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Quantifying the effect of gate errors on variational quantum
eigensolvers for quantum chemistry
Kieran Dalton 1,2,3✉, Christopher K. Long1,2, Yordan S. Yordanov1,2, Charles G. Smith1,2, Crispin H. W. Barnes2, Normann Mertig 1 and
David R. M. Arvidsson-Shukur 1

Variational quantum eigensolvers (VQEs) are leading candidates to demonstrate near-term quantum advantage. Here, we conduct
density-matrix simulations of leading gate-based VQEs for a range of molecules. We numerically quantify their level of tolerable
depolarizing gate-errors. We find that: (i) The best-performing VQEs require gate-error probabilities between 10−6 and 10−4 (10−4

and 10−2 with error mitigation) to predict, within chemical accuracy, ground-state energies of small molecules with 4− 14 orbitals.
(ii) ADAPT-VQEs that construct ansatz circuits iteratively outperform fixed-circuit VQEs. (iii) ADAPT-VQEs perform better with circuits
constructed from gate-efficient rather than physically-motivated elements. (iv) The maximally-allowed gate-error probability, pc, for
any VQE to achieve chemical accuracy decreases with the number NII of noisy two-qubit gates as pc /�N�1

II . Additionally, pc
decreases with system size, even with error mitigation, implying that larger molecules require even lower gate-errors. Thus,
quantum advantage via gate-based VQEs is unlikely unless gate-error probabilities are decreased by orders of magnitude.
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INTRODUCTION
Calculating the ground-state energy of a molecular Hamiltonian is
an important but hard task in computational chemistry1. For
strongly correlated systems, exact classical approaches quickly
become infeasible as system sizes exceed 100 spin-orbitals. Other,
approximate, methods often lack accuracy1–5. This makes
quantum computers an attractive alternative. A potential route
to quantum-chemistry simulations relies on the quantum-phase-
estimation algorithm (QPEA)1,6. However, the QPEA requires
executing millions of gates on error-corrected hardware7. Realiz-
ing such hardware requires significant resource overheads and
gate-error probabilities below a minimal threshold8. For example,
the surface code9,10, requires thousands of physical qubits to
implement a single logical qubit at a gate-error probability of
10−4 11. In view of these requirements, the QPEA is not yet
feasible.
To reduce the qubit number and gate-error requirements, the

variational quantum eigensolver (VQE) was proposed12. The VQE is
a hybrid quantum-classical algorithm that uses a classical
optimizer and a parameterized quantum circuit, the ‘ansatz’, to
estimate ground-state energies. Combined with significant hard-
ware developments13, VQEs have facilitated successful demon-
strations of quantum computational chemistry for small
systems12,14–18. These demonstrations have been aided by VQE
algorithms’ abilities to correct for certain errors15,19,20. Despite
these achievements, there are still significant hurdles to overcome
for VQEs to become useful. First, the short, gate-efficient ansätze
used in small-scale experimental demonstrations12,14–18 face
optimization difficulties for larger systems. This is related to the
emergence of barren plateaus (vanishing gradients), which are
more likely when the ansatz is unrelated to the Hamiltonian21,22.
Current research, for example on growing the ansatz circuit
iteratively (the ADAPT-VQE algorithm23) is aimed at avoiding or
mitigating the issue of barren plateaus21. Another significant
hurdle comes from gate-error rates in hardware. Although current

noisy intermediate-scale quantum devices24–26 have sufficiently
many qubits to run VQEs for molecules with more than 100 spin-
orbitals13, their gate-error rates are too high.
At present, efforts to ameliorate the gate-error issue aim to

either reduce ansatz circuit depths23,27–30 or implement elaborate
error-mitigation schemes31–33. However, VQEs are often bench-
marked in the absence of gate errors, with circuit depths and
CNOT counts used as proxies of their noise resilience30. It has been
argued that the maximum viable circuit depth for a VQE ansatz
circuit is given by the reciprocal of gate-error probability 1/p1.
More rigorously, given a gate-error probability p, the maximum
VQE circuit depth which cannot be simulated classically scales as
Oðp�1Þ34,35. A research question, which remains under-explored, is
to quantify the gate-error probabilities that VQEs can tolerate.
Specifically, considering the analogy of a surface code, which has a
well-defined fault-tolerance threshold11, we aim to find the
maximally allowed gate-error probability, below which a certain
VQE estimates a certain molecule’s energies within chemical
accuracy. Quantifying the maximally allowed gate-error prob-
ability allows the noise resilience of leading VQEs to be ranked,
and provides useful goals for the hardware community.
In this article, we numerically quantify under how high gate-

