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We present a direct comparison between QAOA (Quantum Alternating Operator Ansatz), and QA
(Quantum Annealing) on 127 qubit problem instances. QAOA with p = 1, 2 rounds is executed on the
127 qubit heavy-hex graph gate-model quantum computer ibm_washington, using on-device grid-
searches for angle finding, andQA is executed on twoPegasus-chip D-Wave quantum annealers. The
problems are random Ising models whose connectivity matches heavy-hex graphs and the Pegasus
graph connectivity, and optionally include hardware-compatible cubic terms (ZZZ terms). The QAOA
circuits are heavily optimized and of extremely short depth, with a CNOT depth of 6 per round, which
allowswhole chip usage of the heavy-hex lattice. QAOA andQA are both compared against simulated
annealing and the optimal solutions are computed exactly using CPLEX. The noiseless mean QAOA
expectation values for p = 1, 2 are computed using classical light-cone based simulations.We findQA
outperforms QAOA on the evaluated devices.

The Quantum Alternating Operator Ansatz (QAOA) is a hybrid
quantum-classical algorithm for sampling combinatorial optimization
problems1–3, the parameterized quantum component of which is exe-
cuted on a programmable gate-based universal quantum computer. The
Quantum Approximate Optimization Algorithm4,5 is the original algo-
rithm of this type, which was then generalized to the Quantum Alter-
nating Operator Ansatz algorithm1 under the same acronym of QAOA.
The classical component ofQAOA involves learning the best parameters
of the circuit to obtain low energy solutions of the combinatorial opti-
mization problem.

Quantumannealing (QA) in the transversefield Isingmodel is amodel
of quantum computation that utilizes quantum fluctuations to search for
ground state solutions of a combinatorial optimization problem, that is
encoded as a Hamiltonian6–13. D-Wave quantum annealers are program-
mable hardware implementations of quantum annealing that use super-
conducting flux qubits14–17, which can be programmed by a user by
specifying an Ising model that maps to the hardware graph. For the
experiments in this paper, we use the IBM Quantum programmable fixed-
frequency superconducting transmon qubit18 device ibm_washington,
which has a heavy-hex connectivity graph19 with 127 qubits.

Both QAOA and Quantum Annealing are based on the adiabatic
theorem, and in particular Adiabatic Quantum Computation. Both algo-
rithms are implementing a type of adiabatic evolution, both algorithms aim
to sample optimal solutions of combinatorial optimization problems, and
both algorithms are being actively studied for demonstrating advantage over
classical heuristics as quantum heuristic samplers for optimization

problems20,21. The exact characteristics of how both QA and QAOA will
scale to large systemsizes, especially onnoisy hardware, is currently not fully
understood22–24. There is evidence that QAOA may be more difficult for
classical computers to simulate than quantum annealing, which couldmake
it a viable candidate for quantum advantage25. Therefore it is of interest to
investigate differences between QAOA and QA and determine how these
algorithms scale—both for large problem sizes and for larger QAOA
rounds, or annealing times in the case of QA26–31. There have been a limited
number of studies that directly compare Quantum Annealing and the
QAOA algorithm32–36 (or even more generally, gate model quantum com-
puting andQA37), which in part motivates the direct comparison of the two
protocols presented in this research. With respect to large QAOA imple-
mentations, there have been experiments that used up to 40 qubits38, 27
qubits39, and 23 qubits40. There have also been QAOA experiments which
used circuit depths up to 14841 and 15942.

Because both QA and QAOA address combinatorial optimization
problems, it is of considerable interest to experimentally and theoretically
evaluate both algorithms. QAOA has been evaluated for a number of pro-
blems, including portfolio optimization41, maximum cut40,43–49, maximum
k-vertex cover2, maximum independent set50, the knapsack problem51, and
the Sherrington-Kirkpatrick model40,44,52. QA has been experimentally
applied to awide variety of problems, including semiprime factorization53–57,
graph coloring58,59, clustering60, the Sherrington-Kirkpatrick model61, and
portfolio optimization62–64. See refs. 9,10 for quantumannealing reviews. Both
QAOA and QA have been used to simulate properties of magnetic
systems24,65–69.
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We perform a comparison between two different algorithms (QA on
two D-Wave processors and QAOA on an IBM Quantum processor), on
instances of two sets of combinatorial optimization problems.
1. Instances with linear and quadratic terms, which can be described as

a graph.
2. Instances with linear, quadratic and cubic terms, which can be

described as a hypergraph.

Every instance is individually compared across the two algorithms/
devices. Instances from (1) are native to the connectivity of both devices.
Instances from (2) are non-native to the connectivity of either device (in the
case of QAOA, the hypergraph instances are not native to the circuit model
quantum computer because there are no hardware-native 3-qubit gates),
and compiled using slack variable order reduction (which itself is hardware-
native) and QAOA circuit optimization, respectively. This article is a sig-
nificant extension of ref. 36. The enumerated contributions of this article are
as follows:
1. We define a class of higher-order Ising model problems that have an

interaction connectivity thatmatches the native IBMQuantumheavy-
hex connectivity as well as onto D-Wave’s Pegasus connectivity,
allowing the two algorithms and technologies to be compared. Adding
optimization terms that are higher than quadratic has not been studied
in QAOANISQ experiments and circuit constructions. We randomly
generate and sample 10 different instances of these Ising models, each
for cubic and quadratic maximum degree. The cubic (higher-order)
Ising models are not native to the heavy-hex connectivity graph by
definition since the cubic terms are hyper-edges and the heavy-hex
graph is composed only of edges and nodes, however we choose the
cubic terms so that they match the underlying heavy-hex hardware
graph, and can be very very efficiently implemented in the QAOA
circuit (with no two-qubit gate overhead).

2. We design optimized QAOA circuits for these Ising problems that are
short depth (CNOT depth of 6, both for the quadratic and cubic Ising
models), thus allowing the use of the entire chip of the ibm_wa-
shington with 127 qubits for QAOA. Remarkably, the optimized
QAOA circuits require only a single additional layer of single qubit
rotations for addressing the cubic terms. This hardware compatible,
geometrically local, problem type allows the QAOA circuits to be
implemented in a NISQ-friendly way, not requiring SWAP networks
for long range variable interactions. This choice is highly intentional
because it allows a direct comparison between QAOA and QA. We
limit the experiments to two QAOA rounds because the computation
quality at two rounds is approximately the sameas at one round (due to
device error rates). These experiments are the largest QAOA
experiments, with respect to number of qubits, performed on a
quantum computer to date – to the best of our knowledge. There have
been QAOA circuits executed on current quantum computers with
higher gate count and higher number of rounds, e.g. refs. 38–42,70,71.

3. So as to solve the Isingmodels with cubic terms onD-WaveQuantum
Annealing hardware, we order-reduce the Ising model instances to
quadratic problems carefully ensuring that a scalable mapping to the
Pegasus lattice remains viable and we then instantiate these problems
on two different D-Wave machines.

4. The quantum annealing implementation uses the Transverse field
driving Hamiltonian as the initial state, and the QAOA implementa-
tion uses the Transverse field mixer. This ensures that the comparison
between the two algorithms is as fair as possible, since there are many
other possible variants of both algorithms.

5. We put significant optimization efforts into both the QAOA and QA
experiments. In particular, for QAOA on IBMQuantum, we perform
angle optimization and test digital dynamical decoupling (DDD). For
running QA on D-Wave processors, we vary the forward anneal
schedule with symmetric pauses.

6. In order to better assess the quality of the obtainedNISQ results, we
calculate theoretical results for the optimum solutions of the

problem Ising models using CPLEX, and the classical heuristic
simulated annealing (giving a solution spectrum); we also calculate
the theoretical means of the solution quality achieved by (noise-
free) QAOA for 1 and 2 rounds, as well as expectation values for
random solutions.

The experiments on the NISQ devices of solving the same problem set
are the key method for us to answer what the state-of-the-art is in QA and
QAOA performance in a fair comparison. Our main insights are the
following:
1. Quantum Annealing on D-Wave clearly outperforms QAOA on the

ibm_washington. In particular, QA finds significantly better
minimumenergy solutions aswell as better average solutions found on
all Ising problems studied

2. QA finds optimum or very nearly optimum solutions for all problems
and longer annealing times work the best.

3. QAOA runs on IBM Quantum find solutions that are significantly
worse than those found by QA, but they are better than random
sampling. QAOA solutions from ibm_washington are on average
significantly worse than the theoretical noise-free QAOA expectation
values.

4. The optimal QAOA angles show pronounced parameter concentra-
tion – this parameter concentration is observed even between the Ising
modelswith andwithout geometrically-local higher order terms.These
results are consistent for the classically computedQAOAresults aswell
as for the actual IBM Quantum hardware runs. The finding of
parameter concentrationon this ensemble of randomIsingproblems is
consistent with previous QAOA simulations and empirical results on
other problem types.

5. Digital dynamical decoupling, for the specific gate sequences we chose,
improves performance for QAOAonly for two rounds and cubic Ising
problems, whereas it actually leads to poorer performance in all
other cases.

