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Variational quantummetrology represents a powerful tool to optimize estimation strategies, resulting
particularly beneficial for multiparameter estimation problems that often suffer from limitations due to
the curse of dimensionality and computational complexity. To overcome these challenges, we
develop a variational approach able to efficiently optimize a quantum multiphase sensor. Leveraging
the reconfigurability of an integrated photonic device, we implement a hybrid quantum-classical
feedback loop able to enhance the estimation performances. The quantum circuit evaluations are
used to compute the system partial derivatives by applying the parameter-shift rule, and thus
reconstruct experimentally the Fisher informationmatrix. This in turn is adopted as the cost function of
a classical learning algorithm run to optimize the measurement settings. Our experimental results
showcase significant improvements in estimation accuracy and noise robustness, highlighting the
potential of variational techniques for practical applications in quantum sensing andmore generally in
quantum information processing using photonic circuits.

Variational Quantum Algorithms (VQAs) are emerging as a promising
solution to achieve quantum advantage on the currently available Noisy
Intermediate-Scale Quantum (NISQ) devices1. These algorithms have been
employed for solving awide rangeof tasks in different frameworks2 from the
estimate of the ground state of a given Hamiltonian3–5, solving all those
problems that undergo the name of variational quantum eigensolver6–8, for
simulating the dynamics of quantum systems9,10, to quantum error cor-
rection problems11,12. They consist in hybrid classical-quantum algorithms
where a classical optimizer is used to minimize a cost function, repre-
sentative of the solution of the addressed problem, that is efficiently esti-
mated through the quantum system.

Recently, VQAs have been introduced in the context of quantum
metrology and sensing considered one of the pillars of current quantum
technologies13,14. The quest for enhanced measurement sensitivities has
driven to exploit probe states with quantum correlations in order to go
beyond the classical limits. To this end, the optimization of the probe state
and the measurement settings are crucial to retrieve such enhanced esti-
mation performances13,15. Several approaches have been proposed for the
optimization of the figures of merit able to certify the quantum estimation
performances, such as the Quantum Fisher Information (QFI)16,17, of probe
states in nuclear magnetic resonance systems18–20 and of trapped atomic

arrays21,22 also considering noisy conditions23 which make the optimization
task even harder. However, up to now, the experimental realizations that
make use of variational algorithms in the sensing field are still limited to the
single-parameter regime.

The next challenge is to apply these methods to the multiparameter
regime24,25, where the number of parameters upon which the probe evolu-
tion and thus the optimization task depends increases. In such a framework,
finding the optimal settings becomes indeed particularly hard and resource
expensive. For this reason, several machine learning-based procedures have
already been demonstrated as really practical in this scenario26,27. Therefore,
the true potential of VQAs can be valued when applied to multiparameter
estimation problems allowing to efficiently explore and optimize complex,
high-dimensional parameter spaces. Variational approaches can provide
some advantages in certain scenarios with respect to machine-learning
optimization and in particular to reinforcement learning. Indeed, the cap-
ability of a direct optimization on the actual device renders variational
methods robust against noise, while reinforcement learning optimization
can deviate from accurately learning control policies when exploring a
complex and too large parameter space. Conversely, the use of variational
approaches requires some level of knowledge of the systemmodel, which is
not required in other machine learning methods. In a multiparameter
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framework the simultaneous estimation of the parameters, feasible by
exploiting a quantum probe, can be favorable with respect to a separable
estimation strategy28–30, also in a distributed sensing scenario31. However,
finding the optimal settings assuring the sensor best performances is harder
in this framework, where in general the saturation of the ultimate precision
bound, i.e., the quantum Cramér-Rao bound (QCRB), is also not
guaranteed32.Moreover, when includingnoise linked to actual experimental
conditions, standard approaches can make the required high-dimensional
optimization task impossible. Very recently, two theoretical proposals of
using VQA in a multiparameter framework have been developed for
magnetic field sensing33,34, but their general application on an actual mul-
tiparameter sensor is still lacking.

