator on that site. Therefore:

ρð‘þ 1; βzÞ ¼ 1� ρð‘; βzÞ� 	2 × 0
þ ½1� 1� ρð‘; βzÞ� 	2�× 4

5 � 4
5 ρð‘; βzÞ ð2� ρð‘; βzÞÞ :

ð10Þ

As expected, ρ(ℓ→∞; βz) = 3/4 is a fixed point.Writing Eq. (10) in terms of
ϵ(ℓ; βz) defined in Eq. (9), we obtain:

ϵð‘þ 1; βzÞ ¼ 2
5 ϵð‘; βzÞ þ 3

5 ðϵð‘; βzÞÞ2 : ð11Þ

This equation must be solved with initial condition ϵ(0; βz) = 1− (4/
3) ρ(0; βz). Asymptotically, ϵ(ℓ; βz) tends to zero exponentially in ℓ as~(2/5)ℓ,
for any initial string state βz.

We note that incorporating two-site correlations beyond mean-field
can alter the coefficients in Eq. (11) by terms of order 1/n but cannot change
the fixed point density, ρ(ℓ→∞; βz) = 3/4. In particular, these 1/n correc-
tions can modify the coefficient of the linear term in Eq. (11) but cannot
eliminate it all together, thus preserving the exponential decay of OTOCs
with ℓ. For ‘∼Oðlog nÞ, Qσ̂z in Eq. (8) can only decay as a power law in n,
violating the assumption thatη(n) in Eq. (1) is superpolynomially small inn,
as pseudorandomness requires. We conclude that evolution via a
log n-depth circuit built fromuniversal 2-qubit gates drawn uniformly from
unitaries in U(4) is incapable of reaching a pseudorandom state. [It is
interesting to note that the number of layers required to reach the equili-
brium string weight ρ = 3/4 (1− ϵ) starting from an initial value ρð0; βz ¼
σ̂zi Þ∼ 1=n that emerges from the differential equation derived from the
mean-field recursion in Eq. (10) corresponds to a circuit of size
S ¼ 5

6 n ln nþ lnð1=ϵÞ� �
. This is precisely the expression for the lower

bound on circuit size required for anti-concentration derived in ref. 10 for
2-qubit gates on a complete graph and conjectured earlier by Harrow and
Mehraban8.]

In the next section we use the Oðlog nÞ-depth structured classical
reversible circuits discussed in ref. 14 to build a pseudorandom quantum
state, i.e., a quantum state for which the bound in Eq. (1) is satisfied.

Structured random quantum circuits. Let us start with a product state
∣0i�n in the computational basis, and apply a non-trivial string βx of Pauli
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σ̂x operators that flips the initial state to ∣βx
�
. By applying Hadamard

gates to this state we then obtain:

H�n ∣βx
� ¼ 1ffiffiffiffiffi

2n
p

X
x

ð�1Þβx�x ∣xi : ð12Þ

Finally, evolving the resulting state with a classical reversible permutation
circuit P̂, P̂ ∣xi ¼ ∣PðxÞ�, leads to:

∣ψβx

E
¼ 1ffiffiffiffi

2n
p

P
x

ð�1Þβx�x ∣PðxÞ�
¼ 1ffiffiffiffi

2n
p

P
x

ð�1Þβx�P�1ðxÞ ∣xi :
ð13Þ

A general reversible classical circuit P̂ can be built from 3-bit gates in S8,
which generate all permutations on the space ofn bits within the alternating
group A2n (all even permutations in the group S2n ).

References 19,20 show that a state of the form in Eq. (13), with the phase
given by a pseudorandom function, is a pseudorandom state. Here we will
use pseudorandom permutations that, for large n, cannot be distinguished
from pseudorandom functions. More precisely, we will deploy 3-stage
log n-depth circuits discussed in ref. 14, where it was argued that such
circuits generate permutations satisfying the necessary (and conjectured to
also be sufficient) conditions for pseudorandomness. The resulting quan-
tum circuit architecture that generates the pseudorandom quantum states
considered in this section is shown in Fig. 2.

To illustrate the importance of the3-stage structure to the generationof
pseudorandomness, we consider the expectation value of a Pauli string
operator in the state ∣ψβxi of Eq. (13). We proceed by applying Ŝα to this
state:

Ŝα ∣ψβx

E
¼ 1ffiffiffiffi

2n
p

P
x

ð�1Þβx�P�1ðxÞ Ŝα∣xi

¼ 1ffiffiffiffi
2n

p
P
x

ð�1Þβx�P�1ðxÞ ð�1Þαz�x∣x � αxi

¼ ð�1Þαz�αx 1ffiffiffiffi
2n

p
P
x

ð�1Þβx�P�1ðx�αxÞ ð�1Þαz�x∣xi ;

ð14Þ

which, in turn, leads to the following expression for the expectation value of
the string operator Ŝα:

ψβx

D
∣ Ŝα ∣ψβx

E
¼ ð�1Þαz�αx 1

2n
P
x

ð�1Þβx�½P�1ðxÞ�P�1ðx�αxÞ� ð�1Þαz�x :

ð15Þ

Wenote that for αz = 0, αxk ¼ δk;i (i.e., Ŝα ¼ σ̂xi ), and β
x
l ¼ δl;j (i.e., flipping

only the jth qubit of the initial state) this expectation value is expressed as the
OTOC representing the SAC14, a simple test of security for a classical block
cipher:

QSAC
ij � 1

2n
P
x

ð�1Þ½P�1
j ðxÞ�P�1

j ðx�ciÞ� ; ð16Þ

where the qubit-wise XOR operation for two n-qubit strings x⊕ ci flips the
ith qubit of x (i.e., ci = 2i).