In Section “Methods” the QAOA and QA hardware implementations
are detailed. Section “Results” details the experimental results and how the
twoalgorithmscompare. Section “Methods” concludeswithwhat the results
show. The figures in this article were generated using a combination of
plotly72, matplotlib73,74, networkx75, and Qiskit76 in Python 3.

Results
Section “Background” gives background on the QAOA and Quantum
Annealing algorithms. Section “Theory” describes the custom Isingmodels,
the QAOA circuits to sample the Ising models, and the embedding of the
Ising models onto the D-Wave quantum annealers. Section “Experiments”
details all of the experimental results.

Background
QAOA general overview. For a combinatorial optimization problem
over inputs z∈ {+1,−1}n, let CðzÞ : fþ1;�1gn ! R be the objective
function fromEqs. (4), (5). For aminimization problem, the goal is tofind
a variable assignment vector z for which C(z) is minimized. The QAOA
algorithm consists of the following components:
• an initial state ∣ψ

�
,

• a phase separatingCost HamiltonianHC, which is derived from
C(z) by replacing all spin variables zi by Pauli-Z operators σzi

• a mixing Hamiltonian HM; in our case, we use the standard trans-
verse field mixer, which is the sum of the Pauli-X operators σxi

• an integer p≥1, the number of rounds to run the algorithm (also
referred to as the number of layers),

• two real vectors γ!¼ ðγ1; :::; γpÞ and β
!¼ ðβ1; :::; βpÞ, each with

length p.

The QAOA algorithm consists of first preparing the initial state ∣ψ
�
,

and then applying p rounds of the alternating simulation of the phase
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separating Hamiltonian and the mixing Hamiltonian:

∣ γ!; β
!E ¼ e�iβpHMe�iγpHC|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

roundp

� � � e�iβ1HMe�iγ1HC|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
round1

∣ψ
�

ð1Þ

Within reach round,HC is applied first, which separates the basis states
of the state vector by phases e−iγC(z). HM then provides parameterized
interference between solutions of different cost values. After p rounds, the

state ∣ γ!; β
!i is measured in the computational basis and returns a

sample solution z of cost value C(z) with probability jhyj γ!; β
!ij2.

The goalwhenusingQAOAis toprepare the state ∣ γ!; β
!i fromwhich

we can sample a variable assignment vector y with high cost value f(y).
Therefore, to use QAOA the task is to find angles γ! and β

!
such that the

expectation value h γ!; β
!jHCj γ!; β

!i is large (−HC for minimization
problems). In the limit p→∞, QAOAis effectively aTrotterization of of the
QuantumAdiabatic Algorithm, and in general as we increase pwe expect to
see a corresponding increase in the probability of sampling the optimal
solution.The challenge is the classical outer loop component offindinggood
angles (not necessarily optimal) γ!and β

!
for all rounds p, which has a high

computational cost as p increases29,71.
There are a growing number of QAOA variants including GM-

QAOA77, ST-QAOA78, CD-QAOA79, Th-QAOA80, RQAOA81, warm start
QAOA82–85, FUNC-QAOA86, FQAOA87, FKL-QAOA88, HLZ-QAOA88,
DC-QAOA89, and multi-angle QAOA90,91, but here we do not use any of
these QAOA variants instead we use the standard transverse-field mixer
implementation, whichmakes the comparison consistent with the D-Wave
quantum annealing devices that use a transverse field driving Hamiltonian
for the initial state.

Variational quantum algorithms, including QAOA, have been a sub-
ject of interest in quantum algorithms research in large part because of the
problem domains that variational algorithms can address (such as combi-
natorial optimization)92. The primary challenge in variational quantum
algorithms is the classical component of parameter selection which has not
been solved and is even more difficult when noise is present in the
computation93. Typically, for small scale experiments the optimal angles for
QAOA are computed exactly (up to numerical simulation precision) for
small problem instances33,94. For this class of Ising models, it is not known
whether there exist analytically optimal QAOA angles (for some problem
types analytically optimal solutions have been found95). Therefore, our angle
finding approach consists of a reasonably high-resolution gridsearch
without knowing good angles a-priori. We note that a fine gridsearch scales
exponentially with the number of QAOA rounds p, and is therefore not
practical for higher round QAOA2,4. Classically computing good angles is
computationally intensive, especially with the introduction of cubic terms.
In our specific case of the class of sparse Ising models defined in Section
“Theory”, it is possible due to the geometric locality of theproblem instances
to classically simulate the mean energy expectation values computed by
QAOA (at least for p = 1 and p = 2), albeit at significant computational cost
for the high-resolution angle gridsearch; Section “Classical Simulation of
QAOA” details how this can be accomplished.

Quantum annealing general overview. Quantum annealing uses
quantum fluctuations to search for the ground state of a Ising model of
interest. Quantum annealing, in the case of the transverse field Ising
model as implemented on D-Wave hardware, is explicitly described by
the system given in Eq. (2) below. The state begins at time zero purely in
the easy-to-prepare ground state of the transverse field HamiltonianP

iσ
x
i , and then over the course of the anneal (parameterized by the

annealing time) the user programmed Ising problem is applied according
the function B(s). Together, A(s) and B(s) define the anneal schedules of
the annealing process, and s is referred to as the anneal fraction. The
standard anneal schedule that is used is a linear interpolation between
s = 0 and s = 1.

H ¼ �AðsÞ
2

Xn
i

σxi

 !
þ BðsÞ

2
Hising

� �
ð2Þ

The adiabatic theorem states that if changes to the Hamiltonian of the
system are sufficiently slow, then the systemwill remain in the ground state
of problemHamiltonian (up until the state is classically measured), thereby
providing a computational mechanism for finding the ground state of
combinatorial optimizationproblems.Theuser programmed Isingproblem
Hising, acting on n qubits, is defined in Eq. (3). Combined, the quadratic
terms and the linear terms define the optimization problem instance that
quantum annealing samples. As with QAOA, the objective of quantum
annealing is to find the variable assignment vector z thatminimizes the cost
function that has the form of Eq. (3).

Hising ¼
Xn
i

hiσ
z
i þ

Xn
i<j

J ijσ
z
i σ

z
j ð3Þ

Theory
Ising model problem instances. Table 1 shows that the D-Wave
quantum annealers have more available qubits than ibm_wa-
shington. The additional qubits available on the quantum annealers
will allow us to embed multiple problem instances in parallel onto the
chips. The current IBM Quantum devices have a hardware connectivity
graph referred to as a heavy-hex lattice19. The current D-Wave quantum
annealers have three different families of hardware connectivity graphs –
Chimera96–98, Pegasus96,99, and Zephyr100. For this direct comparison we
target the Pegasus connectivity devices. The two current D-Wave
quantum annealers with Pegasus hardware connectivity graphs have chip
id names Advantage_system6.1 and Advantage_system4.1.
Among the current quantum annealing hardware that is available, the
Zephyr Z4 and Chimera C16 hardware graph devices are either not large
enough or dense enough in order to instantiate the problem embeddings,
whereas the P16 Pegasus chip devices are large enough and dense enough
for the problem instances to be embedded directly. Therefore, for a direct
QAOA andQA comparison we create Ising problems with connectivities
that map directly onto both the logical heavy-hex lattice of the IBM
Quantum device for the QAOA circuits as well as onto the P16 Pegasus
connectivity of the quantum annealers. For a fair comparison, we need to
define problems that can be instantiated on all three of the devices in
Table 1. In particular, we want these implementations to not be unfairly

Table 1 | NISQ processor summary used in the experiments

Chip Hardware numbers

Device name Connectivity Generation # Qubits # Couplers/CNOTs Computation type

Advantage_system4.1 Pegasus P16 5627 40279 Quantum Annealing

Advantage_system6.1 Pegasus P16 5616 40135 Quantum Annealing

ibm_washington Heavy-hex Eagle r1 127 142 Universal Gate Model

Thehardware yield (e.g., the number of availablequbits, couplers, or twoqubit gates) of thesedevices is often times less than the logical lattice becauseof hardwaredefects, andcanalso changeover time if
device calibration changes.
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costly in terms of implementation overhead. For example, we do notwant
to introduce unnecessary qubit swapping in the QAOA circuit because
that would introduce larger circuit depths, which would introduce more
decoherence in the computation. We also want to avoid minor embed-
ding the problems onto the quantum annealers because there are an
additional set of problems introduced with minor embedding, including
chain break resolution algorithms101, the large ferromagnetic chain
strength dominating the programmed energy scale on the chip102, and
suppressed ground state sampling103 (especially for non-calibrated
chains).