In this work, we devise and implement a VQA to optimize the
operation of a quantum optical multiphase sensor. We extended previous
theoretical works33, developed using the qubit formalism, to the photonic
case devising a methodology tailored for the domain of quantum optics.
Such a procedure allows us to retrieve the gradient of the experimental
quantum photonic circuit depending on the Fock state at the input. The
gradient evaluation of the response function of the noisy quantum circuit is
crucial to determine its actual estimation performances. This is obtained by
applying either the standard parameter-shift rule or the generalized one35,36

depending on the probe state used, allowing to retrieve the Fisher infor-
mationmatrix (FIM) from the experimental measurements as a function of
the variational parameters, depending on the number of photons in the
optical modes. In a consecutive step, a gradient-free learning algorithm
updates the parameters in order to optimize the FIM, thus improving the
estimation performances. Since the FIM is derived directly from the mea-
sured data, all the experimental imperfections will automatically be incor-
porated into the optimization procedure that thus become inherently
resilient to noise.

The device we exploit is an integrated programmable
interferometer37,38 that can achieve quantum-enhancedperformances in the
simultaneous estimation of three independent optical phases when injected
by two-photon quantum states as demonstrated in39. Thanks to the inte-
grated photonic chip reconfigurability40, it is possible to tune both the probe
preparation and the measurement settings. Notably, the algorithm training
and the cost function evaluation are performed directly on the noisy
experimental quantum circuit. Therefore, we do not require, at any step of
the optimization procedure, the knowledge of the sensor response function,
which can remain unknown to its users.

Results
Variational quantummetrology
One of the most investigated multiparameter problems is the estimate of a
vector of p phases ϕ

!¼ ðϕ1; . . . ; ϕpÞ embedded into a multi-arm
interferometer41. The process is investigated by means of a photonic
probe prepared in the initial state ρ0 and evolving according to the unitary
transformation:

U
ϕ
! ¼ ei

Pp

m¼1
Gmϕm

Gm ¼ nm

ð1Þ

where ϕm is the phase shift occurring in the mode m and Gm is the
generator of the phase shift transformation, resulting to be the photon
number operator of the relative interferometer mode. After the evolution

through the studied system, the probe state becomes ρ
ϕ
! ¼ U

ϕ
!ρ0U

y

ϕ
!.

The choice of the probe state plays a crucial role since it determines the
ultimate estimation precision achievable. The second important role is
determined in the measurement stage, indeed depending on the imple-
mented positive-operator-valued measure (POVM) Πx, it is possible to
extract a different amount of information (defined as the classical Fisher
information) about the investigated parameters that will be lower or equal
to the QFI.

In the multiparameter scenario, these quantities become matrices and
the inequality can be generalized considering their diagonal elements:

Tr ½Cov ð ϕ!Þ�≥ Tr ½F�1
C ð ϕ!Þ�
M

≥

Tr F�1
Q ρ

ϕ
!

 !" #

M
:

ð2Þ

Here, the first inequality corresponds to the Cramér-Rao bound (CRB),
where Cov ð ϕ!Þ is the covariance matrix representing the sensitivity of the
estimate, and M represents the number of repetitions of the experiment,
while the elements of the FIM are:

FCð ϕ
!Þij ¼

X
x

1

Pðxj ϕ!Þ
∂Pðxj ϕ!Þ

∂ϕi

∂Pðxj ϕ!Þ
∂ϕj

 !
: ð3Þ

Where Pðxj ϕ!Þ ¼ Tr fΠxρ
ϕ
!g represents the conditional measurement

probability relative to the output x. From a practical point of view, to
optimize the sensor operation, it is necessary to take into account noise and
consider only the possible set of available measurements. Therefore, it is
useful to develop a procedure that maximizes the classical Fisher informa-
tion, finding the optimal settings to reduce the error on the estimate of the

vector of parameters ϕ
!

. According to Eq. (3), this requires knowing the
dynamic of the sensor in order to retrieve the measurement outcome

probabilities Pðxj ϕ!Þ as well as their derivatives. Both these tasks are non-
trivial since they require to have full knowledge of the sensor operation in a
noisy environment. Moreover, it can be hard to find the analytical solution
for the optimization of the probe state and the measurement settings
considering environmental imperfections in practical applications.

Inparticular, weminimize the trace of the inverse of the FIM, chosen as
the problem cost function, by optimizing the measurement settings. With
this approach, we evaluate the FIM directly with the quantum circuit using
themeasured data to sample the probability distributionsPðxj ϕ!Þ in Eq. (3)
and, bymeans of the standard and generalized parameter-shift rules35,36, we
compute their partial derivatives with respect to the parameters ϕi. To
perform the minimization procedure we adopted instead a different
approach. In order to reduce the number of required experimental points,
we implement the function minimization using the Nelder-Mead
algorithm42, which results to be one of the most employed and best-
performinggradient-free algorithms.The schemeof the complete algorithm
we have implemented is shown in Fig. 1.