error probabilities VQEs can operate successfully. More specifically,
using density-matrix simulations, we simulate the ground-state
search of leading, gate-based VQEs for a range of molecules. In the
presence of depolarizing noise, we show that: (i) Even the best
performing VQEs require gate error probabilities pc on the order of
10−6 to 10−4 (without error mitigation) in order to predict
molecular ground-state energies within chemical accuracy of
1.6 × 10−3 Hartree. This is significantly below the fault-tolerance
threshold of the surface code11. For small systems, error mitigation
can be employed such that the required pc values can be
improved to 10−4 to 10−2. (ii) ADAPT-VQEs tend to tolerate higher
gate-error probabilities than VQEs that use fixed ansätze, such as
UCCSD and k-UpCCGSD. (iii) ADAPT-VQEs tolerate higher gate-
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error probabilities when circuits are synthesized from gate-
efficient27–29,36, rather than physically-motivated23, elements. We
support these claims by estimating, in the presence of depolariz-
ing noise, the scaling relation between the maximally tolerable
gate-error probability pc and the number NII of noisy (two-qubit)
gates. Our results indicate that pc /� N�1

II for any gate-based VQE.
(iv) We find that the maximally allowed gate-error probability, pc,
decreases with system size, with and without error mitigation. This
shows that larger molecules would likely require even lower gate-
errors. We conclude that substantial quantum advantage in VQE-
based quantum chemistry is unlikely, unless gate-errors are
significantly reduced, or error-corrected hardware is realized, or
error-mitigation protocols are improved and made scalable.

RESULTS
ADAPT-VQEs
In this work, we investigate several classes of VQE algorithms. Our
study prioritizes VQEs with short ansatz circuits, as these are
expected to be more noise resilient29,30. Specifically, we consider
ADAPT-VQEs, which have comparatively short ansatz circuits23,29

and the ability to mitigate rough parameter landscapes21. We
further consider UCCSD37 and k-UpCCGSD38 as prototypes of fixed
ansatz VQEs – the latter for its comparatively shallow ansatz
circuits30. Before we outline the results of our noise-resilience
investigation, we describe the workings of the (ADAPT-)VQE.
The main idea of VQEs is to use shallow ansatz circuits, defined

by a set of parameters θ, to generate entangled trial states ρ(θ). A
classical optimizer is then used to vary θ and minimize the energy-
expectation value of H. Provided that the ansatz is sufficiently
expressive, the Rayleigh-Ritz variational principle,

EðθÞ ¼ Tr HρðθÞ½ � � E0; (1)

allows minθðEðθÞÞ to approach the molecular ground-state energy
E0

1. ADAPT-VQEs use a classical optimizer in two ways23: to
conduct the Rayleigh-Ritz minimization with respect to a
parameterized quantum state; and to iteratively construct the
ansatz that generates the parameterized state itself. A quantum
computer is used to calculate the energy-expectation value of the
parameterized state.
Consider the state generated by the ansatz Un:

ρnðθ1; ¼ ; θnÞ ¼ Unðθ1; ¼ ; θnÞρ0 Uy
nðθ1; ¼ ; θnÞ: (2)

ρnðθ1; ¼ ; θnÞ is parameterized by n parameters. In ADAPT-VQE,
the classical optimizer and the quantum computer work to find a
minimum-energy expectation value:

En � min
θ1 ;¼ ;θn

Tr Hρnðθ1; ¼ ; θnÞ½ �: (3)

An ADAPT-VQE iteratively adds parameterized elements to its
ansatz to construct ρn(θ1,…, θn) such that E1 >… > En and En
approaches E0.
The iterative ansatz construction proceeds as follows. First, the

