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Analyzingvariational quantum landscapes
with information content
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The parameters of the quantum circuit in a variational quantum algorithm induce a landscape that
contains the relevant information regarding its optimization hardness. In thiswork,we investigate such
landscapes through the lens of information content, a measure of the variability between points in
parameter space. Ourmajor contribution connects the information content to the average norm of the
gradient, for which we provide robust analytical bounds on its estimators. This result holds for any
(classical or quantum) variational landscape. We validate the analytical understating by numerically
studying the scaling of the gradient in an instance of the barren plateau problem. In such instance, we
are able to estimate the scaling pre-factors in the gradient. Our work provides a way to analyze
variational quantumalgorithms in a data-driven fashionwell-suited for near-termquantumcomputers.

Variational quantum algorithms (VQAs) have beenmarked as a promising
path towards quantum advantage in pre-fault-tolerant quantum hardware.
In nearly a decade of research since its original proposal1, the field of VQAs
has seensignificantprogress both theoretically and experimentally2,3. It is yet
to be seen if noisy intermediate-scale quantum (NISQ)4 devices are able to
reach unambiguous quantum advantage through VQA. Issues such as
vanishing gradients or barren plateaus (BP)5–8, the expressivity of the
quantum circuits9–11 or difficulties optimizing a noisy cost function12 are
only a few examples of the hurdles faced by VQAwhich reduce the hope of
quantum advantage in the near-term.

From a computer science point-of-view VQAs are a fascinating object
of study. They can be considered classical cost functions with classic input/
output. Yet the cost functionmight not be classically accessible in general. So
far, there is no clear evidence that optimizing a VQA is feasible with stan-
dard optimizationmethods12. Some researchers have attempted to close this
gap by developing new optimizers tailored to quantum circuits13,14 or using
machine learning techniques to assist during the optimization15,16 with
inconclusive results. More recently, the authors of ref. 17 introduced a
method to visualize variational quantum landscapes through dimension-
ality reduction. Yet landscape analysis tools fromclassical optimizationhave
not been widely used to characterize quantum landscapes.

Landscape analysis aims at characterizing the landscape of cost func-
tions by efficiently sampling the parameter space to understand the
“hardness” of the optimization problem18–23. For a VQA this implies only
classical post-processing of data from a quantum device. In contrast, the
optimization step of aVQAinvolves constant interaction between quantum
and classical resources. In NISQ hardware such interactions might come

with a large overhead. To the best of our knowledge, no prior work on data-
driven landscape analysis exists in the context of VQA.

In this work, we aim to close the gap between VQA and landscape
analysis through the information content (IC)24 of the quantum landscape.
We demonstrate the connection between IC and the average norm of the
gradient of the landscape. We derive robust lower/upper bounds of this
quantity which provides a crucial understanding of the landscape (e.g.
complexity of optimizing the cost function). We apply our results to
numerically study the BP problem for local and global cost functions from
ref. 6, showing excellent agreementwith theoretical asymptotic scaling in the
size of the gradient. Also, we demonstrate how to calculate pre-factors of the
asymptotic scaling, which are in practice more relevant for implementing
algorithms.As far aswe know, this is thefirst workwhere scaling pre-factors
are calculated in the context of VQAs and BPs.

Themanuscript is organized as follows. In the section “Results”we give
background on VQAs and IC, connect the average norm of the gradient
with IC, followed by a numerical diagnosis of BP using IC, and their esti-
mation of scaling pre-factors. In the section “Discussion” we present the
implications of our results and point out future directions. In the section
“Methods” we prove the theorems and lemmas.

Results
Parameterized quantum circuits
In a variational quantum algorithm, one aims at exploring the space
of quantum states by minimizing a cost function with respect to a set
of tunable real-valued parameters θ

!2 ½0; 2πÞm of a parametrized
quantum circuit (PQC). A PQC evolves an initial quantum state ∣ψ0

�
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to generate a parametrized state

∣ψð θ!Þi ¼ Uð θ!Þ∣ψ0i; ð1Þ

where Uð θ!Þ is a unitary matrix of the form

Uð θ!Þ ¼
Ym
i¼1

Uið! θiÞWi; ð2Þ

with

Uið θ
!

iÞ ¼ exp �i θ
!

iVi

� �
: ð3Þ

Here Wi are fixed unitary operations and Vi are hermitian matrices. In a
VQAthese parameters are driven by (classically)minimizing a cost function

Cð θ!Þ, built as the expectation value of a quantum observable Ô,

Cð θ!Þ ¼ ψ0

�
∣Uyð θ!ÞÔUð θ!Þ∣ψ0

�
: ð4Þ

A successful optimization reaches an approximation to the lowest eigen-
value of Ô, and the optimal parameters represent an approximation to its
ground-state2,3. Our object of study is themanifold defined by a PQCand Ô
which we call a variational quantum landscape.

In order to measure Eq. (4) in a real device, one must prepare and

measure the observable with multiple copies of Uð θ!Þ∣ψ0

�
. Therefore, the

real cost function becomes

�Cð θ!;RÞ ¼ hÔi þ κðRÞ; ð5Þ

where κ(R) introduces the uncertainty of sampling the observable with R
repetitions. For a sufficiently large number of them, κ(R) can be drawn from
a Gaussian distribution with variance σ2 ~ 1/R12. Throughout the rest of the
text, we assume access to the exact value of the cost function, Cð θ!Þ, unless
otherwise stated.