Gradient of the photonic circuit
We use the parameter-shift rule35,36 to extract the analytic gradient, directly
from the experimental data, necessary for the computation of the FIM, as
can be seen from Eq. (3). We require gradient computation to evaluate the
cost function of the problemconsisting of the trace of the inverse of the FIM.
Gradient evaluation can be particularly challenging on noisy hardware, thus
motivating the application of this rule for quantummachine learning43. The
majority of the optimization procedures indeed require knowledge of the
gradient of the cost function. For instance, the most common and powerful
optimization algorithm to train machine learning models and neural net-
works is gradient descent44, which uses the gradient of the cost function to
determine the model parameter values. Most of the currently adopted
variational quantum algorithms relied either on gradient-free methods or
on numerical differentiation, resulting to be highly inefficient or even
ineffective. To retrieve the numerical derivative it is indeed necessary to
evaluate the function of interest in an infinitesimal shifted point. However,
for NISQ devices, the most common scenario corresponds to situations
where noise fluctuations are larger than the difference between the function
in the original and the shifted point, making it unfeasible to use the finite
difference approximation. Moreover, from a practical point of view,
numerical differentiation would require having high levels of control of the
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quantum circuit, allowing one to discriminate among the two settings that
differ by an infinitesimal quantity. The parameter-shift rule solves these
issues byobtaining the analytic gradient from the evaluation of the quantum
circuit in shifted points of macroscopic size. This reduces the sensitivity to
control errors and noise as we show in Supplementary Note 1.

Here, we extend a generalization of the parameter-shift rule (see
Methods) to the photonic case by applying the parameter-shift rule to Fock
states, retrieving the partial derivatives of the output probabilities with
respect to the parameters under study. To our knowledge, no photonic
implementation has been realized before obtaining the gradient of the
system outcome probabilities allowing its use in a variational framework. In
particular, we show that the number of points in which is necessary to
evaluate the quantum photonic circuit, in this case, depends on the photon
number of the input state.

Considering our quantumsystemdescribed byEq. (1), the generator of
the implemented unitary transformation is the photon number operator,
therefore, it will depend on the number of photons in the probe state. More
specifically, given a probe with k photons, the spectrum of the phase shift
generator along the mode m is:

specðGmÞ ¼ f0; 1; 2; . . . ; kg: ð4Þ

Weperform themultiparameter estimation of the vector of phases ϕ
!

using
two kinds of probe states: we study the 4-mode interferometer behavior
when it is probedwith single-photon states and thenby exploiting entangled
two-photon probes that allow to a achieve superiormeasurement precision.
When the interferometer is injected with single-photon states the Eq. (4)
provides spec(Gm) = {0, 1}. Thus, the partial derivatives of the output
probability distribution with respect to the three parameters under study,

necessary to compute the FIM in Eq. (3), can be obtained by applying the
simple parameter-shift rule of Eq. (8) with r ¼ 1

2 (see Methods). This
allowed us to reconstruct directly from the experimental data the FIM
considering themeasured outcomes when the device internal phases are set
to ϕ1, ϕ2 and ϕ3 for the reconstruction of the conditional probabilities
Pðxj ϕ!Þ. On the contrary, the measurement performed shifting the phases
by a factor ± π

2 allows to obtain their derivatives ∂ϕi Pðxj ϕ
!Þ, also required to

reconstruct the FIM [see Eq. (3)]. More specifically, the partial derivative
with respect to the phase ϕi of the outcome probability is obtained by:

∂ϕi P xj ϕ!
� �

¼ 1
2

P xj ϕ!þ Δ
!ðiÞ� �

� P xj ϕ!� Δ
!ðiÞ� �� �

; ð5Þ

where i = 1, 2, 3, and Δ
!ðiÞ

is a vector with components ð Δ!
ðiÞ
Þj ¼ π

2 δij, and
δij is the Kronecker’s delta.