ADAPT-VQE algorithm initializes a state ρ0, usually the Hartree-
Fock state2. Then, the algorithm generates a sequence of trial
states by successively adding elements of the form

AαðθÞ ¼ eθTα ; (4)

picked from a finite pool P of operators (see below). Here, Tα, for
α 2 ½1; ¼ ; jPj�, are anti-Hermitian operators. Thus, the unitary
ansatz grows as

U0 ¼ I; (5)

Unðθ1; ¼ ; θnÞ ¼ AnðθnÞUn�1ðθ1; ¼ ; θn�1Þ: (6)

The ansatz element AnðθnÞ 2 P is typically picked to yield the
steepest energy gradient. For each value of α, a quantum
computer evaluates the energy expectation value after adding

Aα(θn) in the nth step:

En;αðθnÞ � Tr HAαðθnÞρn�1A
y
αðθnÞ

� �
: (7)

The ADAPT-VQE algorithm then picks the element An � Aα¼αn with

αn ¼ argmax
α:Aα2P

∂En;αðθnÞ
∂θn

���
θn¼0

����
����

¼ argmax
α:Aα2P

Tr H; Tα½ �ρn�1f gj j:
(8)

Alternatively, one may define a sub-pool S � P of operators with
the largest gradients and let the algorithm pick the element with
the largest energy difference:

αn ¼ argmin
α:Aα2S

min
θn

En;αðθnÞ
� �

: (9)

After choosing the nth ansatz element An(θn), a classical
computer optimizes and updates the parameters θ1,…, θn to
minimize the energy expectation value En in Eq. (3). Provided that
En− En−1 > ϵ, for some energy precision ϵ, the iterative algorithm
continues. When En− En−1 ≤ ϵ the algorithm halts at some final
length n= N, and outputs EN≡ En as the estimate of E0.
In this work, we focus on the three main types of ADAPT-VQEs:

fermionic-ADAPT-VQE, QEB-ADAPT-VQE and qubit-ADAPT-VQE.
(Efficient gate-representations for their relevant ansatz elements
can be found in refs. 28,29). These algorithms differ in their ansatz-
element pools P.
First, we consider the fermionic-ADAPT-VQE23. As the name

suggests, this algorithm uses a pool of operators that closely
simulate the physics of fermionic excitations. The pool is formed
from

T ik ¼ ayi ak � aykai ; and (10)

T ijkl ¼ ayi a
y
j akal � ayka

y
l aiaj : (11)

Here, ayi and ai are fermionic creation and annihilation operators
acting on the ith orbital. Throughout this work, we represent these
operators using the Jordan-Wigner transformation39, where

ayi 7!
1
2

Xi � iYið Þ
Yi�1

r¼0

Zr ; and (12)

ai 7! 1
2

Xi þ iYið Þ
Yi�1

r¼0

Zr : (13)

Xi, Yi, Zi are the Pauli operators acting on the ith qubit. The
fermionic-ADAPT-VQE leads to shallower and more gate efficient
circuits than UCCSD23. Further, choosing fermionic excitations
along the gradient of minimum energy produces H-tailored
circuits, which can potentially avoid barren plateaus21.
Second, we consider the QEB-ADAPT-VQE29,36. This algorithm

uses a pool of operators that nearly (up to a ± sign) simulate the
physics of fermionic excitations. The pool is formed from

T ik ¼ Qy
i Qk � Qy

kQi ; and (14)

T ijkl ¼ Qy
i Q

y
j QkQl � Qy

kQ
y
l QiQj; (15)

where

Qy
i :¼ 1

2 Xi � iYið Þ and Qi :¼ 1
2 Xi þ iYið Þ: (16)

Qy
i and Qi are known as qubit creation and annihilation operators,

respectively. Due to the CNOT efficiency of its pool, the QEB-
ADAPT-VQE can find ground-state and excited-state energies with
fewer CNOT gates than the fermionic-ADAPT-VQE28,29,36.
Finally, we consider the qubit-ADAPT-VQE27. This algorithm uses

a pool of gate-efficient elements without physical motivation.
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The pool is formed from segments of Pauli-operator strings:

T ij ¼ iσiσj; and (17)