Exploratory landscape analysis
The goal of exploratory landscape analysis (ELA)25–27 is to characterize a
real-valued function by numerically estimating a set of features from its
landscape. Examples of such features are multi-modality (the number of
local minima), ruggedness, or curvature of the level set of a given landscape
(see ref. 27 for a comprehensive description of ELA features). ELA becomes
particularly useful when studying functions with unknown analytical forms
or exceedingly difficult formathematical analysiswhere one can gain insight
by comparing their features to those of known analytical functions20,21,28.
Similarly, the classicalmachine learning/optimization communityhasmade
use of ELA features to select the most suitable optimization algorithms to
optimize unknown cost functions22,29,30. A key aspect of landscape analysis is
the fact that the number of evaluations of the cost function is significantly
smaller thanoptimizing it; otherwise, it ismore efficient to optimize directly.

Among the ELA features, information content (IC)24,31 is of particular
interest as it characterizes the ruggedness of the landscapewhich is related to
its trainability. For example, high information content indicates a trainable
landscape, whereas low information content indicates a flat landscape24,27.
We demonstrate that for any classical or quantum variational landscape, its
trainability can be quantified with information content.

Information content

Definition 1. (Information content (IC)) Given a finite symbolic sequence
ϕ = {−,⊙,+}S of length S and let pab, a ≠ b∈ {−,⊙ ,+} denote the prob-
ability that ab occurs in the consecutive pairs of ϕ. The information content

is defined as

H ¼
X
a≠b

h pab
� �

; ð6Þ

with

hðxÞ ¼ �xlog6x: ð7Þ

In this definition pairs of the same symbols are excluded, leaving only six
combinations

pab ¼ fpþ�; p�þ; pþ�; p�þ; p��; p��g: ð8Þ

The log6 is necessary to ensure H ≤ 1.
To compute the IC, we use the algorithm given in ref. 24:

(1) Sample MðmÞ 2 OðmÞ points of the parameter

space Θ ¼ f θ!1; . . . ; θ
!

Mg 2 ½0; 2πÞm.
(2) MeasureCð θ!iÞ on a quantum computer (this is the only step where it

is needed).
(3) Generate a random walkW of S+ 1 <M(m) steps over Θ, and com-

pute the finite-size approximation of the gradient at each step i

ΔCi ¼
Cð θ!iþ1Þ � Cð θ!iÞ

θ
!

iþ1 � θ
!

i

��� ��� : ð9Þ

(4) Create a sequenceϕ(ϵ) bymappingΔCi onto a symbol in {−,⊙,+}with
the rule

ϕðϵÞ ¼
� if ΔCi<� ϵ

� if jΔCij≤ ϵ
þ if ΔCi > ϵ

8><
>: ð10Þ

(5) Compute the empirical IC (denoted as H(ϵ) henceforth) by applying
Definition 1 to ϕ(ϵ).

(6) Repeat these steps for several values of ϵ.

From this algorithm, we are interested in the regimes of high and low
H(ϵ)24,31. The maximum IC (MIC) is defined as

HM ¼ max
ϵ

HðϵÞ; ð11Þ

at ϵM as its corresponding ϵ. The MIC occurs when the variability in the
symbols of ϕ is maximum.

The other case of interest occurs when H(ϵ) ≤ η with η≪ 1. This
defines the sensitivity IC (SIC)24,31,

HS ¼ min ϵ > 0jHðϵÞ≤ η	 

; ð12Þ

with ϵ = ϵS. The SIC identifies the ϵ atwhich (almost) all symbols inϕ are⊙ .
All symbols become exactly⊙ at η = 0.

Both MIC and SIC are calculated on a classical computer after col-
lecting ð θ!;Cð θ!ÞÞ. The values ϵM,S can be found by sweeping overmultiple
values of ϵwith logarithmic scaling, and computingH(ϵ)withEq. (6) at each
of those values. (In the original work27, it is suggested to take 1000 values of
ϵ∈ [0, 1015]). The cost is dominated by computing all quantitiesΔC needed
to construct ϕ(ϵ) using Eq. (10). Since onlyOðmÞ samples are available, at
mostOðm2Þ differences of the form ΔC, can be computed. Thus, MIC and
SIC can be obtained with at mostOðm2Þ classical operations.

Next, we present the relation between IC and the average norm of the
gradient, from now denoted as ∇Ck k. We take advantage of the fact that
each step is isotropically random in W. This allows us to derive the
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underlying probability of ΔCi. Additionally, we use IC to bind the prob-
ability of pairs of symbols appearing alongW, which allows us to estimate
∇Ck k. Although we demonstrate our results for a variational quantum
landscape, they extend to any optimization landscape.