The situation changes when we inject into the interferometer two-
indistinguishable photons. In this case Eq. (4) gives spec{Gm} = {0, 1, 2},
resulting in a generator with more than two distinct eigenvalues. This
requires the adoption of a modified and more general parameter-shift rule
valid for generators with a larger spectrum. The extension of the rule can be
achieved through variousmethodologies as detailed in SupplementaryNote
2. We thus prove that the four-term rule [Eq. (9)] can be applied to our
system, and we compute the required parameters in order to retrieve the
partial derivatives of interest, proving that we obtain the analytic partial
derivatives of the measurement outcomes probabilities of the photonic
circuit injected with two-photon states:

∂ϕi Pðxj ϕ
!Þ ¼ Pðxj ϕ!þ π

4 Δ
!ðiÞ

Þ � Pðxj ϕ!� π
4 Δ
!ðiÞ

Þ
� �

þ�
ffiffi
2

p �1
2 Pðxj ϕ!þ π

2 Δ
!ðiÞ

Þ � Pðxj ϕ!� π
2 Δ
!ðiÞ

Þ
� �

:

ð6Þ

Once having retrieved the analytic gradient of the system’s response func-
tion, it is possible to compute the FIM and optimize the measurement
settings to saturate the CRB. Once having retrieved the cost function, its
optimization is instead obtained through a gradient-free minimization
method.

From a practical point of view, it is fundamental to study how the
estimate of Pðxj ϕ!Þ, also referred to as the likelihood function of the system,
its partial derivatives, and, as a consequence, the CRB is affected by mea-
surement statistics.We report in Fig. 2 such a value applying the parameter-
shift rule to Monte Carlo simulated data for systems of increasing dimen-
sionality. More specifically, in Fig. 2a, we report the retrieved CRB of the
estimate of a phase shift ϕ in a non-perfect (visibility lower than one) two-
mode interferometer when the measurement is performed at its most
informative point, i.e., π2 � ϕ. The robustness of values reconstructed by the
parameter-shift rule depends on the number of eventsN used to sample the
probability distributions. In Fig. 2b, we did the same study on the four-arm
interferometer when seeded with two-photon states. The increased com-
plexity of the system and of the structure of the probability distributions
requires, as expected, a larger number of events to correctly reconstruct the
FIM. Moreover, in the latter case the presence of a lot of divergences in the
FIM (see Supplementary Note 1 for more details) can affect the recon-
structionperformedby the variational algorithm for a fewnumber of events.
Indeed, considering the average over different reconstructions, the situa-
tions when the algorithm ends up in a divergence prevail.

The importance of shifting themeasurement based on the noise level
affecting the probe evolution is demonstrated in Fig. 2c for a simulated
two-mode system.The error on the estimate of the phase shift is compared
when measurements are not shifted and when the parameter-shift rule is
applied to compute optimal measurement settings. We perform such a
study for different levels of visibility of interference fringes, which is the
main source of noise in the system. In the ideal scenario, the Fisher
Information does not depend on the value of the parameter under study,
therefore there is no gain from the application of the optimization

gradient-free 
algorithm

Measurement
settings

Quantum sensor

Classical optimizer

Probes:
� separable
� entangled

Experimental
outcomes

Fisher Information matrix

Simple
parameter-shift rule

Generalized
parameter-shift rule

= {0,1} = {0,1,2}

Multiphase
encoding

( | , )

Δ

Fig. 1 | Scheme of the implemented variational algorithm. The four-mode inte-
grated interferometer is injected either with single or two-photonprobe states. Afirst
layer of internal phase shifters is used to set the vector of phases ϕ

!
consisting of the

parameters of interest. A second layer of phase shifters can instead be used to
perform the optimization by shifting the measurement point of θ

!
. Depending on

the selected probe state and the set ϕ
!

, the FIM is computed by the quantum circuit
through a generalization of the parameter-shift rule. The FIM is then used to
compute the cost function of a learning algorithm that optimizes the variational
parameter θ

!
, enhancing the sensor estimation performances.
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procedure. As soon as a non-ideal value of the visibility is taken into
account it becomes evident that, in order to saturate the CRB, it is
necessary to optimize the measurement settings even in this simple sce-
nario. Importantly, we demonstrate here that our procedure, outlined in
Fig. 1, allows the saturation of the CRB for any value of V, where the
usefulness of the variational algorithm becomes evident.