T ijkl ¼ iσiσjσkσl; (18)

where σi denotes Pauli operators Xi, Yi, Zi acting on the ith qubit. In
previous works, this pool has been found to generate the most
shallow and CNOT efficient circuits for ADAPT-VQEs27. In our
simulations, we use a pool formed from XY-Pauli strings of length
two and four with an odd number of Y’s. It is possible to use
reduced pools27, but at the expense of reduced circuit efficiency
of the final ansatz29.
Typically, the fermionic-ADAPT-VQE and the qubit-ADAPT-VQE

use the gradient-based decision rule expressed in Eq. 8. On the
other hand, the original QEB-ADAPT-VQE uses the energy-based
decision rule, shown in Eq. 9. These algorithms are summarized in
a flow-chart summary in Fig. 1, and in the pseudocode of
Supplementary Note 1.
To demonstrate the benefits of iteratively-grown ansätze, we

compare them to a typical fixed-ansatz-VQE method: the UCCSD-
VQE17,37. In Supplementary Note 4, we extend this comparison to
the k-UpCCGSD algorithm38. Owing to its linear scaling of circuit
depth with qubit number, this algorithm was recently put forward
as the leading fixed-ansatz VQE30. We simulate the workings of the
fixed-ansatz methods using the aforementioned fermionic and
QEB elements.
Given the breadth of work on VQEs30, it is not possible to

perform an exhaustive analysis of all existing algorithms. Never-
theless, the analytical results in Sec. II E, and the low circuit depths
provided by ADAPT-VQE30, suggest that our results provide a
lower bound on the requirements for gate-based VQE algorithms
to operate successfully. However, there exist algorithms that differ
greatly from typical VQEs, and could deserve future attention. We
discuss some of these, and the reasons for our exclusion of them,
below. We will not consider iterative qubit coupled cluster
(iQCC)40 and ClusterVQE41 algorithms. We do not anticipate these
algorithms to be feasible options to study strongly correlated
systems, whose simulation using quantum algorithms provides

the most benefit over classical algorithms. We also omit the
DISCO-VQE42. Due to its large jumps in Hilbert space during the
discrete optimizations of the ansatz, we expect DISCO-VQE to lack
tolerance to barren plateaus. These problems may be overcome in
future improvements of these VQE algorithms. We leave the
design of improved algorithms, and the noise-evaluation of them,
to future articles. Finally, we omit the ctrl-VQE algorithm43.
Although highly interesting, this Hamiltonian algorithm operates
with device-tailored pulses, rather than quantum gates, and thus
lies outside the scope of this work.

Density-matrix simulations
To investigate the effect of noise on gate-based VQE, we
constructed a VQE-tailored density-matrix simulator, expanding
the state-vector circuit simulator of ref. 29. We represent molecular
orbitals in the Slater type orbital-3 Gaussians (STO-3G) spin-orbital
basis set44, with the option of frozen orbitals. The openfermion-
Psi4 package45,46 is used to generate the second-quantized
Hamiltonian and to perform the Jordan-Wigner transformation39.
Ansatz parameters are optimized using Nelder-Mead47 or
gradient-descent-based (BFGS)48 methods in SciPy49.
We note that, due to the wide array of quantum-computing

platforms and their contrasting qubit-control implementations, no
noise model can be simultaneously realistic and platform-agnostic. In
this work, we model noise by applying single-qubit depolarizing
noise to the target qubit i after the application of each two-qubit
CNOT gate. Our noise channel can be represented by

Dði; pÞ ρ½ � :¼ 1� pð Þρþ p
3

X
σi

σiρσi ; (19)

where p ∈ [0, 1] is the gate-error probability.
In real devices, noise from two-qubit gates completely dominates