As an additional dimension to push boundaries of the state-of-the-art
in quantum optimization, we introduce higher-order terms, specifically
cubic ZZZ interactions104–107, which could be viewed as 3-body (or multi-
body) interacting terms, or hypergraphs, or p-spin Ising models108–118 (the
exact terminology varies throughout the literature on this topic). The
introduction of higher order terms offers away to increase the complexity of
the problems, because more terms need to be addressed by the solver, while
keeping the total number of variables the same. The introduction of higher
order terms into the Ising models we wish to sample for the direct QAOA
and QA comparison requires both QAOA and QA to handle these geo-
metrically local higher order variable interactions,which is an additional test
on the capability of both algorithms. Importantly, QAOA can naturally
handle higher-order terms, which is a notable feature of the algorithm that
has only been explored in a few previous studies119–123. Because D-Wave
quantum annealing hardware only natively supports Ising models with
linear and quadratic terms, implementing higher-order terms requires
introducing auxiliary variables for the purpose of performing order
reduction to obtain a problem structure that is comprised of only linear and
quadratic terms thatmatch the hardware graph, but whose optimal variable
assignments (not including the auxiliary variables) are exactly the same as
the optimal variable assignments of the original high order
polynomial9,53,124–127. Note that the term HUBO (Higher-order

Unconstrained Binary Optimization) problem107,121,126–128 is also used when
referring to these types of combinatorial optimization problems which
contain higher order terms, however HUBO is specifically for problems
where the variable type is binary, and the Ising models we defined for these
experiments have variables which are spins (e.g.+ 1,− 1).

Taking each of these characteristics into account, we create a class of
random problems that respect the native device hardware connectivity
graphs, as described in Table 1. The problem instances we will be con-
sidering are Ising problems defined on the hardware connectivity graph of
the heavy hex lattice of the device, which for these experiments will be
ibm_washington. For a vector z = (z0,…, zn−1)∈ {+1,−1}n we define

C1ðzÞ ¼
X
v2V

dv � zv þ
X
ði;jÞ2E

di;j � zi � zj þ
X
l2W

dl;n1ðlÞ;n2ðlÞ � zl � zn1ðlÞ � zn2ðlÞ

ð4Þ
Equation (4) defines the class of random Isingmodelswith cubic terms

that we wish to minimize as follows. Any heavy hex lattice is a bipartite
graph with verticesV = {0,…, n− 1} bipartitioned asV =V2⊔V3, whereV3

consists of vertices with amaximumdegree of 3 (shown in Fig. 1 (left) as the
dark gray nodes), and V2 consists of vertices with a maximum degree of 2
(shown in Fig. 1 (left) as the light gray nodes). E⊂V2 ×V3 is the edge set
representing available two qubit gates (in this case CNOTswherewe choose
targets i∈V2 and controls j∈V3).W is the set of vertices inV2 that all have
degree exactly equal to 2.n1 is a function that gives the qubit (variable) index
of the first of the twoneighbors of a degree-2 node andn2 provides the qubit
(variable) index of the second of the two neighbors of any degree-2 node.
Thus dv, di,j, and dl;n1ðlÞ;n2ðlÞ are all coefficients representing the random
selection of the linear, quadratic, and cubic coefficients, respectively. These
coefficients could be drawn from any distribution – in this paper we draw
the coefficients from {+ 1,− 1} with probability 0.5. Combined, any vector
of variable states z canbe evaluated given this objective function formulation

0 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

52 53 54 55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

71 72 73 74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

90 91 92 93

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

109 110 111 112

113 114 115 116 117 118 119 120 121 122 123 124 125 126

Fig. 1 | Heavy-hex hardware-compatible Ising model with geometrically local
cubic terms. (left) ibm_washington graph connectivity, where qubits are con-
nected by CNOT (also referred to as cx) gates. There are two missing graph edges
from the ibm_washington lattice, with respect to the logical lattice, between
qubits 8-9 and 109-114. The total number of qubits (nodes) is 127. The edges of the
hardware graph are three colored (red, blue, and green) such that no node shares two
or more edges with the same color. The node colorings of light and dark gray show
that the heavy hex lattice is bipartite (meaning it can be partitioned into two disjoint
sets). The three edge coloring is consistent with the QAOA circuit construction in
Fig. 2. (right) Example of a single random cubic problem instance (see Eq. (4)) on the
ibm_washington graph. The linear and quadratic terms are shown using two

distinct colors (red and green). The nodes and edges colored red denote a weight
of− 1 and the nodes and edges colored green denote a weight of+ 1. The cubic
terms are represented by ovals around the three qubits which define the cubic
variable interactions -- these terms could also be referred to as ZZZ terms, or
hyperedges represented by the closed curve around each set of 3 qubits. Like the
linear and quadratic terms, the color of the oval representing the cubic terms
represents the sign of the weight on the terms, where green is+ 1 and red is− 1. The
quadratic problem instances (Eq. (5)) would be defined only by the randomly
weighted nodes and edges, with no cubic terms. All cubic problem instances contain
exactly 127 linear terms, 142 quadratic terms, and 69 cubic terms. All quadratic
problem instances contain exactly 127 linear terms, 142 quadratic terms.
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of Eq. (4).

C2ðzÞ ¼
X
v2V

dv � zv þ
X
ði;jÞ2E

di;j � zi � zj ð5Þ

Equation (5) defines the class of Ising problem that are the same as
Eq. (4), except without any cubic terms; in particular this class of problems
are easier since the problem is comprised of only linear and quadratic terms.
Both of the Ising models defined by Eqs. (5), (4) are intended to be mini-
mization combinatorial optimization problems, where the aim is to find the
global optimal solution of these Ising models.

The heavy hex connectivity of ibm_washington, along with an
overlay showing one of the random problem instances defined on ibm_-
washington, is shown in Fig. 1. The edge set E shows a 3-edge-coloring
due to Kőnig’s line coloring theorem, which we will make use of in the
QAOA Section “Theory”.

Each term coefficient is sampled from {+ 1,− 1} with the goals of
mitigating control error sources on the NISQ devices, making the problem
definition very clear, and to make the problems still reasonably difficult to
sample. Because all of these Ising models are random spin glasses, although
fitting a very specific connectivity structure, it is expected that there will be a
small number of degenerate ground states. However, we do not specifically
compute all of the degenerate ground states, or even howmany degenerate
ground states exist. We leave further inquiries on the properties of the
sampling of degenerate ground states for these specific Isingmodels, such as
how fairly the degenerate ground states are sampled33,129,130, to future
research.

For the remainder of the article, the problem instances defined in Eq.
(4)will be referred to as the cubic class of problems,meaning that the highest
degree variable terms present in the problem are ZZZ terms. The problem
instances defined in Eq. (5) will be referred to as the quadratic class of
problems, meaning that the highest degree variable terms present in the
model are two variable terms. For all experiments, we randomly generate 10
cubic Isingmodels and 10 quadratic Isingmodels with the goal of providing
a reasonable ensemble of different problems to compare against each other,
and importantly to discern if there are significant differences that occur
between different random instances of the same problem type.

Implementing ising model QAOA circuits on IBM quantum Heavy-
Hex connectivity. Figure 2 describes the short depth QAOA circuit
construction for sampling a geometrically local hardware-compatible
higher order Ising problem instance, described in Section “Theory”. This

algorithm can be applied to any heavy-hex lattice connectivity, which
allows for executing the QAOA circuits on the 127 variable instances on
the IBM Quantum ibm_washington backend (or more generally),
any heavy-hex hardware connectivity graph quantum computer. This
particular QAOA circuit could be viewed as a type of Hardware Efficient
Ansatz (HEA)131–133, but is applied to QAOA, not general Variational
QuantumAlgorithms (VQA’s), and is restricted to a very particular form
of random Ising model (defined in Section “Theory”) that itself is
hardware specific.

For considering the angle parameter searchspace, note that each
quadratic and each cubic problem instance has the property that all its
sampleswill have the same parity as each termcontributes either+ 1 or− 1.
Therefore, for any objective value C (i.e. either C1(x) or C2(x)), we have
C = 2k+ parity and thus

e�iðγþπÞC ¼ e�iγC � e�iπð2kþparityÞ

¼ e�iγC � e�i2πk|fflffl{zfflffl}
1

� e�iπ�parity|fflfflfflfflfflffl{zfflfflfflfflfflffl}
globalphase

ffi e�iγC :

Therefore, increasing the angle γ by π only adds a global phase, and hence γ
has a periodicity of π which is why the angle range of (0, π) was chosen to
perform the grid-search within (although for example �π

2 ; π2
� �

would also
work). The same reasoning applies to β. Furthermore, there is an additional
symmetry that can be used: Applying the two angle sequences of
1. β = (β0, β1,…, βp), and γ = (γ0, γ1,…, γp)
2. − β = (− β0,− β1,…,− βp), and− γ = (− γ0,− γ1,…,− γp)

Give the same expectation values because they are mirror symmetric.
This means that the search space can be cut in half; in this case we chose to
divide the last βp angle in half so as to take advantage of this mirror sym-
metry and reduce the angle search space. Therefore, for both quadratic and
cubic problem instances, the QAOA angle ranges used are γ1; . . . ; γp 2
0; π½ Þ and β1; . . . ; βp�1 2 0; π½ Þ; βp 2 0; π2

� �
where p is the number of

QAOA rounds. The search ranges we use are not 0 and π inclusive. The
halving of the angle search space for β applies when p = 1.