Experimental results
We start by reconstructing experimentally the FIM of our device for each
vector of phases ϕ

!
investigated. In the experiment, we need to find a

balance between the number of events necessary to correctly reconstruct the
desired quantities and the overall acquisition time, therefore we fix the
number of events for each phase point of this step to 5000. This number of
data is used to reconstruct all the probabilities and their derivatives needed
to compute the FIM. Once the FIM is obtained, weminimize the trace of its
inverse,which serves as the cost function for the problem.This optimization
enhances the quality of the estimation, ultimately leading to the saturability
of theCRB, in the limit of large resources. Since thefigure ofmerit optimized
is reconstructed at each step of the algorithm from the experimental results,

it is important to choose an algorithm that converges with a minimal
number of function evaluations. To mitigate the impact of experimental
errors due to finite measurement statistics, we perform the optimization by
exploiting a gradient-free algorithm in this second stage. Specifically, the
Nelder-Mead algorithm has proven to be particularly effective for our
purposes, as it does not rely on the analytic form of the function being
minimized. We have also tested other gradient-free optimization algo-
rithms, such as COBYLA, and their performance comparison is provided in
Supplementary Note 3.

As described in theMethods section and in ref. 39, we use thefirst layer

of internal phase shifters to set the three optical phase shifts ϕ
!

, which
represents the parameters of interest with respect to the phase of the fourth
arm taken as a reference (Fig. 3a). The second layer of phase shifters is used

instead to shift the measurement, thus setting the phases θ
!

. Consequently,

the overall evolution imparts a vector of phase shifts ϕ
!þ θ

!
to the initial

probe.We fix the starting point of the implemented optimization algorithm

to θ
!¼ fπ2 ; π2 ; π2g and the number of optimization steps to mfev = 20. This

Fig. 3 | Integrated photonic circuit and experimental optimization. a Sketch of the
integrated photonic device and possible selection of different input probe states. The
tuned phase shifts ϕ

!
, corresponding to the triplet of phases to estimate, and θ

!
,

allowing to shift the measurement settings, are highlighted. b Experimental value of

the cost function during the optimization strategy for the configuration s6 as a
function of the optimization steps. cTheNelder-Mead algorithmminimizes the cost
function by changing the variational parameters θ

!
, here we report the values set

during the optimization procedure for a certain phases triplet.

0

Fig. 2 | Numerical simulations addressing the protocol robustness to finite sta-
tistics and noise. Plots in panels a, b show how the reliability of the quantum circuit
in reconstructing the Fisher information depends on the measurement statistics.
a Inverse of the Fisher information reconstructed by applying the parameter shift
rule to a two-mode interferometer with fringe visibility v = 0.8. The orange points
represent the average results over 30 different repetitions with a selected random
phase ϕ∈ [0, π] with the relative standard deviation also reported as the blu trian-
gles. b The same study is done for the four-mode interferometer injected with two-
photon states considering the ideal scenario. In this case, the Fisher information is a
3 × 3 matrix. In both panels, on the x-axis is reported the number of events used to

reconstruct the probabilities needed to obtain the Fisher; the dot-dashed lines refer
to the respective QCRB. c Error on the estimate of ϕ in a two-mode interferometer
for different levels of noise. Blue points refer to a strategy where the measurement is
not shifted while in red the same estimate is done in the shifted point optimized by
the learning algorithm which minimize the inverse of the Fisher. All the results are
averaged over 15 phase values each repeated 20 times. The estimates are performed
using a number of probes equal to 5000. The importance of using the optimized
strategy emerges in particular when the level of noise in the system increases. Error
bars refer to the standard deviation over the different repetitions.

https://doi.org/10.1038/s41534-024-00821-0 Article

npj Quantum Information |           (2024) 10:26 4



choice is justifiedby looking at Fig. 3b, cwhere the cost function for a certain

vector ϕ
!

is reported as a function of the algorithm’s optimization steps and

the related choice of the vector of parameters θ
!

. Further details can be
found in Supplementary Note 4.

To demonstrate the effectiveness of the optimization algorithm in

finding the measurement settings θ
!

, we compare the estimation perfor-
mances obtained through the variational approach with those obtained

when θ
!

is set to the null vector or is chosen randomly.We demonstrate the

validity of the variational approach independently of the selected phases ϕ
!

and of the input probe state, by examining the performances achieved with
two-photon probes states and with single-photon states. We quantify the
performances of the estimation strategy by looking at the quadratic loss i.e.