In ref. 14we presented a calculation of the evolution of the SACOTOC
Eq. (16) through the application of consecutive layers of the structured
cipher. To summarize the results of that calculation, we first introduce
P̂
�1ð‘Þ, the partial circuit comprised of the first ℓ layers of the circuit P̂

�1
,

with P̂
�1ð0Þ � 1 and P̂

�1ð‘f Þ � P̂
�1

anddefine the expectation value of the
stringoperator inEq. (16) after ℓ layers of thepermutationP−1 are applied as:

QSAC
ij ð‘Þ ¼ 1

2n
X
x

ð�1Þ½P�1
j ðx;‘Þ�P�1

j ðx�ci;‘Þ� : ð17Þ

As in the mean-field calculation above we will focus on averages over

circuits, sð‘Þ ¼ QSAC
ij ð‘Þ and qð‘Þ ¼ ½QSAC

ij ð‘Þ�2. Since gates defining

individual layers are chosen independently we can easily derive recursion
relations relating s(ℓ+ 1) and q(ℓ+ 1) to s(ℓ) and q(ℓ), which depend on the
specific gate set chosen. As shown in ref. 14 and summarized in the “SAC
OTOC” discussion of the “Methods” section, evolution through ℓ layers of
linear inflationary gates, leads to:

sð‘þ 1Þ ¼ 2
3
½sð‘Þ�2 þ 1

3
½sð‘Þ�3 ; ð18aÞ

qð‘þ 1Þ ¼ 2
3
½qð‘Þ�2 þ 1

3
½qð‘Þ�3 ; ð18bÞ

and evolution through ℓ layers of supernonlinear gates, which maximize
string entropy productionǹ14, leads to:

sð‘þ 1Þ ¼ 3
7
sð‘Þ þ 3

7
½sð‘Þ�2 þ 1

7
½sð‘Þ�3 ; ð19aÞ

qð‘þ 1Þ ¼ 3
28 ½sð‘Þ�2 þ ½sð‘Þ�3� 	
þ 3

28 qð‘Þ 1þ 2 sð‘Þ þ 2 ½sð‘Þ�2� 	
þ 3

28 ½qð‘Þ�2 1þ sð‘Þð Þ þ 1
28 ½qð‘Þ�3 :

ð19bÞ

Wenote that the recursion relations inEqs. (18a), (18b), (19a), and (19b) are
exact for tree-structured circuits of depth ‘≤ log3n.

We note that if the circuit contained only supernonlinear gates, the
analysis of the decay of theOTOC(and of the expectation value of the string
operator) could be carried out by linearizing Eqs. (19b) for small s and q:

sð‘þ 1Þ ¼ 3
7
sð‘Þ þ � � � ; ð20aÞ

qð‘þ 1Þ ¼ 3
28

qð‘Þ þ � � � : ð20bÞ

In this case, it is inescapable that q(ℓ) can only decay exponentially with
depth ℓ: q(ℓ) ~ e−λℓ, with λ ¼ lnð28=3Þ. One can interpret the coefficient of
the linear term in the expansion of the recursion relation as a Lyapunov
exponent, λ. The exponential decay of q(ℓ) with a finite Lyapunov exponent
λ implies that circuits of log n depthcanonly lead to polynomial decay of the
SACOTOC. It is important to stress that the same linear leading behavior in
s and q of the recursion relations occurs for random circuits of universal
gates. Eliminating the linear terms requires fine tuning—this is precisely
what makes the linear inflationary gates both special and necessary for
ensuring that the SAC OTOC decays exponentially with n for depth log n
structured circuits.

Indeed, the recursions for s and q in the case of inflationary gates start
with quadratic leading terms. [Note that q = 1 is a fixed point of the
recursion Eq. (18b), and thus nonlinear gates are needed to reduce the value
of q below 1 before the system can evolve toward the q = 0 fixed point.] To
lowest order in q, the recursion Eq. (18b), which is activated following the
action of the layers of supernonlinear gates, reads:

qð‘þ 1Þ ¼ 2
3
½qð‘Þ�2 þ � � � ; ð21Þ

the asymptotic solution of which is a double exponential in ℓ,

qð‘Þ∼ 3
2

2
3 qð0Þ
� �2‘

. This behavior, which corresponds to an infinite Lyapu-
nov exponent, is non-universal but essential in ensuring the exponential
decay with n of the SAC OTOC and, equivalently, in proving the
superpolynomial bound of Eq. (1) for expectation values of string operators

in the quantum state ∣ψβx

E
in Eq. (13).
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We note that there are 144 3-bit inflationary gates among the 8! gates
3-bit gates in S8

14. One can then ask whether inflationary gates are also
present among the 2-qubit U(4) gates that generate universal quantum
computation, in which case one could imagine constructing pseudorandom
quantum states by employing such 2-qubit gates. Below we show that there
are no 2-qubit inflationary gates, but that 2-qudit inflationary gates do exist
for d ≥ 3 and d prime.

Absence of two-qubit inflationary gates
The main message of this section is that there are no inflationary 2-qubit
gates in U(4), i.e., that there are no U(4) gates which eliminate the stay
probability of weight-1 strings. We prove this statement first for 2-qubit
Clifford gates, and then for general unitary gates in U(4).