For optimizing the angles using the naive grid search for p = 1, β0 is
varied over 60 linearly spaced angles 2 ½0; π2� and γ0 is varied over 120
linearly spaced angles∈ [0, π]. For a comparable resolution gridsearch for
p = 2, β1 is varied over 5 linearly spaced angles2 ½0; π2� and γ0, γ1, and β0 are
varied over 11 linearly spaced angles∈ [0, π]. Therefore, for p = 2 the angle
gridsearch uses 6655 separate circuit executions (for each of the 10 problem

Fig. 2 | A 1-roundQAOA circuit. (Left) The problem instance is a hardware-native
bipartite graph with an arbitrary 3-edge-coloring given by Kőnig’s line coloring
theorem. Figure 1 (left) shows a 3-edge-coloring and bipartite shading consistent
with this figure. The purple lines denote the cubic terms.(right) Any quadratic term
(colored edge) gives rise to a combination of two CNOTs and a Rz-rotation in the
phase separator, giving a CNOT depth of 6 due to the degree-3 nodes. When

targeting the degree-2 nodes with the CNOT gates, these constructions can be
nested, leading to no overhead when implementing the three-qubit terms: these
always have a degree-2 node in the middle (see Eq. (4)). For the problem instances
without cubic terms, theQAOA circuit construction can simply disregard the purple
single qubit rotations.
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instances), and for p = 1 the angle gridsearch uses 7200 separate circuit
executions. Each circuit executionmeasures 10, 000 sampleswith the goal of
obtaining a highly robust distribution for each angle combination.

Implementing ising models on D-wave pegasus connectivity. In
order to execute the Isingmodels of Eqs. (4) and (5) onD-Wave quantum
annealers, the primary challenge is that the higher-order (i.e., cubic)
terms will need to have order reduction techniques applied to them so as
to decompose the cubic terms into linear and quadratic terms9,53,124–126.
This order reduction will result in using additional variables, usually
called auxiliary or slack variables, in addition to additional edges
(quadratic terms) that allow those new auxiliary variables and the existing
discrete optimization problem variables to interact. Figure 3 shows the
mapping of the Ising models onto a logical Pegasus P16 hardware con-
nectivity graph, in particular showing the order reduction procedure
which makes use of two alternating order reductions using auxiliary
variables with different connectivities. The alternating order reduction’s
are required to fit an entire problem instance Ising model (defined on a
heavy-hex hardware graph) with cubic terms onto the D-Wave hardware
graph(s). The order reduction procedure outlined in Fig. 3 allows for
direct embedding of the order reduced polynomials onto the hardware
graph, regardless of whether the cubic term coefficient is+ 1 or− 1. This
order reduction ensures that the ground state(s) of the cubic term are also

the ground states of the order reduced Ising model. Additionally, this
order reduction ensures that for every excited state of the cubic term,
there are no slack variable assignments which result in the original
variables having an energy less than or equal to the ground state of the
original cubic term. This order reduction procedure allows any problem
in the form of Eq. (4) to be mapped natively to Pegasus quantum
annealing hardware which accepts problems with the form of Eq. (3).
Importantly, this procedure does not require minor-embedding (e.g. use
of chains of physical qubits to represent a logical variable), even including
the auxiliary variables. Constructing the embeddings of the order reduced
higher order terms onto Pegasus requires alternating between two valid
cubic reductions (both of which are shown in Fig. 3); we found this was
not possible to do using only a single cubic order reduction formulation.
When evaluating the cost value of a sample measured by the quantum
annealing processor, the energy is computed on the original polynomial
meaning that the auxiliary variable states are not used when computing
the energy. Supplementary Note 8 contains detailed truth tables for the
order reductions, as well as the exact polynomials that describe the order
reduction. We do not claim that these order reductions are optimal for
hardware-native ± ZZZ term reduction on a Pegasus hardware graph, but
they are the best manual embeddings that we found.

For the purpose ofmitigating local biases and errors thatmay occur on
the QA processor chip, and in order to get more problem samples for the

Fig. 3 | Cubic term order reduction scheme and hardware-native embedding on
D-Wave hardware Pegasus graph. (left) Two different embeddings for cubic+
1/− 1 terms onto D-Wave’s Pegasus connectivity. Each embedding needs two
slack variable qubits, shown as green circles with the numbers indicating the
weights d of the slack variables and their connections as well as changes to the
original weights of the variables involved in the cubic term. Our overall
embedding alternates between these two cubic term embeddings. Any embed-
ding with only one slack variable needs a 4-clique between the slack and the
three original variables, which is not possible to embed for consecutive cubic
terms. This order reduction scheme introduces two auxiliary variables per cubic
term, meaning that for the cubic Ising models the auxiliary qubit overhead is
exactly 69 ⋅ 2 = 138. (right) Embedding structures of the cubic problem
instances embedded in parallel (independently) 6 times onto the logical Pegasus

P16 hardware connectivity graph. The visual view of this graph has been slightly
partitioned so that not all of the outer parts of the Pegasus chip are drawn. The
light gray qubits and couplers indicate unused hardware regions. The cyan
coloring on nodes and edges denote the vertical qubits and CNOTs on the
ibm_washington hardware graph (see Fig. 1). The red coloring on nodes
and edges denote the horizontal lines of qubits and CNOTs on ibm_wa-
shington. The green nodes and edges denote the order reduction auxiliary
variables. Note that in problem tiling on Pegasus, the top right hand and lower
left hand qubits are not present on the ibm_washington lattice, but for the
purposes of generating the embeddings these extra qubits are filled in to
complete the heavy hex lattice embedding. The embedding structure for
quadratic problems is identical to this embedding, with the exception that there
are no auxiliary (green) variables.
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same QPU time, the other strategy that is employed is to embed multiple
independent problem instances onto the hardware graph and thus be able to
execute several instances in the same annealing cycle(s). This technique is
referred to as parallel quantum annealing126,134,135 or tiling136. Note that the
concept of parallel quantum annealing has analogous ideas in the circuit
model quantum computing paradigm, which are generally referred to as
multi-programming137–140, or parallel circuit execution141,142, or circuit
concurrency143. Figure 3 (right) shows the parallel embeddings on a logical
Pegasus hardware graph. Because some of the logical embeddingsmay use a
qubit or coupler that is missing or defect on the actual hardware (see Fig. 4
for a rendering that highlights such hardware), less than 6 parallel instances
can be tiled onto the chips to be executed at the same time. For Advan-
tage_system4.1, 2 independent embeddings of the cubic problem
instances could be created without encountering missing hardware and 3
independent embeddings of the quadratic problem instances could be
created. ForAdvantage_system6.1, 3 independent embeddings of the
cubic problem instances could be created and 5 independent embeddings of
the quadratic problem instances could be created. The structure of the
heavy-hex lattice onto Pegasus can be visually seen in Fig. 3; the horizontal
heavy-hex lines (Fig. 1) aremapped to diagonal Pegasus qubit lines that run
from top left to bottom right of the square Pegasus hardware graph ren-
dering. Then the vertical heavy-hex qubits are mapped to QA qubits in
between diagonal lines.

Experiments
Comparing QAOA, quantum annealing (QA), simulated annealing
(SA), and random samples. Figure 5 plots 2 histograms, one for 2 out of
the 10 minimization cubic problem instances. As a baseline comparison,
the energy distribution histograms contain the objective functions of
random samples—these are computed with binomial probability of 0.5
for selecting+ 1 or− 1. Each histogram contains a distribution showing
10, 000 random samples, the best angle choices found (experimentally)
for p = 1 and p = 2 QAOA with and without dynamical decoupling, the
QA results from two D-Wave quantum annealers (which contain
between 500 and 2500 samples, depending on the problem and device),
1000 samples from simulated annealing, and themean expectation values
for the best angle choices of QAOA computed exactly. We make the
following eight observations from these plots: Fig. 5

1. Shows that the random samples are clearly separated from the QAOA
energy distributions – although there is overlap.

2. The QA distribution is clearly distinct from the QAOA distribution,
and performs much better.

3. The experimental QAOA distributions are roughly half-way between
the exact QAOA simulation (which was computed classically) and
random samples.

4. The four differentQAOA implementations performed very similarly –
their distributions have very high overlap and differences in the per-
formance is marginal. For the purpose of showing exactly which of the
QAOA methods performed better across the 10 problems, Table 2
shows a confusion matrix type representation of what methods had
better mean energy distributions (for the best QAOA angle choice)
compared to the other methods. In Table 2, we can see that digital
dynamical decoupling improves the p = 2 QAOA computation
noticeably for the best angle combination found during the gridsearch.
Supplementary Note 7 contains amore detailed comparison of the full
spectrumofQAOAenergy computations with andwithout dynamical
decoupling.

5. The exact QAOA simulations show that a zero noise quantum com-
putation of QAOAwould not achieve the samemean energy found by
the two quantum annealers. However, it could be the case that the
lower energy tails of such a QAOA computation would be able to find
the optimal solution or at least get close.

6. Although thiswill be observed inmoredetail in Section “Experiments”,
the optimal angle choices (computed experimentally) show parameter
concentration – i.e. even though the 10 problems are different, the best
QAOA angles across the problems are similar if not identical.