ð ϕ!� ϕ
!

trueÞ
T
ð ϕ!� ϕ

!
trueÞ, where ϕ

!
true represents the true set values of

the phases. We investigate this for a scenario where the interferometer is
seeded with M = 50 probes. For each vector of investigated phases, ran-
domly chosen in the whole periodicity interval, i.e., ϕi∈ [− π, π], we repeat
the procedure 30 times reporting in Fig. 4a, b the averaged results and the
corresponding standard deviations. The 10 different phase configurations
selected for two-photon probes (s1…s10) and the six different ones chosen
when the system is instead seededwith single-photonprobes (s1 . . . s6)have
been selected randomly by applying different voltages to the three phase

shifters of thefirst-layer on the internal arms of the integrated device and are
reported in the in Tables 1 and 2.

The validity of the variational approach in identifying the optimal
measurement strategy emerges also from what it is reported in the inset of
Fig. 4a, where the distribution of results obtained by shifting the

Fig. 4 | Experimental estimation performances. Comparison of the estimation
performances obtained without adjusting the measurement settings (blu points),
shifting them randomly (green dashed line), and setting them to the values retrieved
with the developed variational strategy (red points). The results are compared with
the QCRB (black dot-dashed line) obtained considering the injected probes in the
4-mode interferometer. The reported experimental results are the average over 30
different repetitions of the estimate for each phase vector with the relative standard
deviation. a Experimental quadratic loss obtained using two-photon probes for the
estimate of 10 different phase configurations reported on the x-axis. For the opti-
mization procedure, the FIM is reconstructed by applying the generalized
parameter-shift rule. The inset reports the distributions of the experimental

performances achieved on the last set, i.e., configuration s10 when repeating the
estimation procedure 100 times. b Experimental quadratic loss obtained by injecting
single-photon probes in the 4-mode interferometer for the estimate of 6 different
vector of phases reported on the x-axis. Here, themeasurement settings are retrieved
by reconstructing the FIM with the standard parameter-shift rule. c Averaged
experimental reconstructed posterior distributions of the estimate of the config-
uration s1 for different phase noise values, i.e.,
phn = (0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3) achieved with null controls, the dark blue
curves represents the results without noise while the lighter the ones with the higher
value of noise. d–fComparison of the reconstructed posteriors for the estimate of ϕ1
with variational selected controls (red curves) and null controls (blu curves).

Table 1 | Set of phase configurations investigated with two-
photon probes

Two-photon probes

Configuration ϕ
!

(rad)

s1 [−0.588, 1.302, 0.511]

s2 [−0.636, 1.379, −0.024]

s3 [−0.153, 0.902, 0.587]

s4 [0.830, 2.263, 0.703]

s5 [−0.723, 1.938, −1.241]

s6 [0.863, 1.132, 0.111]

s7 [−0.617, 1.037, −0.369]

s8 [1.498, 0.776, 0.571]

s9 [0.777, 2.330, 0.204]

s10 [0.210, 1.436, −0.150]
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measurement to the values computed by the variational algorithm is
compared to those achieved by randomly selecting the measurement set-
tings. In the former case, the variability of the results is solely attributed to
experimental fluctuations, resulting in a Gaussian distribution. Instead,
when the measurement is randomly chosen, the distribution of achieved
results reflects the influence of measurement selection on the estimation
procedure, leading to a significantly wider spread.

When the interferometer is seeded by two indistinguishable photons,
the FIM is computed at every step of the optimization algorithm by
applying, as explained above, the generalizedparameter-shift rule.We apply
the same procedure also seeding the interferometer with single-photon
states (Fig. 4b), demonstrating that in this case, the standard parameter-shift
rule is instead sufficient to reconstruct the FIM and thus retrieving the
optimal measurement settings allowing the saturation of the QCRB. It is
important to note that the QCRB reported in the plots refers to the bound
relative to the ideal device corresponding to a QCRB of 2.5/M for the two-
photon inputs and a QCRB of 6/M for single-photon inputs. Therefore, the
observeddiscrepancies are related to the fact that the actual phase sensor has
a higher bound due to experimental imperfections, that in general can also
depend on the specific vector of phases under investigation.