Estimation of the norm of the gradient
The random walksW over Θ satisfy

θ
!

iþ1 � θ
!

i

��� ���≤ d ð13Þ

θ
!

iþ1 � θ
!

i

θ
!

iþ1 � θ
!

i

��� ��� ¼ δ
!

i; ð14Þ

where δ
!

i is drawn from the isotropic distribution and d is fixed before
starting the walk but might be varied. By Taylor expanding Eq. (9) and the
mean-value theorem, the finite-size gradient can be written as

ΔCi ¼ ∇Cðð1� tÞ θ!i þ t θ
!

iþ1Þ � δ
!

i; ð15Þ

with t∈ (0, 1). Since the sampled points Θ are chosen randomly, we can

assume that ΔC and ∇Cð θ!Þ � δ
!

are drawn from the same probability
distribution, given a sufficiently large Θ.

The isotropic condition of W allows us to calculate the probability
distribution of ∇Cð θ!Þ � δ

!
:

Lemma 1. Let Cð θ!Þ be a differentiable function for all θ
!2 ½0; 2πÞm. Let

δ
!2 R; k δ

!k¼ 1 be drawn from the isotropic distribution. Then

ð∇Cð θ!Þ � δ
!Þ

2
is a random variable with a beta probability distribution

ðBÞ32 such that

∇Cð θ!Þ � δ
!� �2

∼ ∇Cð θ!Þ
��� ���2B 1

2
;
m� 1

2

� �
: ð16Þ

The proof can be found in the section “Methods”.
We can use Lemma 1 to bound the probability of∇Cð θ!Þ from the B

cumulative distribution function (CDF).

Theorem1. (CDFof∇Cð θ!Þ � δ
!

)LetCð θ!Þ be adifferentiable functionat
every θ

!2 ½0; 2πÞm. Let δ
!2 R; k δ

!k¼ 1 be drawn from the isotropic

distribution. Then ∇Cð θ!Þ � δ
!

is a random variable with cumulative den-
sity function

Prob ∇Cð θ!Þ � δ
!

≤ ϵ
� �

¼ 1
2

1þ sgn ðϵÞ I ϵ2

kCð θ!Þk
2 ;
1
2
;
m� 1

2

0
@

1
A

0
@

1
A;

ð17Þ

where I ðx; α; βÞ is the regularized incomplete beta function with parameters
α and β.

The proof of this theorem can be found in the section “Discussion”.
It is known that the beta distribution (with the parametrization in

Lemma 1) rapidly converges to a normal distribution33:

lim
m!1

∇Cð θ!Þ � δ
!

∼N 0;
kCð θ!Þk

2

m

0
@

1
A: ð18Þ

This approximation is accurate even for reasonably small values of m. We
can naturally interpret the functionality of

ffiffiffiffi
m

p
as dimensionality normal-

ization in Lemma 1.

Lemma 1 implies, in the Gaussian limit

EW Cð θ!Þ � δ
!� �

∼N 0;
∇Ck k2W
m

� �
ð19Þ

whereEW denotes the expectation takenover the points in randomwalkW,
and

∇Ck k2W ¼ EW k∇Cð θ!Þk
2

� �
: ð20Þ

As an immediate consequence, we give the CDF of ∇Cð θ!Þ � δ
!

averaged
over a random walkW:

Corollary 1. (CDF of average norm of gradients) Let Cð θ!Þ be a differ-

entiable function at every θ
!2 ½0; 2πÞm. Let δ

!2 R; k δ
!k¼ 1 be drawn

from the isotropic distribution. Then∇Cð θ!Þ � δ
!

is a random variable with
cumulative density function

Prob EW ∇Cð θ!Þ � δ
!� �

≤ ϵ
� �

¼ ΦG
ϵ
ffiffiffiffi
m

p

∇Ck k

� �
; ð21Þ

where ΦG(⋅) is the CDF of the standard normal distribution.
Note that ∇Ck kW converges to the average norm of the gradient over

½0; 2πÞm, i.e., ∇Ck k2 :¼ Ejj∇Cð θ!Þjj2 at a rate34:

∣ ∇Ck k � ∇Ck kW ∣ 2 OpðM�1=2Þ; ð22Þ

allowing us to approximate the interesting ∇Ck k with the accessible
∇Ck kW with small error.

Probability concentration for information content
Our next goal is to bound the probability of pairs of symbols appearing in ϕ
in the high and low IC regimes.

High information content. If one interprets IC as a partial entropy of the
landscape, high H necessarily implies approximately equal probabilities
pab. Therefore, a minimal concentration of probabilities must exist such
that a high value of H can be reached. One can formally define this
statement:

Lemma 2. Let H > 2h(1/2) be the IC of a given sequence ϕ. Consider the
probabilities in Eq. (8) such that the sum of any four of them (p4) is bounded
by

p4 ≥ 4q; ð23Þ

with q the solution of H = 4h(x)+ 2h(1/2−2x).
The proof can be found in the section “Methods”. The bound on p4 in

the above lemma gets tighter as q increases, and so does H, which by
definition H ≤ 1. The tightest possible bound is achieved for the MIC
defined in Eq. (11).

Low information content. For a low IC to occur, all pab must be small,
and their values can be upper-bounded.

Lemma 3. Let H be the IC with bound H ≤ η ≤ 1/6 of a given sequence ϕ.
Then the probability of consecutive⊙ steps during a randomwalk are close to
1. The expected norm of the gradient is bounded by

p�� ≥ 1� 3η; ð24Þ
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The proof can be found in the section “Methods”. As in the previous
case, a tight bound is attained with the SIC defined in Eq. (12).