Clifford gates. We argue by contradiction: suppose that a two-qubit
Clifford gate UCl maps both Pauli operators σ̂x1 and σ̂z1 on site 1 to Pauli
strings of weight two with a footprint on both site 1 and site 2:

Uy
Cl σ̂

x
1 UCl ¼ σ̂α1 σ̂β2 ;

Uy
Cl σ̂

z
1 UCl ¼ σ̂μ1 σ̂ν2 :

ð22Þ

Since the anticommutation relation is preserved under gate conjugation,
fσ̂α1 σ̂β2; σ̂μ1 σ̂ν2g ¼ 0, the operator content of the two Pauli strings must be
identical on one site, i.e., onemust have eitherα = μ, β ≠ ν or β = ν, α ≠ μ. By
considering the transformation of the commutator it immediately follows
thatUClmaps σ̂y1 to a single-site Pauli operator, thus contradicting the initial
assumption that UCl maps all weight-1 strings to weight-2 strings.

U(4) unitaries. We start with a special case which we then use to establish
the general result. Again, we argue by contradiction: we assume that a
2-qubit unitary maps σ̂x1 into a single weight-2 Pauli string, Ŝ, and maps
σ̂z1 to a superposition of weight-2 Pauli strings:

Uy σ̂x1 U ¼ Ŝ
Uy σ̂z1 U ¼ P

μ
bcμ Ŝμ

c þ
P
ν

baν Ŝν

a ;
ð23Þ

where, in the second equation, the bcμ and baν are string amplitudes, asso-
ciated separately with Pauli strings that commute or anticommute with Ŝ:
½Ŝ; Ŝμ

c � ¼ 0 and fŜ; Ŝν

ag ¼ 0. Again, the conjugated Pauli operators must
satisfy: fUy σ̂x1 U ; Uy σ̂z1 Ug ¼ 0. This condition is automatically satisfied
by Ŝν

a , whereas for Ŝ
μ

c it requires:

2
X
μ

bcμ Ŝ Ŝμ

c ¼ 0: ð24Þ

We next consider the evolution of σ̂y1:

Uy σ̂y1 U /
X
μ

bcμ Ŝ Ŝμ

c þ
X
ν

baν Ŝ Ŝν

a : ð25Þ

Notice that the summation in the second term of Eq. (25) must involve
operators of weight 1 for the same reason as explained above: the operator
content of Ŝ and Ŝν

a must be identical onone site in order for these operators
to anticommute, whereas the first term must vanish according to Eq. (24).
Hence, we reach a contradiction, namely that the inflationary condition of
Eqs. (23) cannot be satisfied for all Pauli operators (weight-1 Pauli strings).

Finally, we consider the general case in which the unitary transfor-
mation evolves σ̂x1 into a superposition of weight-2 strings:
Uy σ̂x1 U ¼ P

αβ Mαβ σ̂α1 σ̂
β
2, where M is a 3 × 3 real matrix. One can per-

form a singular value decomposition,M =AΛ B⊤, which amounts to a basis
rotation of the single-site Pauli operators: ~̂σ

β

1 ¼
P

α σ̂
α
1 Aαβ,

~̂σ
β

2 ¼
P

α σ̂
α
2 Bαβ. In the new basis, the Pauli strings are diagonal:

Uy σ̂x1 U ¼ λx ~̂σ
x
1 ~̂σ

x
2 þ λy ~̂σ

y
1 ~̂σ

y
2 þ λz ~̂σ

z
1 ~̂σ

z
2 : ð26Þ

However, since the right hand side of Eq. (26) must square to the identity,
two of the λ’smust be zerowhile the other onemust be equal to unity. Thus,
we have reduced the general case to the special case where σ̂x1 evolves into a
single weight-2 string, as in Eq. (23). Thus, we proved the main assertion of
this section, namely that if one restricts oneself to 2-qubit unitary gates, there
will always be a finite stay probability for weight-1 strings. As already
discussed, in turn, this prevents one fromreachingpseudorandomquantum
states with log n-depth circuits.

Existence of two-qudit inflationary gates for q ≥ 3
An important conclusion of this paper, which suggests a circuit design for
realizing fast and thorough quantum scramblers, is that it is always possible
to construct inflationary 2-qudit Clifford unitaries which transform all
single-site generalized Pauli operators (weight-1 generalized Pauli strings)
intoweight-2 generalizedPauli strings. The proof of this result is given in the
“Two-qudit inflationary Clifford gates” discussion of the “Methods” section
for a subset of unitaries inU(q2) forwhich the localHilbert-spacedimension
d ≥ 3 and d prime.

Padding such a 2-qudit Clifford gate with 1-qudit rotations at inputs
and outputs, as depicted in Fig. 3, leads to special inflationary quantum (IQ)
gates, to which we already referred in the introduction and in the “Our
contributions” section above. Because of their inflationary property, the
2-qudit Clifford gates discussed in this section are necessarily entangling.
These 2-qudit Clifford gates also form a finite group, which includes the

Fig. 3 | Inflationary quantum (IQ) gates. a 2-qudit IQ gates obtained by padding
Clifford qudit inflationary gates (see the “Two-qudit inflationary Clifford gates”
section of “Methods”) that transform weight-1 strings into weight-2 strings gates
with 1-qudit rotations at inputs and outputs; b 3-qubit IQ gates obtained by adopting
the 144 3-bit classical (linear) inflationary gates that transform weight-1 strings into
weight-2 strings (see ref. 14) to qubits, and padding the resulting 3-qubit gates with
1-qubit rotations at inputs and outputs. Employing random circuits of 3-qubit or
2-qudit IQ gates will eliminate the stay probability of weight-1 Pauli strings, as
depicted in the inset to Fig. 1, while, at the same time proliferating operator strings
and generating string entropy.
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identity gate, and therefore one can write single qudit unitaries as products
of IQ gates. As demonstrated in ref. 21, an entangling 2-qudit gate and
arbitrary single qudit rotations are the two ingredients required for the
universality of a gate set. Therefore, the 2-qudit IQ gates in Fig. 3 form a
universal set for quantum computation.