7. QA and simulated annealing are comparable but typically simulated
annealing has a slightly better mean energy.

8. Advantage_system6.1 consistently has slightly higher (lower
quality) mean energy than Advantage_system4.1.
Figure 6, similar to Fig. 5, shows 2 histograms, but now for the 2 out of

the 10 minimization quadratic problem instances that contain no higher
order terms. The set of observations made about Fig. 5 also apply to Fig. 6
with a few exceptions. First, Table 3 shows the confusion matrix-style
representation of how the four QAOA methods compared against each
other, but now for the quadratic problems. Table 3 shows that, as opposed

Fig. 4 | D-Wave quantum annealer Pegasus hardware graphs. Pegasus hardware connectivity graph (P16) renderings with the missing hardware drawn in red nodes and
edges for the Advantage_system4.1 D-Wave chip (left) and the Advantage_system6.1 D-Wave chip (right).
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Table 2 | This table is a confusionmatrix representation of how the four different QAOA implementations compare against each
other when sampling the 10 cubic instances

cubic problems QAOA comparison p = 1 (no DDD) p = 2 (no DDD) p = 1 (w. DDD) p = 2 (w. DDD)

p = 1 (no DDD) mean better than… — 10/10 5/10 4/10

p = 2 (no DDD) mean better than… 0/10 — 2/10 0/10

p = 1 (w. DDD) mean better than… 5/10 8/10 — 4/10

p = 2 (w. DDD) mean better than… 6/10 10/10 6/10 —

Each cell is showing for how many of the 10 Ising models each method had a better mean objective value compared to the other three methods (given the best angle combination that was found in the
massive angle gridsearch). This information is shown in the form of histograms in Fig. 5, however there it is difficult to visually discern the methods. The order of performance of the four different QAOA
implementations is as follows: p = 2 without DDD performed the worst, p = 1 with DDD performed the next best, p = 1 without DDD performed the next best, and p = 2 with DDD performed the best overall.

Fig. 6 |Direct energy histogram comparison ofQA andQAOA results for 2 out of
the ten minimization quadratic problem instances. Here the energies being
plotted are the full energy spectrum for the parameters that gave theminimummean
energy across the parameter grid searches performed across the QA and QAOA
parameters. The optimal parameter combination is given in the figure legend. For
QA parameters, the annealing time in microseconds, the forward anneal schedule
(symmetric) pause fraction, and anneal fraction, are given in the legend. For the
QAOA angle parameters, the format is [β, γ], and are rounded to 3 decimal places.

The mean for each dataset is marked with vertical dashed lines and the minimum
energy found in each dataset is marked with solid vertical lines. The best mean
energy found across the possible angle combinations from the exact (classical)
QAOA simulations (described in Section “Classical Simulation of QAOA”) are
marked with vertical thick dotted lines; those energymeans showwhat QAOA could
sample theoretically if there was no noise in the computation. These two plots are
intended to be representative of the other 8 quadratic Ising models - the remaining
Ising model sample distributions are shown in Supplementary Note 1.

Fig. 5 |Direct energy histogram comparison ofQA andQAOA results for 2 out of
the tenminimization cubic problem instances.Here the energies being plotted are
the full energy spectrum for the parameters that gave the minimum mean energy
across the parameter grid searches performed across theQAandQAOAparameters.
The optimal parameter combination is given in the figure legend. For QA para-
meters, the annealing time in microseconds, the forward anneal schedule (sym-
metric) pause fraction, and anneal fraction, are given in the legend. If the QA
parameter in the legend is only an annealing time that denotes that the optimal
annealing schedule was the default linear interpolation. For the QAOA angle
parameters, the format is [β, γ], and are rounded to 3 decimal places. The mean for

the energy distributions is marked with vertical dashed lines and the minimum
energy found in each dataset is marked with solid vertical lines. If there are multiple
parameter combinations that result in the samemean energy, one of those parameter
combinations is chosen arbitrarily to plot. The best mean energy found across the
possible angle combinations from the exact (classical) QAOA simulations (descri-
bed in Section “Classical Simulation of QAOA”) are marked with vertical thick
dotted lines; those energy means show what QAOA could sample theoretically if
there was no noise in the computation. These two plots are intended to be repre-
sentative of the other 8 cubic Ising models – the remaining Ising model sample
distributions are shown in Supplementary Note 1.
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to Table 2, digital dynamical decoupling does not help asmuch as it did for
the cubic problems, at least for the best angle combinations. Supplemen-
tary Note 7 shows a more detailed analysis of the comparison between
QAOA circuits with and without dynamical decoupling. This observed
difference in how useful dynamical decoupling was for the best angles
could be due to the cubic problem instances having greater circuit depth,
thus having more idle qubit time in the computation which dynamical
decoupling can help to mitigate errors on. Second, these problems were
considerably easier for both simulated annealing and quantum annealing
to sample the optimal solution of. As a result, the energy distributions for
bothQA and SA are concentrated near the optimal solutions and there are
not clear visual differences between the two distributions.

Anotable comparison point that is not highlighted in these experiment
plots is the total amount of computation time required to execute these
experiments. Approximately 120 minutes of QPU access time was used for
all D-Wave quantum annealing experiments. Approximately 16500 min-
utes of QPU time was used for all QAOA experiments. These estimates do
not includequeue times.TheQPUtimeconsumed forQAOAis entirely due
to the high resolution parameter gridsearch that is performed, which used
more parameters than the QA experiments. The QAOA gridsearch using
more parameters than QA is important because it is necessary in order for
QAOA to perform as expected (e.g., theoretically for the solution quality to
improve as a function of p) that good parameters are found, whereas forQA
(since it is a specialized computation) reasonably good optimization can
occur across a wide range of parameter choices.

Optimal solution sampling. One important detail that is not fully
represented in Figs. 5, 6 is whether any of themethodswere able to sample
the optimal solutions of the problems, and if so how frequently. In the
case of QAOA, it is clear that it never sampled the optimal solution(s)
because the plots have visual indicators for those minimum energies.
Table 4 details the minimum energies found for each of the solver
methods along with the optimal minimum energy, computed using
CPLEX (see Section “Simulated Annealing and CPLEX implementa-
tions”). CPLEX does not provide information on degenerate ground
states, if they exist, and therefore here degenerate ground states or how
those states are sampled is not considered—only whether the optimal
energy was found or not. Table 4 shows that both simulated annealing
and quantum annealing are able to sample the optimal solutions for all 10
quadratic problems. Simulated annealing is also able to sample the
ground state solution for all 10 cubic problems, and quantum annealing is
able to sample the ground state solution for 6 out of the 10 cubic
problems.

Importantly, the implementations of quantum annealing, simulated
annealing, and CPLEX, all required the use of order-reduction techniques
for the cubic Ising models (as opposed to QAOA which can handle the
higher order terms natively in the algorithm without auxiliary terms). This
means the SA, QA, and CPLEX solutions all use auxiliary variables in their
implementation. When reporting the objective function evaluations (e.g.
energy), these auxiliary terms are not included in the objective function
computation. The objective function computations are always performed

strictly on the variable assignments found for the original variables (not
auxiliary variables from the order reduction), defined by Eqs. (4), (5).

Quantum annealing schedule tuning. Figure 7 shows the QA pause
anneal schedule energy landscapes for a quadratic problem and a cubic
problem. It is clear that longer annealing times have a better energy
(objective function value), andmore uniform. Shorter annealing times, in
particular 10 microseconds, shows a more pronounced difference across
the energy landscape where it becomes clear that pauses at an anneal
fraction of s = 0.1 and s = 0.9 produce equally poor solution quality and
pauses around s = 0.5 produce better solution quality.

Figure 8 (right) shows some energy distributions for one of the cubic
problems across different annealing times. The smallest and largest
annealing times available on the twoD-Wave quantum annealers. This plot
shows that there is consistent trend towards longer annealing times per-
forming better, however there is also a diminishing return on energy
improvement as a function of annealing time as the mean energy dis-
tribution approaches the optimal solution. Figure 8 (left) shows the same
histogramdistributionof energies as a functionof annealing times for oneof
the quadratic problem instances. The energy distributions for the other 18
problems are very similar to these two arbitrarily chosen plots.

QAOA angle tuning. Figure 9 shows the experimentally computed 1
round QAOA parameter search space, and classically computed search
space for one of the cubic Ising models. Figure 10 shows the same results,
but for one of the quadratic Isingmodels. Figures in Supplementary Note
2 show that the optimal QAOA angles found in the angle gridsearch
across the remaining 9 random problem instances are very similar, if not
identical at the level of grid resolution we selected. This type of result has
been observed for other classes of random combinatorial optimization
problems, such as maximum cut and the Sherrington-Kirkpatrick
model40,52,144–147. If this behavior is consistent for large classes of combi-
natorial optimization problems then this could partially alleviate the
hardness of the angle finding problem by allowing a single computation
of optimal angles to be applied to any number of problems that fall into
that class, and could potentially assist with angle finding for higher round
QAOA. Supplementary Note 3 shows volumetric p = 2 representations of
the angle search spaces.

Classical simulation of QAOA results. As described in Section “Clas-
sical Simulation of QAOA” it is possible for HPC resources to simulate
the studied QAOA circuits for p = 1, 2. At least, it is possible to simulate
the ideal mean expectation values for arbitrary angles. Figures 9, 10, in
addition to showing the experimental results, also plot the ideal mean
expectation values for the p = 1QAOAcircuits, for one quadratic and one
cubic Ising model. Additional plots in Supplementary Note 2 show the
classically computed p = 1 parameter search space for the remaining
quadratic and cubic problem instances. The mean energy for the best
angle combinations, computed exactly, are also shown as part of the
histograms in Figs. 5, 6. These plots should be compared against the
ensemble of plots in Supplementary Note 2, where two things are clear.