High and low ICprovides insight into the hardness to optimize the cost
function that generated the landscape. As shown in this section, low IC
implies a flat landscape, which clearly imposes hardness in optimization. In
contrast, high IC is a necessary but not sufficient condition for optimization.
In this case, there is a guarantee that the landscape can be, at the very least,
easy to optimize locally. However, IC does not provide any information on
the quality of the accessible minimum (e.g. global or local) or the multi-
modality (number of local minima) of the landscape. The reason is the
random walk over Θ, which allows for high IC both for convex or multi-
modal landscapes.

Information content to estimate the norm of the gradient
Weare ready to showthemain result of thiswork.Wemakeuseof the results
in the section “Results” and section “Results” to prove thatH(ϵ) estimates the
average norm of the gradient ∇Ck k for any classical or quantum landscape.
To the best of our knowledge, this is the first time, including the field of
classical optimization, where such bounds are calculated.

First, we relate HM to the norm of the gradient. High values of IC
guarantee a minimal probability for individual steps to increase and
decrease and thus bounds the compatible values of ϵ= ∇Ck kW .

Theorem2. (HM bounds ∇Ck kW) Let HM be the empirical MIC of a given

function Cð θ!Þ, and ϵM its corresponding ϵ. Let q be the solution to the
equation HM= 4h(x)+ 2h(1/2−2x). Then,

ϵM
ffiffiffiffi
m

p

Φ�1
G ð1� 2qÞ ≤ ∇Ck kW ≤

ϵM
ffiffiffiffi
m

p

Φ�1
G

1þ2q
2

� � : ð25Þ

The proof is given in the section “Methods”.
The second result connects SIC to the bounds in the norm of the

gradient. Small values of IC imply a large probability of consecutive⊙ steps
in ϕi or equivalently small probabilities for pab. When this occurs, then ϵS is
used to upper bound ∇Ck kW .

Theorem 3. (HS upper bounds ∇Ck kW) Let HS be the empirical SIC of a
given function Cð θ!Þ, and ϵS its corresponding ϵ. Then

∇Ck kW ≤
ϵS

ffiffiffiffi
m

p

Φ�1
G 1� 3η=2
� � : ð26Þ

The proof is given in the section “Methods”.
From Eq. (22), it is obvious that ∇Ck kW will approximate ∇Ck k for a

largeM. Hence, we can use Theorems 2 and 3 to bound ∇Ck k with a long
sequence ϕ.

Theorems 2 and 3 provide confidence intervals of ∇Ck kwithout prior
knowledge of the variational landscape. The former gives both an upper and
lower bound of ∇Ck k but can only be applied when H has a minimum
value, while the latter is always applicable with an arbitrary small η for an
upper bound.

Finally, we discuss the tightness of the bounds in Theorems 2 and 3.
Firstly, the bound in Corollary 1 might become loose if the approximation
from the Beta to a Gaussian distribution is not accurate. However, the error
between these distributions is negligible already atm ~ 10.Moreover, as the
value of m increases, so does the distribution, and the bound gets tighter.
Another possibility might come from the entropy arguments of IC (see
Lemmas 2 and 3). The bound saturates atHM= 1 but becomes looser asHM

decreases. WhenH ≤ 2h(1/2), they are no longer trustworthy. Nonetheless,
for common values of HM~ 0.8, the bounds are only lost by small factors.
Similarly, for HS, the bound tightens as η decreases but becomes uncon-
trolled with η > 1/6.

Information content under sampling noise
In the presence of sampling noise, symbols in ϕ(ϵ) might be flipped due
to the uncertainty of the cost function. The amount of flips within the
sequence depends on the number of repetitions R. The following con-
dition ensures that symbols in the sequence will not be flipped with high
probability:

R≥ ϵ�2 θ
!

iþ1 � θ
!

i

��� ����2
≥ ϵ�2d�2: ð27Þ

It induces a lower bound ϵ≥ 1=d
ffiffiffi
R

p
. In this scenario, the bound in Cor-

ollary 1 and all subsequent results transform

ϵ ! ϵ± κðRÞ: ð28Þ

The bounds become slightly looser from the sampling noise dependence.
Sampling noise posses the same limitation to both IC and optimi-

zation. If ∇Ck k decays exponentially, then exponentially many repeti-
tions are required to resolve the gradient. Yet, IC is capable of signaling
non-resolvable (flat) landscapes with less evaluations than a full
optimization.

Information content to diagnose barren plateaus
Our goal is now to apply the previous results to study the problem of barren
plateaus (BP)5,6 We chose this problem because there exist analytical results
on the scaling of the ∇Ck k. This allows us to directly verify thatH(ϵ) can be
used as a proxy to ∇Ck k.

BPs are characterized by the following conditions5:

E ∂kCð θ
!Þ

� �
¼ 0; ð29Þ

Var ∂kCð θ
!Þ

� �
2 O expð�nÞ� �

; ð30Þ

where n is the number of qubits. BP implies exponentially vanishing var-
iances of the derivatives. Similarly, BP can be understood as having a flat
optimization landscape. These two concepts are connected by Chebyshev’s
inequality35.

The IC allows us to calculate

k∇Ck≈EW

Xm
k¼1

ð∂kCð θ
!ÞÞ

2
 !