IQ gates can also be realized by padding the 144 classical inflationary
gates of ref. 14 (shown inFig. 7)with 1-qubit rotations at inputs andoutputs,
as depicted in Fig. 3b. We note that the 144 classical inflationary gates
generate all classical linear 3-bit gates and, in particular, the identity gate and
2-bit CNOTs across any of the 3 bitlines, [The inflationary gates associated
to the two permutations 0 3 5 6 7 4 2 1 and 1 4 6 3 2 7 5 0 suffice to generate
the group of all 1344 permutations associated to classical linear 3-bit gates,
i.e., gates g such that g(x⊕ y) = g(x)⊕ g(y)⊕ c, for a constant c.] One can
thenwrite both single qubit unitaries and entangling CNOTs as products of
IQ gates and thus, the 3-qubit IQ gates in Fig. 3b also form auniversal set for
quantum computation.

As discussed in the “Our contributions” section above and in more
detail in ref. 14, reaching cryptographic-level scrambling with log n-depth
classical reversible circuits required a 3-stage structure that separated linear
classical gates responsible for string inflation from nonlinear classical gates
responsible for string proliferation and entropy production.

What makes these 2-qudit and 3-qubit IQ gates special is that they
generate both “diffusion” and “confusion” in the sense of Shannon22, i.e., IQ
gates posses the ability to simultaneously (1) eliminate stay-probabilities for
weight-1 strings and accelerate the inflationof strings; and (2) proliferate the
number of strings and generate string entropy. We thus expect that single-
stage random quantum circuits comprised of IQ gates can scramble both at
the speed limit (i.e., in log n-depth) and to cryptographic level.

Discussion
As we detailed in this paper, scrambling rapidly (i.e., with log n-depth) and
thoroughly (i.e., to cryptographic precision), via quantum circuits, is a tall
order. More precisely, this paper makes two specific complementary points,
namely: (1) that generic 2-qubit-gate quantum circuits cannot scramble
information to cryptographic precision within a computational time scaling
as log n; and (2) that fast scrambling to cryptographic precision can be
realizedwith a special set of universal inflationaryquantum(IQ)gates. These
special IQ gates can simultaneously expand individual Pauli strings aswell as
proliferate their number, the latter leading to string entropy production.

IQ gates should play a key role in a number of areas in quantum
information in which fast scrambling is desirable. (We note that the special
properties of IQ gates will affect the behavior of circuits in any architecture,
beyond the tree-structured circuits of long-ranged gates on which we

concentrated in this paper.) For example, in the case of one-dimensional
“brickwall” circuits of 2-qudit IQ gates, the front associated with operator
spreading will propagate deterministically without dispersion, at the Lieb-
Robinson speed limit. This behavior is due to the fact that at the front (i.e., at
the edges of the Pauli strings at the light cone boundary) an IQ gate always
acts ona fresh sitewithvanishing stringweight (i.e., anup to thenuntouched
site just outside the front), so that the inflationary property ensures that the
evolved string will always acquire weight at that site after evolution by the
gate. By contrast, as described in ref. 23, evolution by generic qudit circuits,
would lead to a stochastic evolution of the front, with an average velocity
below the maximum attainable value, and with a front-width that spreads
diffusively.A cartoonof thedifference between these cases is shown inFig. 4.
More generally, IQ gates would lead to faster, deterministic front propa-
gation in any spatial dimension D. The speed up is most dramatic when
D→∞ as in the case of our tree-structured circuits, for which IQ gates are
essential for reaching cryptographic-level scrambling with minimal
log n-depth circuits.

Furthermore, we expect that the rapid scrambling property of IQ gates
provides an additional ingredient that should lead to stronger bounds on t-
designs. For example, a circuit of IQ gates may validate the conjecture of
Harrow and Mehraban8 that one can build 2-designs with log n-depth
circuits.

IQ gates may also be useful in designing novel quantum advantage
experiments, since they accelerate the expansion and proliferation of Pauli
strings. We note, however, that inflation of strings are counter-acted by
depolarizing noise, which removes contributions from high weight strings.
This mechanism of suppression of large strings has been explored in
refs. 24,25 to design efficient classical algorithms for sampling from the
output distribution of a noisy random quantum circuit.

Finally, while employing random circuits of IQ gates should enable the
construction of cryptographic level fast quantum scramblers—quantum
“superscramblers”—we do not expect that unitary evolution via a time-
independent Hamiltonian of interacting qudits or qubits can scramble to
such a level in a timeOðlog nÞ, even if non-local couplings are employed.

Methods
Tree-structured circuits
Here we present the wiring of tree-structured circuits that both accelerate
the scrambling and allowed us to obtain analytically the recursion relations
(18a,18b,19a,19b, 20a, 20b, 21), the detailed derivation of which we present
below.] Tree-structure circuits connect qubits or,more generally, qudits in a
hierarchy of scales, and mimic systems in D→∞ spatial dimensions.