the noise from single-qubit gates25,50–52. Thus, we ignore the latter.
Additionally, we exclude state preparation and measurement errors,
which are often lower in magnitude than the accumulated two-qubit
gate errors50, and can be mitigated efficiently in experiments53–58.
(We note that ADAPT-VQE algorithms have high measurement
requirements, such that measurement errors may prevent the
algorithm from reaching the global minimum energy. This topic
requires further investigation). Depolarizing noise is commonly used
to represent local and Markovian gate errors when assessing both
NISQ59–61 and quantum-error-correction11,62–64 algorithms. More
realistic models can include thermal-relaxation noise (dephasing
and amplitude damping)65 and device-specific gate errors derived
from gate-set-tomography data66. When T1≈ T2 thermal relaxation
noise can be approximated using our depolarizing noise model62. This
is a reasonable model for superconducting hardware50. On the other
hand, when T2≪ T1 dephasing noise dominates and our depolarizing
noise model is less accurate. This is common in trapped-ion
devices51,52 and spin qubits67 and has recently been investigated in
ref. 68. Moreover, existing VQE algorithms require unrealistically low
error rates to give chemically accurate energies. Any attempt to scale
down the error rates in realistic noise models to these low levels must
be theoretically-justified. This is challenging for a complex, multi-
parameter model. Hence, we exclude noise models based on gate-set
tomography. Finally, we do not consider coherent errors, since their
effect can be suppressed by randomized compiling69 and dynamical
decoupling70,71. Randomized compiling72 can also be used to convert
coherent errors to stochastic errors. Additionally, VQE algorithms are
somewhat resilient to coherent errors12,73. Thus, in this work we focus
on incoherent errors. Note that, if VQE algorithms were studied with a
coherent noise model, their perceived performance may be greater.
When simulating the smallest molecules (H2 and H4) we apply our

noise channel [Eq. (19)] after each application of a CNOT gate. This
gate-by-gate method is computationally expensive. To facilitate
feasible simulations of molecules larger than H4, we approximate
each noisy ansatz element by a corresponding noiseless ansatz

Fig. 1 Flowchart describing the ADAPT-VQE algorithm. At each
iteration, an ansatz element is chosen according to one of the two
decision rules defined in green below the chart. This element is
appended to the ansatz, the parameters are optimized, and the
energy expectation value is estimated. The algorithm halts when the
change in energy between iterations is below a given threshold.
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evolution and a noise-inducing evolution. The noise-inducing
evolution corresponds to depolarizing noise applied to each qubit
in accordance with the number of times that qubit was a CNOT target
in the ansatz element. We observe that this lower-bounds the effect
of noise. For example, for H4, applying noise after each CNOT with
gate-error probability p ¼ p0, gives approximately the same energy
accuracy as applying total noise after each element with p � 1:3p0.
Consequently, our simulations of larger molecules should not be
compared directly with those for H2 and H4. A detailed illustration of
our noise approximation is given in Supplementary Note 3.
Energy accuracy is the key metric of VQE performance. It is

defined as

ΔEðp; nÞ :¼ EnðpÞ � EFCI: (20)

Here, En(p) is the VQE-calculated energy with gate-error probability
p in the nth iteration and EFCI is the energy given by the full-
configuration-interaction5 calculation of the true ground-state
energy E0. A key objective of our study is to find the maximally
allowed gate-error probability pc for which ΔE(p, n) < 1.6 milli-
Hartree.
Classical optimizers are used to tune θ1,…, θn. The parameters

are optimized until the gradient norm, ∇θEj j 	 ϵO, for some
precision ϵO. In our simulations of H2 we calculate converged
values of En(p) using our density-matrix simulator. To keep larger-

molecule simulations tractable, we estimate ΔE as follows. We first
grow the ansatz circuit Cn in noiseless, unitary simulations until the
nth iteration, for which the energy accuracy ΔE(0, n) first drops
below a cut-off energy precision ϵt: ΔE(0, n) < ϵt. Then, we
approximate ΔE(p, n) by simulating the implementation of Cn with
noise on our density-matrix simulator. Thus, ΔE(p, n) may depend
on the iteration n. As demonstrated in Supplementary Note 2,
ansatz growth and optimization in the presence of noise have little
effect on the noise probability required for chemical accuracy.