Finally, we have experimentally tested the resilience of the developed
variational approach to different sources of noise. Specifically, we have
examined the performanceswhen introducing additional phase noise phn in
the single-photon probe estimates and when reducing the indistinguish-
ability among the two-photon probes. In Fig. 4c we report the experimental
posterior probabilities, reconstructed with the Bayesian estimate14,39,
obtained for different noise strengths on the estimate of one vector of phases
without adjusting the measurement settings. The reconstructed posteriors
are obtained by averaging the results obtained over 30 different repetitions
of the experiment, performed by seeding the system with M = 500 single-

photon probes. As expected, the performance of the estimation process
deteriorates with increasing phase noise, resulting in a dual effect. On one
hand, the height of the posterior distribution decreases, and on the other, its
mean value results shifted with respect to the true value of the phase.
Conversely, if we perform the estimate with the variational approach under
noisy conditions, there is still a significant advantage, evenwithhigh levels of
noise as shown in Fig. 4d–f (see also Supplementary Note 4).

Another investigated scenario consists in studying the effectiveness of
the variational algorithmwhen reducing thedegree of indistinguishabilityof
the two-photon probes. In this situation, the estimation precision deterio-
rates losing the quantum-enhanced performances achieved using entangled
probes. As a consequence, the ultimate precision bound increases. For the
ideal device, the QCRB obtained when injecting into the system M indis-
tinguishable photon pairs is 2.5/M, while it becomes 3/M for completely
distinguishable photons. It follows that the estimation performanceswill get
worsewhen increasing the level of distinguishability. In these conditions, it is
interesting to study how the estimation performances decay and compare
the results that can be achieved when the measurements are optimized
through the variational approach in this noisy scenario. In Fig. 5 we show
how the level of indistinguishability can be tuned through a delay line,
monitoring the bunching and anti-bunching effects at the outputs of the
chip (Fig. 5a), while in Fig. 5b, c we report the achieved performances in
terms of quadratic loss and variances, respectively, for the estimate of a
vector of phases. Notably, even though a slight reduction of the perfor-
mances is observed, the enhancement achievedwith the variational strategy,
with respect to the non-shiftedmeasurements scenario, becomes evenmore
pronounced when the two photons become completely distinguishable.

Discussion
In this work, we have implemented a variational approach to optimize a
multiparameter quantum phase sensor operating in a noisy environment.
Rather than relying on classical computations to determine the optimal
measurement settings, a procedure that can be particularly hard, especially
in the multiparameter framework, our method exploits directly the quan-
tum circuit to reconstruct a meaningful cost function successively fed into a
classical optimization algorithm.

We demonstrated the validity of our method by experimentally
reconstructing the FIM and optimizing the measurement settings for a
multiphase sensor probed with single-photon and entangled two-photon
probe states. This approach allows us to overcome the limitations of tra-
ditional methods and our experimental results showed significant
improvements in estimation accuracy and noise robustness compared to
cases where the measurement settings were not optimized or chosen ran-
domly. The variational approach is resilient to noise and can effectively
explore and optimize the high-dimensional multi-parameter spaces,

Fig. 5 | Experimental results as a function of degree of two-photon indis-
tinguishability. a Normalized coincidences events among different output modes
registered when changing the respective arrival time of the two photons. This is
changed bymoving a translation stage in one of the photon paths, allowing to adjust
the degree of indistinguishability of the two photons. The magenta points refer to
events with both photons in the first output while orange points to events with one
photon on the first and one on the second output. Error bars are obtained

considering the Poissonian statistics of the measurement counts. b, c Study of the
estimation performances in terms of quadratic loss and variances, respectively,
obtained when degrading the indistinguishability of the two photons. The blu points
are the results obtained without shifting the measurement while the red points are
the ones achieved with the variational strategy. The results are the avereges of the
estimate withM = 200 two-photon probes of one vector of phases repeated 30 times
and error bars refer to the relative standard deviations.

Table 2 | Set of phase configurations investigated with single-
photon probes

Single-photon probes

Configuration ϕ
!

(rad)

s1 [1.856, −1.782, −0.896]

s2 [0.748, 2.741, −2.225]

s3 [0.768, 2.636, −1.582]

s4 [0.701, 2.452, −0.978]

s5 [0.796, 2.322, 0.160]

s6 [0.834, 2.277, 0.706]
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making it a promising tool for practical applications in quantum sensing
and quantum information processing with photonic circuits.

Here, we extended and validate experimentally the procedure pre-
sented in ref. 33 to the photonic case, developing a method that, depending
on the selected probe state, and thus on thenumber of photons in the optical
modes, retrieves the circuit gradient directly from the measurement out-
comes. Such a method can benefit in general quantum photonic protocols
requiring gradient evaluation.