We consider first a tree-structured circuit in which pairs of qudit
indices acted by 2-qudit gates are arranged in a hierarchical (tree) structure.
Let us consider the casewhen the number of qudits,n, is a power of 2,n = 2q.
Each level in the tree hierarchy comprises of a layer with n/2 2-qudit gates.
We proceed by forming pairs indices for each layer ℓ of gates, selected as
follows:

‘ ¼ 1 : ð0; 1Þ ð2; 3Þ ð4; 5Þ ð6; 7Þ . . .
‘ ¼ 2 : ð0; 2Þ ð1; 3Þ ð4; 6Þ ð5; 7Þ . . .
‘ ¼ 3 : ð0; 4Þ ð1; 5Þ ð2; 6Þ ð3; 7Þ . . .
‘ ¼ 4 : ð0; 8Þ ð1; 9Þ ð2; 10Þ ð4; 11Þ . . .
. . .

ð27Þ

More precisely, each of the n/2 = 2q−1 pairs in layer ℓ are indexed by (i, j),
which we write in base 2 as:

i ¼ z0 þ 2 z1 þ 22 z2 þ � � � þ 2‘�1 × 0þ . . . 2q�1 zq�1

j ¼ z0 þ 2 z1 þ 22 z2 þ � � � þ 2‘�1 × 1þ . . . 2q�1 zq�1 ;
ð28Þ

where za = 0, 1, for a = 0,…, q− 1.Notice that at layer ℓ themembers of the
pairs, (i, j), are numbers that only differ in the (ℓ− 1)-th bit, while the other

0 5 10 15 20 25 30 35 40

random unitary gates
IQ gates

Fig. 4 | Operator front profile evolution. Illustration of the profile of the right
operator front ρR(x, t) (i.e., total weight of Pauli strings with right endpoint at x)
under random unitary circuit and IQ circuit evolution. IQ circuits lead to a larger
butterfly velocity and an absence of operator front broadening compared to random
unitary circuits.
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q− 1 bits za, a ≠ ℓ− 1, enumerate the 2q−1 = n/2 pairs. (Ifmore than q layers
are needed, we recycle in layer ℓ > q the pairs of layer ‘ mod q).

Once the pairs of indices, (i, j), are selected for each layer, we can
generate other similar binary trees by mapping (i, j) onto πðiÞ; πðjÞ� 	

, via a
(randomly chosen) permutation π of the n indices. A schematic of the
hierarchical tree-structure presented above is shown in Fig. 5 below.

The construction can be generalized to trees of other degrees, for
example the ternary tree introduced in ref. 14, which we borrow to provide
an additional example. Consider the case when n is a power of 3, n = 3q. In
the ternary case, we proceed by forming groups of triplets of indices for each
layer, selected as follows:

‘ ¼ 1 : ð0; 1; 2Þ ð3; 4; 5Þ ð6; 7; 8Þ . . .
‘ ¼ 2 : ð0; 3; 6Þ ð1; 4; 7Þ ð2; 5; 8Þ . . .
‘ ¼ 3 : ð0; 9; 18Þ ð1; 10; 19Þ ð2; 11; 20Þ . . .
‘ ¼ 4 : ð0; 27; 54Þ ð1; 28; 55Þ ð2; 29; 56Þ . . .

. . .

ð29Þ

Moreprecisely, each of then/3 = 3q−1 triplets in layer ℓ are indexedby (i, j, k),
which we write in base 3 as:

i ¼ z0 þ 3 z1 þ 32 z2 þ � � � þ 3‘�1 × 0þ . . . 3q�1 zq�1

j ¼ z0 þ 3 z1 þ 32 z2 þ � � � þ 3‘�1 × 1þ . . . 3q�1 zq�1

k ¼ z0 þ 3 z1 þ 32 z2 þ � � � þ 3‘�1 × 2þ . . . 3q�1 zq�1 ;

ð30Þ

where za = 0, 1, 2, for a = 0,…, q− 1. Notice that at layer ℓ the members of
the triplets, (i, j, k), are numbers that only differ in the (ℓ− 1)-th trit, while
the other q− 1 trits za, a ≠ ℓ− 1, enumerate the 3q−1 = n/3 triplets. (Again, if
more than q layers are needed, we recycle in layer ℓ > q the triplets of
layer ‘ mod q.)

Once the triplets of indices, (i, j, k), are selected for each layer, we can
map them onto groups of three indices πðiÞ; πðjÞ; πðkÞ� 	

, via a (randomly
chosen) permutation π of the n indices.

The construction above can be generalized for trees of degree k, in
which case k-tuples of indices can be selected for k-qudit gates to act on.

Two-qudit inflationary Clifford gates
In this section we prove:

Theorem 1 There exist 2-qudit inflationary Clifford gates, for local
Hilbert space dimension d ≥ 3 and d prime, that expand all weight-1gen-
eralized Pauli strings into weight-2generalized Pauli strings.

We start with a brief review of the higher dimensional Pauli group and
its symplectic representation. Paulimatrices have a natural generalization in
higher dimensions. Define the generalized Pauli matrices for qudits with
local Hilbert-space dimension d (hereafter assumed to be a prime number)
as:

Z ¼
Xd�1

j¼0

ωj ∣j
�

j
�
∣; X ¼

Xd�1

j¼0

∣j
�

jþ 1
�

∣; ð31Þ

whereω = ei2π/d is the primitive d-th root of unity. The above Pauli operators
satisfy the following relations:

Zd ¼ Xd ¼ 1; XZ ¼ ωZX: ð32Þ

It is easy to check that the above matrices reduce to the familiar Pauli
matrices for qubits upon taking d = 2.