¼
Xm
k¼1

VarWð∂kCð θ
!ÞÞ; ð31Þ

where VarW computes the variance over points of the random walk W.
Hence, IC is a proxy of the average variance of each partial derivative in the
parameter space. To showcase IC as a tool to analyze the landscape of a
VQA, we perform a numerical study of the BP problem as described by
Cerezo et al.6. Here, the authors analytically derive the scaling of
Varð∂Cð θ!ÞÞ in two different scenarios. Such scaling depends both on the
qubit size and circuit depth of the PQC. If the cost function is computed
from global observables (e.g. non-trivial support on all qubits), BPs exist
irrespective of the depth of the PQC. In the case of local observables (e.g.
non-trivial support on a few qubits), one can train shallow PQCs, but
BPs gradually appear as the circuit depth increases. These results hold
for alternating layered ansatz composed of blocks of 2-local operations
(Fig. 4 in ref. 6).

Numerical experiments
In our numerical experiments, we use circuits from 2 to 14 qubits, each of
them going from 4 to 16 layers. We calculate the cost function from

ÔLocal ¼
1
n

Xn
i¼1

ðZi � 1Þ ð32Þ

https://doi.org/10.1038/s41534-024-00819-8 Article
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ÔGlobal ¼
On
i¼1

∣0i 0h ∣�n; ð33Þ

without sampling noise. Further details of the numerical experiments are
given in the Supplementary Notes.

The results of the BP problem using IC are shown in Fig. 1. In all plots
we compute the bounds on the ∇Ck k from Theorem 2 (solid lines) and
Theorem 3 (dashed lines), for the local (blue) and global (orange) cost
functions. Additionally, we show the value of ϵM � ffiffiffiffi

m
p

(dots) and ϵS �
ffiffiffiffi
m

p
(crosses).

The first trend we observe is that the ∇Ck k shows two different
scalings with respect to qubits (a–c) and layers (d–f). The scaling with
qubits (a, b, c panels) shows an Oðpoly�1ðnÞÞ decay in the local cost

function and a remarkable Oðexpð�nÞÞ decay with the global cost
function. We emphasize the fact that these results are in perfect agree-
ment with the predictions in ref. 6. On the other hand, the scaling with
layers (d–f panels) strongly depends on the number of qubits. For 4
qubits, ÔGlobal has a constant value ∇Ck k≈ 10�2, while ÔLocal shows a
small decay with a similar average. For 10 and 14 qubits, we recover the
predicted Oðpoly�1ðnÞÞ decay in the ÔLocal. In contrast, ÔGlobal has
∇Ck k≈ 10�4 � 10�6 ÔGlobal which is already close to float precision.
Finally, we observe that ϵM � ffiffiffiffi

m
p

is close to the lower bound, thus
making it a robust proxy for ∇Ck k.

In Fig. 2 we show a heatmap of the values of ϵM � ffiffiffiffi
m

p
when increasing

the number of qubits (x-axis) and layers (y-axis) for both local (panel a) and
global (panel b) cost functions. The values for ÔLocal (panel a) show a rich
variety of features: for 2–6 layers ϵM � ffiffiffiffi

m
p

has a very slow decay, but for 8 or

Fig. 1 | Scaling of the average gradient ∇Ck k. Panels a–c shows the scaling with
with respect to qubits, and panels d–f the scaling with respect to layers. The solid
lines show the bounds from Eq. (25) (solid lines) and Eq. (26) (dashed lines). ∇Ck k
can take values within the shadow areas in between these lines. The markers refer to

the values of ϵM � ffiffiffiffi
m

p
(dots) and ϵS �

ffiffiffiffi
m

p
(crosses). They are calculated from the

median of five independent runs, with their standard deviation as the error bars. The
colors represent the results for the local (blue) and global (orange) cost functions.
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more layers the ϵM � ffiffiffiffi
m

p
decay quickly sharpens. This is exactly as expected

for local cost functions: BPs appear gradually as the circuit depth increases.
We speculate that the color change at the top right corner of the panel (a) in
Fig. 2 corresponds to a transition regime. With regard to the global cost
function (panel b), the expected exponential decay (in the number of qubits)
is observed.

Surprisingly, both Figs. 1 and 2 show an increase in ϵM � ffiffiffiffi
m

p
(or

equivalently ∇Ck k) at a fixed number of qubits as the number of layers
grows for the global cost function. We have not been able to find an
explanation for this behavior either analytically or in the literature. How-
ever, this is an example of how data-driven methods might provide useful
insight for deeper understanding.

Estimation of scaling pre-factor
Thus far the numerical results have just confirmed the asymptotic theore-
tical predictions of the considered BP problem. Our methodology can be

used beyond the asymptotic scaling to compute actual pre-factors by fitting
ϵM � ffiffiffiffi

m
p

to its predicted functional form, including bounds on them from
Eq. (25). Obtaining such pre-factors is challenging analytically. Yet they are
relevant when studying the complexity of an algorithm in practice. In this
section, we obtain the scaling pre-factors for the global cost function (in the
number of qubits) and the local cost function for the number of qubits and
layers (see Supplementary Figs. 1–3, and Tables 1–3 for additional details of
these fittings).