In conclusion, the obtained results pave the way for the implementa-
tion of variational techniques in the challengingmultiparameter framework
and set the stage for enhancing both quantum sensing capabilities and for
future advancements in quantum information processing with photonic
circuits.

Methods
Standard and generalized parameter-shift rule
The parameter-shift rule, as demonstrated in35,36,45,46, provides a method to
obtain thepartial derivatives of quantumexpectationvalueswith respect to a
circuit parameter x directly by using the quantum hardware as follows:

∂xhAi ¼ r hAi x þ π

4r

� �
� hAi x � π

4r

� �h i
; ð7Þ

where 〈A〉 = 〈0∣U†(x)AU(x)∣0〉, with U(x) representing the evolution
obtained applying the overall set of gates that make up the quantum circuit,
and r ¼ 1

2. The validity of such a rule has been first demonstrated for gates
with generators with two unique eigenvalues such as single-qubit rotations,
linear combinations of Pauli operators, and for Gaussian gates in the
continuous variable regime36. This has also been extended to unitary
evolutionof the formU(ϕ)[ρ] = eiϕGρe−iϕGdependingona singleparameterϕ
and on the generator G, whose spectrum has at most two distinct
eigenvalues: spec(G) = {λ1, λ2}, obtaining:

∂ϕUðϕÞ½ρ� ¼ r U ϕþ π

4r

� �
½ρ� � U ϕ� π

4r

� �
½ρ�

h i
; ð8Þ

with r ¼ jλ1�λ2j
2 . Although the rule has initially been derived to retrieve the

gradient of quantum unitary evolutions, it has been recently extended to
evolutions affected by noise, proving its validity also after the application of
dephasing and depolarizing channels33,45 and for multi-qubit quantum
evolution using stochastic methods46. Then, this method has been
generalized to generators with a larger spectrum. In this case, it is possible
to extend the rule either by exploiting a polynomial expansion of the unitary
transformation47, or using trigonometric functions48, or through spectral
decomposition of the generator49. In particular, for a generator whose
spectrum has three distinct but equidistant eigenvalues in ref. 50 has been
demonstrated that the gradient evaluation requires four evaluationsofUρ(ϕ)
at different points:

∂ϕUðϕÞ½ρ� ¼ r1 Uðϕþ x1Þ½ρ� � Uðϕ� x1Þ½ρ�
	 
þ

�r2 Uðϕþ x2Þ½ρ� � Uðϕ� x2Þ½ρ�
	 


:
ð9Þ

The generalization to generators with more eigenvalues can be retrieved
instead following47–49 (see Supplementary Note 2 for the details).

Photon source
The single- and two-photon probe states employed are generated by a non-
collinear spontaneous parametric down-conversion source of Type I. In
particular, photon pairs at 808 nmare emitted by the source, which are then
coupled into single-modefibers. For the studywith single-photon states one
photon is directly detected by a single-photon avalanche photodiode, acting
as a trigger,while the other is injected into the integratedcircuit. For the two-
photon probes scenario both the photons are injected into the chip after
being made indistinguishable in polarization and time of arrival degrees of
freedom through wave plates and a delay line. To properly address all the

possible outcome configurations, in this scenario, we use 4 fiber beam
splitters for each of the outcomes of the circuit in turn connected to 8 single-
photon avalanche photodiode detectors.

Integrated photonic device
The integrated circuit consists of two sequentially arranged sections, each
made up of four directional couplers set up in a dual-layer arrangement
and a three-dimensional waveguide intersection. The different optical
phases are obtained by applying voltages on microheaters that allow
setting specific phase shifts in the desired optical modes. The interfero-
metric area between the two sections consists of four straight waveguide

segments, the optical phases of which ϕ
!þ θ

!
can be adjusted using eight

thermal phase shifters. The total length of the device is 3.6 cm. All thermal
shifters were created using femtosecond laser micromachining and
include laser-etched isolation trenches around each microheater40. Lastly,
two four-channel single-mode fiber arrays have been glued at the input
and output facets of the interferometer, with average total insertion losses
(from the connector of the input fiber to the connectors of the output fiber
array) of 2.5 dB (insertion loss of the bare device before pigtailing
of 1.5 dB).

Data availability
The data that support the plots within this paper and other findings of this
study are available from the corresponding author upon reasonable request.

Code availability
The code used to implement the variational protocol and the optimization
procedure is available from the corresponding author upon reasonable
request.
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