A Pauli string is an element of the Pauli group Pn acting on n qudits:

Zu1
1 Xv1

1 � Zu2
2 Xv2

2 � � � � � Zun
n Xvn

n ; ð33Þ

wherewehave ignoredapossible phase factor.The abovePauli string admits
the following symplectic representation as a vector inZ�2n

d :

g ¼ ðu1; u2; . . . ; un j v1; v2; . . . ; vnÞ; ð34Þ

whereui, vi∈ [0, d− 1]. Fordprime, the integers inZd formafinitefield (or
Galois field)Fd , such that themultiplicative inverse exists for each element.
Since we are interested in the process where a single-site Pauli operator
evolves into a weight-two Pauli string, we focus on n = 2. As a concrete
example, Pauli-Z and −X operators acting on site 1 are represented as
vectors:

Z1 :! g1 ¼ ð1; 0 j 0; 0Þ X1 :! g2 ¼ ð0; 0 j 1; 0Þ: ð35Þ

In the vector representation, products of two Pauli strings correspond to the
addition of the two vectors: g1+ g2 (mod d).

The commutation relation between two Pauli strings in the symplectic
representation can be conveniently computed from the following matrix:

Λ4× 4 ¼
02× 2 12× 2

�12× 2 02× 2

� �
; ð36Þ

namely,

S1S2 ¼ ωrS2S1 $ g1Λg
T
2 ¼ r ðmod dÞ; ð37Þ

where g1 and g2 are vectors representing S1 and S2, respectively.
Proof of Theorem 1: To prove Theorem 1, we need the following

lemmas.
Lemma 1 If under a Clifford gate UCl, single-site Pauli operators Z1 and

X1 evolve to weight-2 strings of the form:

Z1 :! g1 ¼ ða1; b1; 0; 0Þ X1 :! g2 ¼ ð0; 0; ~a1; ~b1Þ ; ð38Þ

with a1; b1; ~a1; ~b1 ¼ 1; 2; . . . ; d � 1, then all single-site Pauli operators of
the form Zu1

1 Xv1
1 will evolve to weight-2 strings under UCl.

Proof
First, we note that both g1 and g2 areweight-2 strings, as is evident from

their vector representations. Then, consider all other single-site Pauli
operators of the form Zu1

1 Xv1
1 with u1 ≠ 0 and v1 ≠ 0. Under UCl, such an

operator evolves into:

Zu1
1 Xv1

1 :! g ¼ u1 g1 þ v1 g2ðmod dÞ: ð39Þ

Fig. 5 | Hierarchical tree-structured circuit consisting of two-qudit unitary gates.
Each unitary gate is represented as a solid line with square endpoints, which indicate
the two qudits on which the gate acts. Each layer contains n/2 gates acting on
different non-overlapping pairs of qudits. Circuits consisting of three-qubit gates
that form a ternary tree structure, like the circuits L̂l=r and N̂ shown in Fig. 2, can be
constructed in a similar fashion.
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However, due to properties of the finite field, all elements of g must be
nonzero. Hence, we conclude that all single-site Pauli operators evolve to
weight-2 strings underUCl. ■

In the above lemma,we assume that the Pauli operatorsZ andXon site
1 evolve to strings of the form g1 and g2 under a two-qudit Clifford gate. At
this point, it is unclearwhether the specific formof g1 and g2 canbe achieved.
The answer is affirmative for d ≥ 3, as is shown in Lemma 2 below.

Lemma 2The form of g1 and g2 in Lemma 1 can always be achieved via
evolution under a Clifford gate UCl for d ≥ 3, while it is not possible for d = 2.

Proof
The only constraint on the time-evolved Pauli strings g1 and g2 is that

theymust preserve the commutation relationXZ =ωZXof the original Pauli
operators. Using the symplectic representation, this amounts to the fol-
lowing linear equation:

g1 Λ gT2 ¼ 1ðmod dÞ; ð40Þ

or, explicitly,

a1 ~a1 þ b1 ~b1 ¼ 1ðmod dÞ: ð41Þ

For d ≥ 3, one can take a1~a1>1 and b1~b1>1. Due to properties of the finite
field, there always exist pairs of integers (x, y) in Fd , such that
x þ y ¼ 1 ðmod dÞ. We can then take a1~a1 ¼ x ðmod dÞ, and
b1~b1 ¼ y ðmod dÞ. Again, using properties of the finite field, it is always
possible to find non-zero a1; ~a1, b1 and ~b1 that satisfy these two equations.
Thus, non-zero solutions of Eq. (41) always exist.

On the other hand, for d = 2, Eq. (41) can only be satisfied when
ða1~a1; b1~b1Þ ¼ ð1; 0Þ or (0, 1). Either case implies that one of the four
numbers a1; b1; ~a1; ~b1 must be zero, which contradicts our assumption in
Lemma 1. In other words, one of the strings g1 and g2 must have weight 1.
Therefore, the particular form of g1 and g2 in Lemma 1 cannot be achieved
for d = 2. ■

Combining the results of Lemma1 and 2, we have shown that for d ≥ 3,
it is always possible to choose two-quditClifford gates such that all single-site
Pauli operators supported on site 1 evolve to weight-2 strings. To complete
the proof of Theorem 1, we need to show that the same Clifford gate is also
able to evolve all single-site Pauli operators on site 2 to weight-2 strings.