Comparison between ADAPT-VQEs with noise
In this section, we benchmark the noise resilience of ADAPT-VQEs
using our density-matrix simulator. We study H2, H4, LiH, HF and
BeH2. Our simulations were conducted using a parameter optimiza-
tion cut-off of ∇θEj j 	 ϵO ¼ 10�6 Hartree and ansatz growth cut-off
of En− En−1 ≤ ϵ= 10−12 Hartree. In our simulations of the larger
molecules, we used an ansatz-truncation cut-off of ΔE(0, n) < ϵt=
10−4 Hartree. Below, we use ΔE(p)=ΔE(p, nfinal) to refer to the
energy accuracy at the final ansatz length n= nfinal. Because of the
significant skepticism towards error-mitigation strategies35,74,75, we
omit such strategies from the analyses presented in this section and
investigate error mitigation separately in Sec. II F.
The inset of Fig. 2a shows how ΔE(p) varies with p for H2. The

values of p∈ [0, 0.02] include the well-known surface-code fault-

Fig. 2 Energy accuracy as a function of gate-error probability. Plotted for H2 (a), H4 (at 1 Å (b) and 3 Å (c) interatomic separation), LiH (d), HF
(e) and BeH2 (f). Ansätze using fermionic, qubit, and Pauli string elements are plotted in red, blue and green, respectively. All curves labeled as
“fixed” VQE ansätze use the UCCSD ansatz17,37. Energy accuracies lower than chemical accuracy are highlighted by the yellow region. The
purple line in the H2 inset is the energy calculated using the Hartree-Fock2 state. Extrapolated noise-susceptibility calculations are shown in
black for the fermionic-ADAPT-VQE (d), the QEB-ADAPT-VQE (e) and the qubit-ADAPT-VQE (f).
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tolerance threshold8,11 as well as the gate-error probability of
currently available quantum hardware25,50–52. All tested VQE
algorithms require extremely small gate-error probabilities if they
are to improve on the Hartree-Fock energy approximation, even
for the simple H2 molecule. The region of chemical accuracy is too
small to show in the inset. In real implementations of ADAPT-VQE
algorithms, energies exceeding the Hartree-Fock approximation
would not be achieved, since, in this case, adding elements to the
ansatz does not improve the initial energy accuracy. Here, we add
noise to a noiselessly-grown ansatz such that these energies are
shown. These observations motivated us to reduce significantly
the range of p used in the rest of this study.
The rest of Fig. 2 shows our calculations of ΔE(p) as a function of

p for all considered molecules. The region of chemical accuracy is
highlighted by yellow shading. We emphasize six general trends
supported by our data. First, the maximally allowed gate-error
probabilities pc for computing ground-state energies within
chemical accuracy are extremely small. For all molecules investi-
gated in this study, the value of pc is on the order of 10−6 to 10−4

(see Table 1 for details). These values are significantly below the
fault-tolerance thresholds of leading error-correction protocols.
Second, our simulations of H2 and H4 (1 Å) suggest that ADAPT-
VQEs outperform fixed ansatz methods. For a given pool of ansatz
elements, the corresponding ADAPT-VQE algorithm leads to better
energy accuracies than the corresponding fixed ansatz VQE
algorithm. Third, the efficient representation of fermionic excita-
tions28 improves the performance of the fermionic-ADAPT-VQE
significantly. This representation reduces CNOT depth, but its
scaling of CNOT depth with molecule size is still worse than the
scaling of QEB and Pauli string elements. The second and third
observations support the claim29 that the CNOT count is a useful
estimator of VQE’s noise vulnerability. Fourth, the more gate-
efficient (Pauli string and QEB) pools outperform the most
physically-motivated (fermionic) pool. The fermionic-ADAPT-VQE
is consistently outperformed by either the qubit-ADAPT-VQE or the
QEB-ADAPT-VQE. Fifth, sometimes the QEB-ADAPT-VQE outper-
forms the qubit-ADAPT-VQE and vice versa. For H2, H4 (1 Å) and
BeH2, the qubit-ADAPT-VQE outperforms the QEB-ADAPT-VQE. On
the other hand, for HF, the QEB-ADAPT-VQE (energy-based
decision rule) outperforms the qubit-ADAPT-VQE. For LiH, the
QEB-ADAPT-VQE and the qubit-ADAPT-VQE perform similarly.
Notably, for H4 (3 Å), the qubit-ADAPT-VQE fails to add more than
two elements to the ansatz. Hence, it never surpasses chemical
accuracy. This gives some indication that the qubit-ADAPT-VQE is
worse than the QEB-APAPT-VQE at simulating strongly correlated
molecules. Sixth, different decision rules for QEB-ADAPT-VQEs yield
different performances. For HF, LiH and BeH2, the energy-reduction
decision rule gives a better energy accuracy than the maximum-
gradient rule. Conversely, for H4 (1 Å and 3 Å) the gradient-based
decision rule performs better. A study of the optimal decision rules
for various molecular-energy landscapes is left for the future.
We close this subsection with a comment on benchmarks of