First, we study the global cost function scaling with qubits for each
number of layers in our data. We fit a linear model f(x) = αx+ β with
x ¼ log2ðϵM � ffiffiffiffi

m
p Þ. The results of the fit are shown in Table 1. For each of

the coefficients, we show the fitting values of the lower bound (LB column)
and ϵM � ffiffiffiffi

m
p

(right column). As the number of layers increases, α→−1.0,
which is consistent with the exponential decay of the form 2−n predicted in6.
More importantly, asymptotic scaling is not sensitive to the constant factor
β, but it is given by the right column in Table 1. Based on the trend in this
column we speculate that the constant factor is β→−2.0.

In the case of ÔLocal, there are fewer known asymptotic predictions of
the gradient norm. In ref. 6 it is shown that there exist three regimes:
trainable, BPs, and transition area, depending on the depth with respect to
the system size. Due to the small number of qubits and layers of our
numerical study, we assume to be in the trainable regime, where theory
predicts an ∇Ck k scaling in Oðpoly�1ðnÞÞ. We use a second-order poly-
nomial model f(n) = αn2+ βn+ γ to fit ðϵM � ffiffiffiffi

m
p Þ�1. The results are given

inTable 2. Thefirst observation is the small value of the quadratic coefficient
for all layers. This might lead to thinking that a linear function will be better
suited. To discard this possibility we perform a linear fit (see Supplementary
Fig. 1) leading to comparable values of the slope and intercept, with slightly
better fitting statistics for the second-degree polynomial. The β coefficient
shows a 10-fold increase as the number of layers grows. In contrast, γ gets
increasingly more negative with the number of layers. Note that we can
extract the degree of the polynomial, which is impossible from the theory.

Lastly, we estimate the scaling coefficients of the local cost function
with respect to layers, where no theoretical scaling is known6. We choose a
second-order polynomial as the hypothesis functional form to fit the data. A
linear model clearly under-fits the data (see Supplementary Fig. 3), thus
confirming the intuition of a higher-order polynomial scaling. The results
are presented inTable 3. The quadratic coefficientα increases as the number

Fig. 2 |Heatmap of εM�
ffiffiffiffi
m

p
.Panel a shows the values for the local cost function, and panel b the global cost function. The number of qubits is depicted on the x-axis, while the

number of layers is shown on the y-axis.

Table 1 | Estimated qubit scaling pre-factors of the global cost
function by linear fitting

Global cost function prefactors

f(n) = 2αnþβ

α β

Layers LB ϵM � ffiffiffiffiffi
m

p
LB ϵM � ffiffiffiffiffi

m
p

2 −1.43 −1.41 −0.91 −0.68

4 −1.29 −1.27 −1.22 −1.09

6 −1.19 −1.17 −1.85 −1.68

8 −1.13 −1.12 −1.98 −1.85

10 −1.12 −1.12 −1.97 −1.82

12 −1.06 −1.05 −2.41 −2.26

14 −1.07 −1.07 −2.29 −2.14

16 −1.06 −1.06 −2.25 −2.10

α is the slope and β the intercept of the linear model. Each coefficient has two columns showing the
results of fitting ϵM � ffiffiffiffiffi

m
p

and its lower bound (LB).
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of qubits grows at n ≥ 8, and so does the constant term γ. In contrast, the
linear term β remains roughly constant across all system sizes studied. An
opposite trend in the coefficients seems to occur between n = 4 and n = 6, α
and γ decrease, while β increases. We have not been able to match this
change in the tendency to a change in scaling, leaving a finite-size effect in
the fitting as the most possible explanation.

The results presented in this section are a demonstration that data-
driven approaches can provide useful insight to complement analytical
methods and can be leveraged to get a deeper understanding of a problem.

Discussion
Variational quantum algorithms have been intensively studied as a suitable
application for near-term quantum hardware. From a computer science
perspective, they are simply an optimization problem with classical input/
output, yet their cost function is a quantum object. The parameters of any
optimization problem induce a landscape that contains information about
its “hardness”. Landscape analysis is central to classical optimization but has
been somewhat ignored in the VQAs community.

In this work, we investigate the information content features of a
variational quantum landscape, which can be calculated efficiently by
sampling the parameter space.We prove that for any (classical or quantum)
cost function the average norm of its gradient can be rigorously bounded
with the information content.We validate our theoretical understating by a
numerical experiment, confirming the predicted asymptotic scaling of the
gradient in the barren plateau problem. Finally, we apply our results to
predict scaling pre-factors of the gradient in a data-driven fashion. To our

knowledge, this is the first time that such pre-factors are calculated
for a VQA.

The study of optimization landscapes of VQA opens a new avenue to
explore their capabilities within the NISQ era. First, landscape analysis does
not require constant interaction between quantum and classical hardware.
Secondly, only linear (in the number of parameters) queries to a quantum
computer suffice to extract the information content instead of polynomially
many queries for a standard optimization routine. Finally, information
content might be used as an easy and comparable metric between ansatzes.

We envision future research directions with information content such
as studying the feasibility of the VQA optimization, estimating the number
of shots needed to resolve a gradient, or warm-starting the algorithm from
regions of interest in parameter space. Importantly, landscape analysis does
not rely on any constraint in the quantumcircuit. It can be thenused even in
the casewhen analytical approaches are unavailable.Thereforeweanticipate
that landscape analysis and information content might have a broad range
of applications beyond VQAs in the NISQ era.