Table 3 | This table is a confusionmatrix representation of how the four different QAOA implementations compare against each
other when sampling the 10 quadratic instances

quadratic problems QAOA comp. p = 1 (no DDD) p = 2 (no DDD) p = 1 (w. DDD) p = 2 (w. DDD)

p = 1 (no DDD) mean better than… — 8/10 8/10 10/10

p = 2 (no DDD) mean better than… 2/10 — 8/10 10/10

p = 1 (w. DDD) mean better than… 2/10 2/10 — 9/10

p = 2 (w. DDD) mean better than… 0/10 0/10 1/10 —

Each cell is showing for how many of the 10 Ising models each method had a better mean objective value compared to the other three methods (given the best angle combination that was found in the
massive angle gridsearch). This information is shown in the form of histograms in Fig. 6, however there it is difficult to visually discern the methods. The order of performance of the four different QAOA
implementations is as follows: p = 2with DDD performed the worse, p = 1 with DDD performed the next best, p = 2without DDD performed the next best, and p = 1 without DDD performed the best overall.
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First, the trends of the landscape computed on the NISQ computer are
very similar to the trends in the exact energy landscape—e.g. there are no
obvious biases or lost local minima/maxima not found by the quantum
hardware results. Second, the optimal angle combinations result in a
significantly worse mean expectation value (energy) on ibm_wa-
shington; compared to the exact QAOA simulation, the hardware
energies get approximately 50% to the ideal computation. Interestingly,
this is also true for the angle symmetries that result in the highest
expectation values (which in this case we do not want since it is a
minimization problem). Specifically, the experimental energies are
symmetric and the highest expectation values are also approximately 50%
of what the exact classical simulations show could be sampled for those
angle choices.

An observation that has not been made before for QAOA sampling
combinatorial optimizationproblems is that adding inhigher order terms to
the Ising models (e.g. going from the quadratic instances to the cubic
instances) does not substantially change the angle search space. In other
words, the parameter concentration held as higher order terms were added
or removed. This can be seen especially clearly in Figs. 9, 10, and is also
shown in the extensive NISQ computer experimental plots in Supplemen-
tary Note 2. The exact shape of the energy landscape does change when the
higher order terms are added, but the best parameter combination region is
nearly identical. This gives evidence that parameter concentration may be
transferable acrossprobleminstances evenwhenaddingor removinghigher
order terms.

The Figures in Supplementary Note 5 examine detailed (normalized)
differences in the experimentally computed p = 1QAOA energy landscapes
on ibm_washington, compared to the ideal classical mean energy
QAOA simulations. Note that such a comparison could be made for p = 2,
but representing the high dimensional search space (such as the plots in
Supplementary Note 3) becomes difficult to meaningfully visually convey.

Discussion
This paper has presented state of the art QAOA results, in particular the
largest QAOA experimental demonstration to date, which enabled a direct
comparison against quantum annealing. This is also one of the largest
quantum system simulations performed on a circuit model quantum
computer to date, using approximately 3000 circuit instructions on 127
qubits. Specifically we found the following:
1. Quantumannealing finds lower energy solutions compared toQAOA,

and is able to sample the optimal solution at least once for all 10
quadratic problems and 6 out of the 10 cubic problems.

2. QAOA samples all of the Ising model instances better than random
sampling

3. The short depth QAOA circuit can be applied to heavy hex lattices of
any size, whichmeans that as heavyhexhardware improves these short
depth QAOA circuits can be used.

4. Dynamical decoupling canhelp improve thequality of computationon
NISQ computers, even for relatively short depth QAOA circuits.
However, as observed in other empirical results the improvements are

Table 4 | Minimumenergies sampled for the 10 cubic problem instances (top), and the 10 quadratic problem instances (bottom)

Exact energies SA Energies QA Energies QAOA Energies

ground state max min count total min count best mean total min count best mean

Cubic problem index

0 –200 192 –200 ( × 15) –200 ( × 1) –188.880 –126 ( × 1) –46.710

1 –200 192 –200 ( × 52) –200 ( × 852) –191.990 –130 ( × 1) –46.565

2 –196 186 –196 ( × 215) –196 ( × 45) –184.232 –126 ( × 1) –44.114

3 –198 184 –198 ( × 37) –198 ( × 1) –184.750 –128 ( × 1) –49.160

4 –198 204 –198 ( × 97) –198 ( × 2241) –191.560 –124 ( × 1) –45.303

5 –198 192 –198 ( × 125) –194 ( × 5) –179.378 –128 ( × 1) –49.558

6 –180 198 –180 ( × 322) –180 ( × 3) –168.200 –122 ( × 4) –48.786

7 –212 188 –212 ( × 115) –212 ( × 541) –202.032 –132 ( × 1) –52.609

8 –186 198 –186 ( × 20) –186 ( × 347) –177.420 –132 ( × 1) –50.832

9 –198 192 –198 ( × 125) –198 ( × 167) –190.574 –134 ( × 1) –53.438

Quadratic problem index

0 –179 169 –179 ( × 815) –179 ( × 1166007) –178.978 –121 ( × 2) –50.203

1 –173 175 –173 ( × 916) –173 ( × 1225954) –172.994 –117 ( × 2) –52.688

2 –177 167 –177 ( × 934) –177 ( × 1230159) –176.993 –127 ( × 2) –53.912

3 –175 173 –175 ( × 795) –175 ( × 1127089) –174.968 –123 ( × 2) –55.107

4 –189 181 –189 ( × 948) –189 ( × 1246352) –188.995 –131 ( × 1) –55.340

5 –183 165 –183 ( × 965) –183 ( × 1242747) –182.991 –127 ( × 1) –54.579

6 –179 175 –179 ( × 840) –179 ( × 1173674) –178.982 –139 ( × 1) –53.361

7 –195 161 –195 ( × 984) –195 ( × 1258217) –194.995 –131 ( × 1) –55.300

8 –171 175 –171 ( × 910) –171 ( × 1212798) –170.990 –129 ( × 1) –55.845

9 –175 181 –175 ( × 833) –175 ( × 1170297) –174.983 –125 ( × 1) –57.521

For reference, ground state andmaximumexcited state energies were computedwith CPLEX. For simulated annealing (SA), quantum annealing (QA) andQAOA, we give the total minimumenergies found
over all parameter settings, including the number of times these were sampled overall to show the stability of these experiments. For QA and QAOA, we also give the respectivemean energy for the best
found parameters.
Remarks: SA data is always out of 1000 samples. QA data is out of all 1, 328, 000 discrete samples, including the annealing time parameter sweepwith no schedulemodifications and the full pause anneal
schedule parameter sweep.QAOAdata is out of all 277, 100, 000 samples forp = 1, forp = 2,with aswell aswithout dynamical decoupling.QAwas able to sample the optimal energy at least once for 19 out
of the 20 problems; the cubic problem instances 5was not solved to optimality. Note that the ground state energies for the cubic and quadratic problems are necessarily even and odd, respectively, due to
the number of terms in their objective functions, see Eqs. (4), (5).
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not uniform – and in particular for p = 1 dynamical decoupling did not
improve the computation.

5. Consistent with empirical results on other problems, we observed
parameter concentration for both p = 1 and p = 2QAOA circuits. This
is encouraging since it indicates that for some classes of similar pro-
blem instance it may be possible to develop good heuristics for angle
selection for high-round QAOA. This result is consistent with other
similar classes of random combinatorial optimization problems.

6. The exact classical simulation of QAOA showed that the experimental
QAOA p = 1 energy landscapes computed on ibm_washington
were not biased in particular regions, but overall performed sig-
nificantly worse (roughly one half) than the theoretical performance.

Figures 5, 6 hint at a possible future research direction involving the
selection of good QAOA angles at higher rounds. This observation is that

the best found β0 and γ0 in the gridsearch are usually similar—because the
p = 2 gridsearch was not as granular as the p = 1 gridsearch, this similarity is
not always highly apparent. This suggests that it may be possible to extra-
polate good angle choices for high round QAOA, using the best angles
found at p = 1. This type of extrapolation technique has been used in other
studies for studying the scaling of QAOA using classical simulation30.
Additionally, we have seen evidence that the addition of the higher order
terms does not substantially change the concentration of good QAOA
angles. This then leads to the natural question of how far this extends to
higher order terms beyond cubic terms, and whether QAOA parameter
concentration holds for classes combinatorial optimization problemswhere
higher order terms are added to a fixed underlying connectivity structure.
Parameter concentration for QAOA on problems which contain higher
order terms is very under-investigated, and would be an interesting topic of
future research.