fixed-ansatz VQEs. Both UCCSD and k-UpCCGSD ansätze have
been investigated with numerical simulations. However, their

energy accuracies significantly worse than those obtained using
ADAPT-VQEs. In particular, the energy accuracies for the
k-UpCCGSD algorithm do not fit the scale of Fig. 2. Hence, these
results are presented separately, in Supplementary Note 4.

Optimal truncation of iteratively-grown ansätze with noise
In the above analyses of ADAPT-VQEs for larger molecules, we
truncated noiselessly-grown ansätze in the nth iteration when an
energy precision of ϵt was reached. Thus, we established a
performance hierarchy between different VQEs. However, deeper
circuits are generally more vulnerable to noise, and fixing n in
noiseless simulations could generate artificially deep circuits.
Therefore, to showcase the full benefit of ADAPT-VQEs in the
presence of noise, one must vary the truncation length. This would
happen automatically for an ansatz grown with noise, as any
truncation criterion would be met with shorter ansätze. Here, we
simulate this to conduct an alternative, more exact and more
computationally expensive, comparison between ADAPT-VQEs.
We optimize energy accuracy with respect to ansatz length:

ΔEðp; noptÞ � min
n

ΔEðp; nÞf g: (21)

Below, we present numerical results for H4 (1 Å), H4 (3 Å) and
LiH in the left, middle and right columns of Fig. 3, respectively. The
color plots show ADAPT-VQE simulations of ΔE(p, n) as a function
of n and p. The top row of Fig. 3 shows the optimized ΔE(p, nopt) as
a function of p. Additional color plots for the VQE methods not
shown in Fig. 3 are provided in Supplementary Note 5.
The data in Fig. 3 warrant four comments. First, in the absence of

noise (p= 0), the energy accuracy decreases monotonically as the
ansatz length (n) increases, eventually surpassing chemical
accuracy. This is expected from the nature of the ADAPT-VQE
methods. The exception is the qubit-ADAPT-VQE simulation of H4

(3 Å), which simply fails after n= 2 and does not achieve chemical
accuracy. Second, at small but finite values of p, ΔE(p, n) initially
decreases with larger n. However, after an optimal length nopt(p),
the improvement from appending additional ansatz elements is
outweighed by the detrimental increase of noise. At this point,
ΔE(p, n) starts to increase with n. Thus, the ideal ansatz truncation
happens at n= nopt(p). The nopt(p) values are shown as yellow lines
on the color plots of Fig. 3. These curves show nopt(p) decreasing
monotonically as p increases. Third, plots of ΔE(p, nopt) as a function
of p (top Fig. 3), show the same relative performance between the
fermionic-ADAPT-VQE, the QEB-ADAPT-VQE and the qubit-ADAPT-
VQE as in Fig. 2. Fourth, the values for pc increase when the ansätze
are truncated at an optimal value of n, as compared to the arbitrary
truncation used when producing Fig. 2. The values of pc are
presented in Table 1 and Fig. 6. After this optimal-truncation
analysis, our overall conclusion remains unchanged: Even for the
best-performing ADAPT-VQEs, the maximally allowed gate-error
probability is on the order 10−6 to 10−4 Hartree.

Table 1. Maximum gate-error probabilities pc [ × 10−5] for which chemical accuracy is achieved.