Methods

Proof. Proof of Lemma 1
The main assumption of Lemma 1 is δ

!
is drawn from the isotropic

distribution on the unit sphere inm dimensions. As a first step, we use the
spherical symmetry of the parameter space to align thefirst coordinate of δ

!
with the vector ∇Cð θ!Þ. Thus,

∇Cð θ!Þ � δ
!� �2

¼ ∇Cð θ!Þ
��� ���2δ21: ð34Þ

Now, we redefine the isotropic distribution as the normalized multi-
dimensional Gaussian distribution (N ),

δ
!¼ x!

x!
�� �� ; with x!∼N ð0; ImÞ: ð35Þ

By definition, each of the coordinates-squared in the multi-dimensional
Gaussian distribution follows a χ2 distribution36. In particular, x21 ∼ χ2ð1Þ,
and

Pm
i¼2 x

2
i ∼ χ2ðm� 1Þ. It iswell-known32 that the abovequotient follows

a beta distribution with parameters 1/2 and (m−1)/2, i.e.,

∇Cð θ!Þ � δ
!� �2

¼ ∇Cð θ!Þ
��� ���2 x21

x21 þ
Pm

i¼2 x
2
i
∼ ∇Cð θ!Þ
��� ���2B 1

2
;
m� 1
2

� �
;

ð36Þ

finishing the proof.□

Table 3 | Estimated layer scaling pre-factors of the local cost
function by fitting a second-degree polynomial

Local cost function scaling with layers

f−1(l) = αl2+ βl+ γ

α β γ

Qubits LB ϵM � ffiffiffiffiffi
m

p
LB ϵM � ffiffiffiffiffi

m
p

LB ϵM � ffiffiffiffiffi
m

p

4 −0.1 −0.11 3.29 3.5 12.74 12.43

6 −0.27 −0.28 9.54 9.94 6.26 6.10

8 0.13 0.13 7.69 7.98 18.80 19.16

10 0.48 0.52 5.98 5.89 27.79 29.72

12 0.81 0.82 4.68 5.04 38.24 38.70

14 1.14 1.18 2.95 3.04 48.93 50.89

Each coefficient has two columns showing the results of fitting ϵM � ffiffiffiffiffi
m

p
and its lower bound (LB).

Table 2 | Estimated qubit scaling pre-factors of the local cost function by fitting a second-degree polynomial

Local cost function scaling with qubits

f−1(n) = αn2+ βn+ γ

α β γ

Layers LB ϵM � ffiffiffiffiffi
m

p
LB ϵM � ffiffiffiffiffi

m
p

LB ϵM � ffiffiffiffiffi
m

p

2 0.05 0.03 2.80 3.3 8.05 6.37

4 −0.25 −0.24 10.08 10.22 −12.86 −12.96

6 −0.16 −0.16 11.09 11.52 −11.37 −12.16

8 −0.27 −0.30 16.20 16.99 −26.22 −28.13

10 −0.56 −0.55 25.33 25.63 −57.30 −57.50

12 −0.31 − 0.34 25.52 26.77 −56.33 −59.65

14 0.14 0.08 25.99 28.00 −69.42 −75.87

16 0.13 0.12 33.69 34.95 −104.77 −108.92

Each coefficient has two columns showing the results of fitting ϵM � ffiffiffiffiffi
m

p
and its lower bound (LB).
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Proof. Proof of Theorem1TheCDFof a beta distribution is the regularized
incomplete beta function I . Thus, in the assumptions of Lemma 1,

Pr ∇Cð θ!Þ � δ
!� �2

≤ ϵ2
� �

¼ I ϵ2

jj∇Cð θ!Þjj2
;
1
2
;
m� 1

2

 !
; ð37Þ

where ϵ is a realization of ð∇Cð θ!Þ � δ
!Þ

2
.

We are however interested in ∇Cð θ!Þ � δ
!

. From the isotropic con-

ditionof δ
!

, it is immediate that∇Cð θ!Þ � δ
!

is symmetricwith respect to 0.
Using this observation,

Prðj∇Cð θ!Þ � δ
!j≤ ϵÞ ¼ Prð�ϵ≤∇Cð θ!Þ � δ

!
≤ 0Þ þ Prð0≤∇Cð θ!Þ � δ

!
≤ ϵÞ
ð38Þ

¼ 2 Prð�ϵ≤∇Cð θ!Þ � δ
!

≤ 0Þ ¼ 2 Prð0≤∇Cð θ!Þ � δ
!

≤ ϵÞ ð39Þ

¼ Pr ∇Cð θ!Þ � δ
!� �2

≤ ϵ2
� �

¼ I ϵ2

jj∇Cð θ!Þjj2
;
1
2
;
m� 1
2

 !
: ð40Þ

The step taken in Eq. (39) allows us to rewrite them as

Prð∇Cð θ!Þ � δ
!

≤ ϵÞ ¼ 1
2

1þ sgn ðϵÞI ϵ2

jj∇Cð θ!Þjj2
;
1
2
;
m� 1
2

 ! !
;

ð41Þ

where sgn is the sign function.□

Proof. Proof of Lemma 2
For this proof,wemust focuson the regimeof large values of the IC.We

recall the definition of the IC from Definition 1

H ¼
X
a≠b

hðpabÞ; ð42Þ

with hðxÞ ¼ �xlog6x. We define the inverse function h−1 to be applied in
the domain x ≤ 1/e.