Fig. 7 | Mean energy landscape of the parameter search of QA anneal schedules
with symmetric pauses. Each individual heatmap is plotting the mean sample
energy found among theN anneal samples for that problem and device (N can vary,
see Section “Theory”) where the y-axis is the anneal fraction s at which the forward
anneal pause occurs and the x-axis is the fraction of the anneal time that was spent in
that pause at the anneal fraction s. Both the x and y-axis range is 0.1, 0.2,…, 0.8, 0.9.
Each cluster of 4 heatmaps are performing the same grid search over anneal fraction

and pause duration fraction, but repeated over the annealing times of 2000, 1000,
100, and 10 microseconds (shown the individual heatmap titles). The left four
heatmaps are QA results for one quadratic problem instance, while the right four
heatmaps are QA results for one cubic problem instance, both executed on
Advantage_system4.1. The heatmaps show that there is a consistent low
energy region slightly below s = 0.5 for any pause duration and for all annealing
times. Longer annealing times clearly result in lower energy results.

Fig. 8 | Histograms of the energy distributions from a quadratic instance (left)
and a cubic instance (right) executed on Advantage_system4.1 using for-
ward quantum annealing execution (specifically, the schedule was not modified
and so the default linearly interpolated schedule was applied). The annealing
times were varied (annealing time in microseconds shown in legend) to show how
the energy distribution changes as a function of annealing time. These histograms,

while only the energies of a single one out of the 10 problem instances, are repre-
sentative of the behavior of the other nine problem instances.Mean energy ismarked
with dashed vertical lines, and the minimum energy is marked with solid vertical
lines. Notice that there is a clear improvement in solution quality as the anneal times
get longer.
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Because of the increasing availability of NISQ computers with
increasing qubit count (now with hundreds of qubits), we encourage the
algorithmic development of optimized short depth circuits alongside
experimental evaluation of these shallow circuits on full hardware lattices.
Both the QAOA circuit construction algorithm and the QA embedding
algorithm thatwe have outlined are scalable to larger lattice sizes—as are the
problem instances thatmatch those hardware graphs. Thismeans that these
algorithms can be used in the future as hardware improves and increases
in scale.

Although here we used an angle gridsearch for the QAOA
implementation, this is not scalable to high round QAOA. High
round QAOA needs to be experimentally evaluated as the hardware
and algorithms improve, since it is known that QAOA will need to be
executed at reasonably high rounds (not low rounds such as p = 1 and
p = 2) so as to provide meaningful computations for combinatorial

optimization148,149. Therefore an important future research topic is to
utilize more scalable angle finding algorithms for high round QAOA
on quantum computers. The class of Isingmodels we have introduced
in this research would allow high round QAOA computation on a
large number of qubits, as IBM Quantum hardware continues to
improve.

The capability ofQAOA tonatively accept higher order terms seems to
be under-utilized when evaluating QAOA capabilities, both numerically in
ideal simulations, and on NISQ computers. As a future research direction,
we encourage further testing of QAOA on problem types which contain
higher order terms.

Methods
Sections “Dynamical Decoupling for QAOACircuits” and “IBMQuantum
Processor QAOA Circuit Execution” define the QAOA circuit execution

Fig. 9 | p= 1 QAOA mean energy landscapes for one of the cubic Ising models,
sampled on ibm_washington (left), sampled on ibm_washington using
dynamical decoupling sequences (middle), and themeanobjective function value

computed exactly using classical simulation (right). Note that the ideal classical
objective function values are approximately 2 times that of the experimentally
computed values.

Fig. 10 | p= 1 QAOA mean energy landscapes for one of the quadratic Ising
models (no higher order terms), sampled on ibm_washington (left), sampled
on ibm_washington using dynamical decoupling sequences (middle), and the

mean objective function value computed exactly using classical simulation
(right). Note that the ideal classical objective function values are approximately 2
times that of the experimentally computed values.
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and parameters on the ibm_washington processor. Section “Classical
Simulation of QAOA” describe the lightcone classical simulation of mean
QAOA expectation values for depths p = 1 and p = 2. Section “D-Wave
Quantum Annealing Processor Parameter Optimizations” describes the
D-Wave quantum annealer parameter optimizations. Section “Simulated
Annealing andCPLEX implementations”describes the simulated annealing
and CPLEX implementation.

Dynamical decoupling for QAOA circuits
With the goal of mitigating decoherence on idle qubits, digital dynamical
decoupling (DDD) is tested on all QAOA circuits, for both p = 1 and p = 2.
Dynamical Decoupling is an open loop quantum control error suppression
technique for mitigating decoherence on idle qubits150–155. Dynamical
decoupling can be implemented with pulse level quantum control, and
digital dynamical decoupling can be implemented with circuit level gate
instructions comprised of sequences of identity gates154. Digital dynamical
decoupling is an approximation of pulse level dynamical decoupling, and in
this case we use the Qiskit76 dynamical decoupling pass to insert the digital
gate sequences, butwith circuit delays so that the circuit is scheduled towork
as intended on the device. Dynamical decoupling has been experimentally
demonstrated to be useful in certain computations for superconducting
qubit quantum processors including IBM Quantum devices156–161. Dyna-
mical decoupling in particular could applicable for high round QAOA
circuits because the circuits can be relatively sparse and therefore have idle
qubits156. Dynamical decoupling is not always effective at consistently
reducing errors during computation (for example because of other control
errors present on the device153,156,161), and therefore the raw QAOA circuits
are compared against the QAOA circuits with dynamical decoupling in
Section “Results”. So as to apply the dynamical decoupling sequences to the
OpenQASM162 QAOA circuits, the PadDynamicalDecoupling163

method from Qiskit76 is used, with the pulse_alignment parameter
specified based on theibm_washington backend properties. The circuit
scheduling algorithm that is used for inserting the digital dynamical
decoupling sequences is ALAP, which schedules the stop time of instruc-
tions as late as possible164. There are other scheduling algorithms that could
be applied which may perform better. There are different DDD gate
sequences that can be applied, including Pauli Y, Y or Pauli X, X gate
sequences. Because the X Pauli gate is already a native gate of ibm_wa-
shington, the twoPauli X gateX,XDDDsequence is used for simplicity.
The X-X sequence is expected to typically mitigate time correlated
dephasing noise165.

Because of the magnitude error rates on current NISQ hardware, uti-
lizing asmany errormitigation strategies as possiblewould be ideal for these
experiments. Unfortunately, other error mitigation strategies are either not
scalable to large system sizes, such as measurement error mitigation
requiring an exponential number of circuit executions166, or are intended to
provide error mitigated expectation values and therefore do not provide
variable assignments, such as Zero Noise Extrapolation (ZNE)154,167–169. For
this direct comparison of QA and QAOA, we aim to obtain the variable
assignments for the solutions to the combinatorial optimization problems,
and therefore do not utilize quantum error mitigation algorithms that use
classical post processing.

IBM quantum processor QAOA circuit execution
The variable states for the optimization problems are either {+ 1,− 1}, but
the IBM Quantum circuit measurement states are either 0 or 1. Therefore
once themeasurements aremade on theQAOAcircuits, for each variable in
each sample the variable states are mapped as follows: 0↦ 1, 1↦− 1.
When executing circuits on the superconducting transom qubit
ibm_washington, circuits are batched into jobs where each job is
composed of a group of at most 250 circuits. The maximum number of
circuits for a job on ibm_washington is 300, but we use 250 circuits per
job so as to reduce backend job errors related to the size of jobs. Grouping
circuits into jobs reduces the total amount of compute time required to
prepare and measure each circuit. When submitting the circuits to the

backend, they are all first locally transpiled using Qiskit76 with optimi-
zation_level=3 and targeting the exact hardware connectivity graph
used to define the Ising models (see Fig. 1). This transpilation adapts the
gateset to the ibm_washington native gateset, and the transpiler opti-
mization attempts to simplify the circuit where possible. TheQAOA circuit
execution on ibm_washington spanned several months, and therefore
the backend software versions were not consistent. The backend software
versions of ibm_washington that were used for all of the QAOA
experiments are: 1.3.7, 1.3.8, 1.3.13, 1.3.14, 1.3.15, 1.3.17,
1.3.19, 1.3.22, 1.4.0, 1.5.1, 1.5.2, 1.5.3, 1.5.4,
1.5.5, 1.6.0.

Example Qiskit QAOA circuit drawings are given in Supplementary
Note 4. When these QAOA circuits are compiled, the total number of
instructions used (not including delay gates) is approximately 3000
depending on the compilation routine and β, γ angles used. Importantly,
many of the single qubit gate operations used in these compiled circuits are
rz gates, which are virtual gates170, meaning that they are executed at the
software level and have an error rate of 0.

Aggregated T1 and T2 coherence times and randomized bench-
marking calibration171,172 gate error rates onibm_washingtonduring the
execution of these QAOA circuits is given in Supplementary Note 6.