We show that this is possible by explicitlyfinding a set of solutions.We
assume that the single-site Pauli operators Z1, X1, Z2 and X2 evolve into
weight-2 Pauli strings of the following form under UCl:

Z1 :! g1 ¼ ð1; 1; 0; 0Þ X1 :! g2 ¼ ð0; 0; ~a1; ~b1Þ
Z2 :! g3 ¼ ða2; b2; 0; 0Þ X2 :! g4 ¼ ð0; 0; ~a2; ~b2Þ:

ð42Þ

Essentially, we have assumed that both Z1,X1 and Z2,X2 evolve into the
form of Lemma 1, and further take a1 = b1 = 1. We demand that the
resulting Pauli strings preserve the original commutation relations, which
translates into the following set of linear equations:

~a1 þ ~b1 ¼ 1ðg1 Λ gT2 ¼ 1Þ ð43Þ

a2 ~a2 þ b2 ~b2 ¼ 1ðg3 Λ gT4 ¼ 1Þ ð44Þ

~a2 þ ~b2 ¼ 0ðg1 Λ gT4 ¼ 0Þ ð45Þ

a2 ~a1 þ b2 ~b1 ¼ 0ðg2 Λ gT3 ¼ 0Þ; ð46Þ

where the equality mod d is implicit. Notice that with the above para-
metrization, the commutation relations g1 Λ gT3 ¼ 0 and g2 Λ gT4 ¼ 0 are
automatically guaranteed.

Our procedure for finding a particular solution to the above set of
equations goes as follows.

(1) We start by solving Eq. (43). Due to properties of the finite field, a
solution to Eq. (43) always exists.

(2) Next, we solve Eq. (45) by taking ð~a2; ~b2Þ ¼ ð1; d � 1Þ.
(3) Finally, we find a unique solution (a2, b2) by solving Eqs. (44) and (46).

Of course, the solution is not unique, and we specialize to a particular
one in the above procedure, which suffices to complete the proof of The-
orem 1. ■

Examples. Below, we give two concrete examples of the construction, for
d = 3 and d = 5.

d ¼ 3: For simplicity, we take Eq. (43) with ~a1 ¼ ~b1, which is
always possible since the solution to 2x ¼ 1 ðmod dÞ always exits for
finite fields. We find ~a1 ¼ ~b1 ¼ 2. Next, in step 2, we take
ð~a2; ~b2Þ ¼ ð1; 2Þ. Finally, solving the remaining two equations yields
(a2, b2) = (2, 1). We thus have:

Z1 :! g1 ¼ ð1; 1; 0; 0Þ X1 :! g2 ¼ ð0; 0; 2; 2Þ
Z2 :! g3 ¼ ð2; 1; 0; 0Þ X2 :! g4 ¼ ð0; 0; 1; 2Þ:

d ¼ 5: Again, we solve Eq. (43) with ~a1 ¼ ~b1 and find ~a1 ¼ ~b1 ¼ 3.
Then, we solve Eq. (45) by taking ð~a2; ~b2Þ ¼ ð1; 4Þ. Finally, solving the
remaining two equations yields (a2, b2) = (3, 2). We thus have:

Z1 :! g1 ¼ ð1; 1; 0; 0Þ X1 :! g2 ¼ ð0; 0; 3; 3Þ
Z2 :! g3 ¼ ð3; 2; 0; 0Þ X2 :! g4 ¼ ð0; 0; 1; 4Þ:

SAC OTOC recursion relations for the three-stage cipher
For the reader’s convenience, we reproduce the calculation presented in

ref. 14 of the square of the SACOTOC, qij � Cij
SAC

 �2
, as a function of the

number of applied layers of gates ℓ of the tree-structured reversible circuit of
3-bit permutations described in Sec. 7.1 of that reference.We use themean-
field assumption (whichwas checked numerically in ref. 14) that the system
self-averages, implying thatqij = q, independent of i and j. The independence
of iand j canbe tracedback to the fact that the threebit lines entering the gate
g of layer ℓ+ 1 originate from independent branches of the tree circuit
emerging from layer ℓ (see Fig. 6). As long as ‘≤ log3n, gates in subsequent
layers always bring in fresh bits and, uponaveraging over gates, bitlines i and
j remain uncorrelated.]

We proceed recursively, layer-by-layer, relating q(ℓ+ 1) to q(ℓ). The
calculation is set up in bit space in terms of probabilities pi(ℓ) that after
applying the ℓ-th layer bit i does not flip. In the hierarchical tree con-
struction, the no-flip probability for a given output bit i (at level ℓ+ 1) is
determined by the outputs, at bitlines i0, i1, i2 coming from separate bran-
ches of the tree (at level ℓ) and by the 3-bit gate g in layer ℓ+ 1 that takes
those three bitlines as inputs and connects to bit i as one of its outputs.

The specific action of the gate g determines the fraction of inputs for
which the output i does not flip when x→ x⊕ c, with x � xi0 þ 2 xi1 þ
22 xi2 and c≡ c0+ 2 c1+ 22 c2 encoding which ones of the three bits are
flipped (c0,1,2 = 0 for an unflipped input or 1 for a flipped one). This fraction
is expressed as Cgi

c0c1c2 � Cgi
c ¼ f gic þ 1

� 	
=2, with:

f gic ¼ 1
23

X7
x¼0

ð�1ÞgiðxÞ�giðx�cÞ : ð47Þ

The recursion for the no-flip probabilities can then be written as:

pið‘þ 1Þ ¼ h pi0 ð‘Þ; pi1 ð‘Þ; pi2 ð‘Þ; fC
gi
c g

 �
¼ pi0 ð‘Þ pi1 ð‘Þ pi2 ð‘Þ C

gi
000 þ ð1� pi0 ð‘ÞÞ pi1 ð‘Þ pi2 ð‘Þ C

gi
100 þ � � �

þ ð1� pi0 ð‘ÞÞ ð1� pi1 ð‘ÞÞ ð1� pi2 ð‘ÞÞ C
gi
111 :

ð48Þ
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We now proceed to consider ensembles of circuits, and analyze the evolu-
tion of the probability distribution, P(pi; ℓ), of the pi, as function of ℓ. The
recursion relation for P(pi; ℓ), obtained by using Eq. (48), reads:

Pðpi; ‘þ 1Þ ¼ P
g2S8

R
dpi0 dpi1 dpi2 Pðpi0 ; ‘Þ Pðpi1 ; ‘Þ Pðpi2 ; ‘Þ PsetðgÞ δ pi � h pi0 ; pi1 ; pi2 ; fC

gi
c g

 �h i
;

ð49Þ

where the gates g are drawn from a probability distribution PsetðgÞ that
depends on the specific set of gates employed, and which we assume to be
independent of the bitline index i. The initial condition is determined by the
fraction f of bits that are flipped on input:

Pðp; ‘ ¼ 0Þ ¼ f δðpÞ þ ð1� f Þ δðp� 1Þ : ð50Þ

[Wenote that the assumptionof independenceof thebitline index cannotbe
justified unless f is intensive, which only occurs through the action of suf-
ficient number of layers of inflationary gates.]

The evolution of the distribution and the vanishing of the SAC can be
obtained by considering the average andmoments of p. It is useful to change
variables to si(ℓ+ 1)≡ 2 pi(ℓ+ 1)− 1, for which the recursion Eq. (48)
reads:

sið‘þ 1Þ ¼ eCgi
100 si0 ð‘Þ þ eCgi

010 si1 ð‘Þ þ eCgi
001 si2 ð‘Þ þ � � � þ eCgi

111 si0 ð‘Þ si1 ð‘Þ si2 ð‘Þ ;
ð51Þ

with:

eCgi
a � 1

23
P7
c¼0

ð�1Þa�c Cgi
c ; ð52Þ

where a ⋅ c≡ a0 c0+ a1 c1+ a2 c2.
We are now in position to derive the evolution of the moments sqð‘Þ.

(Even if the distributions for the si are identical, independent of i, we keep
some of the explicit indices for bookkeeping of contractions.) The average:

sð‘þ 1Þ ¼ P7
a¼1

eCgi
a ½si0 ð‘Þ�

a0 ½si1 ð‘Þ�
a1 ½si2 ð‘Þ�

a2

¼ P7
a¼1

eCgi
a sð‘Þ� �a0þa1þa2 :

ð53Þ

Similarly, we compute the second moment:

s2ð‘þ 1Þ ¼
X7
a;b¼1

eCgi
a
eCgi
b ½si0 ð‘Þ�

a0þb0 ½si1 ð‘Þ�
a1þb1 ½si2 ð‘Þ�

a2þb2 : ð54Þ

The recursion relations relating sð‘þ 1Þ to sð‘Þ depend on the gate set
used for layer ℓ through the coefficients eC gi

a , which we present explicitly
below for the cases of inflationary and super-nonlinear gates. For notational
simplicity, we define the variables sð‘Þ � sð‘Þ and qð‘Þ � s2ð‘Þ.

Inflationary layers. Upon computing the averages eCgi
a and eCgi

a
eCgi
b over

the 144 inflationary gates (see Fig. 7), the recursion relations read:

sð‘þ 1Þ ¼ 2
3
½sð‘Þ�2 þ 1

3
½sð‘Þ�3 ; ð55aÞ

qð‘þ 1Þ ¼ 2
3
½qð‘Þ�2 þ 1

3
½qð‘Þ�3 : ð55bÞ

The recursion relations of Eqs. (55a) and (55b) display two special features:
the first and second moments decouple; and more importantly, the coeffi-
cient of the linear term in q(ℓ) in the equation for the second moment
vanishes.

Note that the bimodal initial condition Eq. (50), where p only takes
values p = 0, 1, implies that an initial q = 1 cannot evolve under Eq. (55b),
which displays fixed points at q = 0, 1 (and a non-physical one at q =−3).
However, with thedeployment of nonlinear gates qdrops below1, following
which inflationary gates significantly accelerate the decay of q(ℓ) with ℓ due
to the absence of the linear term in q(ℓ) in Eq. (55b).

Super nonlinear layers. Using averages eCgi
a and eCgi

a
eCgi
b computed over

the 10,752 super-nonlinear gates, leads to the recursion relations char-
acterizing evolution via super nonlinear gates, namely:

sð‘þ 1Þ ¼ 3
7
sð‘Þ þ 3

7
½sð‘Þ�2 þ 1

7
½sð‘Þ�3 ð56aÞ

and

qð‘þ 1Þ ¼ 3
28 ½sð‘Þ�2 þ ½sð‘Þ�3� 	þ 3

28 qð‘Þ 1þ 2 sð‘Þ þ 2 ½sð‘Þ�2� 	
þ 3

28 ½qð‘Þ�2 1þ sð‘Þð Þ þ 1
28 ½qð‘Þ�3 :

ð56bÞ

By contrast to the case of inflationary gates, the recursion relations for
q(ℓ+ 1) in Eqs. (56a) and (56b) depend on both s(ℓ) and q(ℓ), and contain a
term linear in q(ℓ). Eqs. (55a), (55b), (56a), and (56b) are the starting point
for the discussion of the decay of the SAC OTOC with ℓ.

A

C

B

D

Fig. 7 | Inflationary 3-bit gates expressed in terms of CNOTs (from ref. 14). By
permuting bitlines and control polarities, one obtains 24 distinct inflationary gates
from topology A, 24 from B, 48 from C, and 48 from D, for a total of 144.

Fig. 6 | The hierarchical structure of the circuit connectivity.The tree connectivity
illustrates the arguments used in the derivation of a recursion relation for the
probability pi that a bit flips upon flipping a number of inputs.
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