For a given value of the sum of probabilities, the maximum entropy is
achieved for uniform distribution. This leads to the expression

X
a≠b

pab ≥ 6h
�1ðH=6Þ: ð43Þ

Note that a given valueofH is compatiblewithprobability distributionswith
larger joint probability but uneven distributions. Completeness of the
probability distribution implies∑a≠bpab ≤ 1. The properties of the function
h(x) allow maintaining a value H, with one probability p1 to decrease for a
given quantity x, as long as another probability increases some other
quantity f(x) > x.Hence, a high value ofH implies aminimal value onat least
some set of probabilities.

We focus on the probability held by only 4 elements in the probability
distribution. We first split the IC value into two pieces, the 4 smallest ones
and the 2 largest,

H ¼
X
4

hðpabÞ þ
X
2

hðpabÞ; ð44Þ

where∑4 indicates the sum over the smallest terms, and∑2 stands for the
largest terms. To obtain the minimal probability held by the smallest 4
terms, we start in the situation with the smallest possible sum of all 6
probabilities, namely pab = h−1(H/6)≡ q, ∀ a, b. Now we subtract prob-
ability from these 4 terms and add probability to the remaining terms to

keep the IC constant.

H ¼ 4hðq� x1 � x2Þ þ hðqþ f 1ðx1ÞÞ þ hðqþ f 2ðx2ÞÞ; ð45Þ

where f1,2 is whatever functionneeded.Concavity of the functionh allows us
to bound

H ≤ 4hðq� xÞ þ 2hðqþ f ðxÞÞ: ð46Þ

This bound holds as long as

4ðq� xÞ þ 2ðqþ f ðxÞÞ≤ 1; ð47Þ

where the equality is satisfied under the limit case. Substituting this equality
into Eq. (46), we obtain

H ≤ 4hðq� xÞ þ 2h
1
2
� 2qþ 2x

� �
; ð48Þ

which comprises the values of x compatible with H. This bound also con-
siders probability transferred to elements not relevant to the IC.Recallingp4,
we know

X
4

pab ≥ 4ðq� xÞ; ð49Þ

and a more straightforward version of this condition is written as

X
4

pab ≥ 4q4; ð50Þ

with q4 being the solution to the equation H = 4h(x)+ 2h(1/2−2x).□

Proof. Proof of Lemma 3
The first step is to observe that in case of sufficiently small IC, there are

only two possible scenarios, which are (a) only one of the probabilities pab,
with a ≠ b is close to one, and (b) all pab are close to zero. This scenario (a) is
impossible by construction since these probabilities must come at least in
pairs. Thus, all of them are small. In particular, since h(x) ≥ x for x ≤ 1/6, we
bound

X
a≠b

pab ≤H ≤ η≤ 1=6: ð51Þ

Since all probabilities are small and are also combinations of the prob-
abilities of only one step to be p+, p−, p⊙, we can conclude that at least twoof
those must be small. Since p± are symmetric by construction, the only
candidate left is p⊙, which is the event that concentrates all probabilities.
This observation allows us to bound

pþþ ≤ p�þ ≤ η; ð52Þ

and subsequently

p�� ¼ 1� pþþ � p�� �
X
a≠b

pab ≥ 1� 3η: ð53Þ

□

Proof. Proof of Theorem 2
For this theorem, we need to bound the probability of one step of the

randomwalk to be {−,⊙ ,+}. However, the ICmeasures only pairs of steps.
In this proof,weuse the results fromLemma2 to boundprobabilities in only
one step, andwe connect those to the results inCorollary 1.We take,without
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loss of generality p+,

pþ ¼ pþþ þ 1
2

pþ� þ p�þ þ p�þ þ pþ�
� � ð54Þ

The IC is insensitive to p++, sowe discard it. The second term is bounded by
Lemma 2, thus

pþ ≥ 2q4; ð55Þ

with q4 being the solution to the equation H = 4h(x)+ 2h(1/2−2x). Now,
we recall Corollary 1 and bound

ΦG
ϵ
ffiffiffiffi
m

p

k∇CkW

� �
≥ 2q4; ð56Þ

which directly leads to

∇Ck kW ≥
�ϵ

ffiffiffiffi
m

p

Φ�1
G ð2q4Þ

; ð57Þ

yielding thedesired result, up to a symmetry of theCDF function.Theupper
bound can be obtained by applying the same reasoning to p0 ≥ 2q4.□

Proof. Proof of Theorem 3
For this theorem, we need to bound the probability of one step of the

random walk to be⊙ . The results from Lemma 3 bound P⊙⊙, so

p� ≥ p�� ≥ 1� 3η ð58Þ

Now we connect this bound to the results in Corollary 1.

Φm
�ϵ

∇Ck kW

� �
≤
3
2
η; ð59Þ

which yields the result

∇Ck kW ≤
�ϵ

Φ�1
m ð3η=2Þ : ð60Þ

□

Data availability
The data to reproduce the results of this work can be found in Zenodo37.

Code availability
All packages used in this work are open source and available via git repo-
sitories online.
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