Classical simulation of QAOA
Because the problem instance Isingmodels are defined on a relatively sparse
graph, and because we run only 1 and 2 rounds, it is possible to classically
simulate the mean QAOA energy landscape (for an arbitrary set of angles
β, γ) for both quadratic and cubic problem instances. This is an improve-
ment over ref. 36 where no classical simulation was performed on the cubic
Ising models, but this method as we propose it does not provide a
mechanism to compute a distribution of expectation values (e.g. with some
shot noise), instead it provides only a mechanism to compute the mean
expectation value for any β, γ combination. The key observation is that we
can simulate portions of the overall QAOA circuit applied to a subset of the
problem instances to compute themean expectation value for a single term
(e.g. a linear, quadratic, or cubic term). By linearity of expectation, you can
compute the cumulative sumof themean energy for each of the terms in the
problem instance. This provides amechanism to compute the overall mean
energy for a problem instance, given some angles β, γ. Note however that
this only provides themean expectation values for any given β, γ, but it does
not provide an objective function distribution and it does not provide
variable assignment solutions for the given optimization problem. There-
fore, this simulationmethod will allow us to verify and compare against the
NISQ experimental results. For highly entangled problems though, this
would still be intractable to simulate. However, for the heavy hex lattice
problems it is only required that those qubits be simulated that interact with
the specific term in question. More rounds leads to more interactions for
each term, and variable interactions (e.g. entanglement) are defined by both
quadratic and cubic terms. Figure 11 shows the subgraph of the problem
instances, for a single cubic problem instance, which interact with the spe-
cific cubic term (which, in this example, is formed by the qubits 23, 22, 24)
for p = 2 QAOA. This lightcone of interacting terms contains 27 qubits,
which is possible to simulateusingHPC resources.However, if p = 3QAOA
was used or if the problem instance had denser long range interactions, then
the simulation would be considerably harder and potentially intractable.
p = 2 rounds applied to a cubic problem instance is the hardest of the
problems to simulate; p = 1 is easier to simulate, in that it uses fewer qubits,
as are simulations of the quadratic problems.

The procedure is to enumerate over all of the terms, either in a
quadratic or cubic, and compute the neighborhood of qubits that interact
with that term (this is dependent on howmany rounds are used), extract all
terms (linear quadratic, and optionally cubic depending on the problem)
that are strictly within this neighborhood of qubits, and then execute the
QAOAcircuit construction algorithm(seeFig. 2) in order to create aQAOA
circuit specifically for that neighborhood of terms. Next, execute that full
QAOA circuit usingmany shots (in this case 10, 000) andmeasure only the
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states of the qubits for that specific term. The expectation value for each of
those shots is computed, and the mean energy is recorded. This is then
repeated for all other terms in the problem instance, thus giving a cumu-
lative mean expectation value. Lastly, this entire procedure is iterated over
for the discrete angle search space—specifically the exact same angle search
space that is evaluated experimentally on ibm_washington and that is
described in Section “Theory”.

There are two optimizations to this method which we do not explore in
this study, but that could potentially be used for future improved simulations:
1. There are classical simulation methods, such as stabilizer

decompositions173, or tensor networks, which could be used to
approximately simulate the full entanglement lightcone of these Ising
models for QAOA rounds greater than 2.

2. The lightcone of entanglement for individual terms in these Ising
models does not include all of the gate operations performed in the
QAOAcircuit subgraph, and inparticularmany gate operationswithin
each Ising term entanglement lightcone could be removed in order to
speed up classical computations of each sub-circuit.

D-wave quantum annealing processor parameter optimizations
With the aim to optimize the quantum annealing parameters, similar to the
QAOA angle gridsearch, a gridsearch over forward anneal schedules with
pauses is performed. Figure 12 visually shows all of forward annealing
schedules with pauses that are used for this schedule optimization. Pausing
the anneal at the appropriate spot can provide higher chances of sampling
the ground state108,174–176. Importantly the annealing times used in these
schedule are also optimized for, but are not shown in the figure since the
schedules canbe scaled todifferent annealing times.The total numberofQA
parameters that are varied are 9 anneal fractions, 9 pause durations, and 4
different annealing times (10, 100, 1000, 2000microseconds). Therefore, the
total number of parameter combinations that are considered in the grid
search is 324. 2000 microseconds is the longest annealing time available on
the current D-Wave quantum annealers. The number of anneals sampled
for each D-Wave job was either 500 a series of 250 anneal jobs (this was
dependent on themaximumtotalQPUtime that couldbeusedper job).The
annealing times and the anneal schedules were varied in a simple grid
search. Readout and programming thermalization times are both set to 0
microseconds. All other parameters are set to default, with the exception of
the modified annealing schedule.

Simulated annealing and CPLEX implementations
For the purpose of providing a reasonable basis of comparison, the 10 cubic
instances and 10 quadratic instances are also solved exactly using CPLEX177,
and sampled using simulated annealing. Knowing the exact, optimum
solutions tells us whether either QAOAorQAwere able to find the optimal
solutions. Simulated annealing is a well-known general purpose classical
heuristic178 that provides a good comparison point for heuristic quantum
algorithms23. The simulated annealing implementation we use is the
D-Wave systems SDK package179, using all default settings and generating
1000 samples per problem instance.

Applying simulated annealing to the quadratic problem instances is
straightforward since there are only linear and quadratic terms. The
simulated annealing implementation we used does not natively handle
higher order terms though, and therefore the cubic problem instances could
not sampled natively. Instead, the cubic instances required an order
reduction scheme—similar to the quantum annealing implementation
(Section “Theory”). Since the connectivity is not constrained for using
simulated annealing we use an order reduction method available in the
D-Wave systems SDK package dimod180. This method is called make_-
quadratic, which can take any higher spin or binary polynomial and
transform it into linear and quadratic terms, at the cost of introducing
additional auxiliary variables181. This method requires the specification of a
strength term that defines the cost function penalty for breaking a
product constraint in the order reduced Ising model. If the order reduction
strength is too small, the ground states of the order reduced term pro-
blem will not match the ground states of the original problem. Typically,
using astrength that is equal to themaximumof the absolute values of all
problem coefficients produces order reduced problems that match the
ground state of the original problem126. Because the maximum absolute
value of all coefficients is 1, a penalty strength of 2 is used so as to
construct order reduced Isingmodels so that simulatedannealing canbe run
on the cubic Ising model problem instances.

The CPLEX solver was used by converting the spin variables into
binary variables so that it could be solved as a Mixed Integer Quadratic
Programming (MIQP) problem. Adapting the linear terms h and quadratic
terms J into this binary form is possible, the exact formulation is given in Eq.
(6) where all xi variables are binary. This is sufficient for adapting the
quadratic problem instances to be solved exactly using CPLEX. However,

Fig. 11 | The largest heavy hex subgraph that is required to completely simulate a
single cubic term (specifically qubits 23, 22, 24 on ibm_washington) for
p= 2QAOA. Since this subgraph contains 27 qubits (nodes), it is possible to directly
classically simulate all of the linear, quadratic, and cubic term components for all of
the problem instances by classically simulating the sub-circuit which contains all of
the interacting terms in this 27 qubit light-cone (none of the other terms which are
outside of this subgraphs).

Fig. 12 |Allmodified (forward) quantumannealing schedules testedwith the goal
of finding the best anneal schedule with a pause. The symmetric pause inserted
into the normal linearly interpolated schedule defining the A(s) and B(s) functions
can provide better ground state sampling probability. The anneal fraction at which
this pause occurs is varied between 0.1 and 0.9 in steps of 0.1. The pause duration, as a
fraction of the total annealing time, is also varied between 0.1 and 0.9 in steps of 0.1.
Although not shown in this figure, the annealing times are also varied between 10,
100, 1000, and 2000 microseconds. Although not shown, linearly interpolated
anneal schedules are also executed on both QA devices and all problem instances
using an annealing time of 0.5, 1, 10, 20, 100, 200, 1000, 2000 ms.
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for the cubic problem instances, CPLEX does not support higher order
variable terms. Therefore, the samedimod order reductionmethod thatwas
used for simulated annealing is also applied for all cubic problem instances.
Equation (6) allows CPLEX to evaluate the objective function of Eqs. (5) (or
Eq. (4) after order reduction) by specifying the variables in the domain of
{0, 1}, but the objective function computation is evaluated correctly because
the variables are first transformed into spins {+ 1,− 1}.

CbinðxÞ ¼
X
i2h

ð1� 2xiÞ þ
X
ði;jÞ2J

ð1� 2xiÞ � ð1� 2xjÞ ð6Þ

After CPLEX has found the optimal variable assignment in terms of
{0, 1} variables, the variable states are mapped 1↦ 1 and 0↦− 1. This
mapping thenallows theoriginal objective functions (Eq. (5) orEq. (4)) to be
evaluated using the optimal spin variable assignments.

We also utilize CPLEX to find the maximum energy variable assign-
ment for all of the Ising models. For the quadratic Ising models, this can be
done using themaximize CPLEXmethod instead of theminimizemethod
used to find the lowest energy state. For the higher order Ising models, this
needs to be done by first inverting the sign of all of the polynomial coeffi-
cients, then performing the dimod order reduction of the higher order
terms, and then minimizing the order-reduced polynomial. This is neces-
sary for thehigher order Isingmodels because the order reduction technique
is correct for ground states, but not necessarily correct for excited states.

Data availability
Code, data, and additional figures are available in a publicGithub repository
https://github.com/lanl/QAOA_vs_QA.

Code availability
Code, data, and additional figures are available in a publicGithub repository
https://github.com/lanl/QAOA_vs_QA.
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