Molecule (Separation) H2 H4 (1 Å) H4 (3 Å) LiH HF BeH2 H4 (1 Å) H4 (3 Å) LiH H2O NH�
2

Fermionic-ADAPT-VQE 5.30 0.30 0.36 0.52 0.19 0.11 0.30 0.39 0.96 0.04 0.06

Efficient fermionic-ADAPT-VQE 5.30 1.38 1.34 2.02 0.89 0.49 1.51 1.52 3.47

QEB-ADAPT-VQE (Energy) 23.59 1.58 1.05 4.14 4.15 0.68 1.72 2.53 7.69 0.35

QEB-ADAPT-VQE (Gradient) 23.59 1.73 1.45 2.25 0.97 0.59 1.73 1.64 3.92 0.32

qubit-ADAPT-VQE 41.20 2.19 N/A 4.28 2.15 0.75 2.23 N/A 8.66 0.30

The first six columns present data from Fig. 2, Sec. II C. Columns seven to nine present data from the top row of Fig. 3, Sec. II D. The data in the final two
columns are derived using noise susceptibility, in Sec. II E.
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Analytical noise-susceptibility analysis
To analytically support our numerical results, we study the linear
response of energy accuracy ΔE(p) to noisy perturbations of the
unitary ansatz circuits. Then, we use our results to show that pc is
roughly inversely proportional to the number NII of noisy (two-
qubit) gates.

Noise susceptibility. From Fig. 2 we see that ΔEðpÞ � χ0p, for some
constant χ0. Inspired by this observation, we define the noise-
susceptibility parameter:

χ ¼ ∂ΔEðpÞ
∂p

���
p¼0

: (22)

Now, we show that χ ∝ NII (details are given in Supplementary
Note 6). If p= 0, an ansatz circuit C can be expressed as a product
of R unitary gates: U= GR⋯ G1. We use RCX to denote the set of

indices for which Gr is a noisy (CNOT) gate, and we use ir to denote
the qubit which noise acts on. Further, we define a perturbed
version of the target unitary U as

Upðσ; r; irÞ ¼ GR 
 
 
Grþ1σir Gr 
 
 
G1; (23)

where the Pauli gate σ acts on qubit ir after the rth gate. The
corresponding energy expectation values are

EU ¼ Tr HUρ0U
y� �
; (24a)

EUpðσ; r; irÞ ¼ Tr HUpðσ; r; irÞρ0Uy
pðσ; r; irÞ

h i
: (24b)

Usually, EU is close to E0. Thus, we interpret EUpðσ; r; irÞ as a noise-
induced excitation. We call EUpðσ; r; irÞ � EU the noise-induced
fluctuation. The average noise-induced fluctuation of the ansatz is

δE � 1
NII

P
r2RCX

1
3

P
σ2fX;Y;Zg

EUpðσ; r; irÞ � EU
� �

; (25)

Fig. 3 Color plots representing the energy accuracy (from FCI) at different gate-error probabilities and ansatz lengths. Plotted for three
different molecules: H4 (at 1 Å (a) and 3 Å (b) interatomic separation) and LiH (c). Three iterative-growth methods are included: the fermionic-
ADAPT-VQE with efficient elements, the QEB-ADAPT-VQE with the energy decision rule and the qubit-ADAPT-VQE (the plots for the remaining
two methods are given in Supplementary Note 2). The yellow lines on the color plot highlight the ansatz lengths that minimize the energy
accuracies for each gate-error probability. The top-column figures are extracted from the color plots by plotting the energy accuracy along
these curves.
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In Supplementary Note 6, we show that

χ ¼ δE ´NII: (26)

Below, we analyze this expression for the noise-susceptibility
parameter.

Simplified computations. The energy expectation values under-
lying χ can be simulated with unitary operations on a state vector.
Such simulations are significantly simpler to perform than density-
matrix simulations. Thus, we can more easily estimate the energy
accuracy for small values of p:

ΔEðpÞ � χp: (27)

To test our method we compare Eq. (27) (black dotted lines) with
some curves in Fig. 2. Eq. (27) estimates the simulated data
remarkably well. Next, we use our method to estimate pc for
molecules too large to study with our density-matrix simulator.
The estimates of pc for H20 and NH�

2 are listed in the final two
columns of Table 1. We stress that Eq. (27) is an excellent predictor
of ΔE(p) for the gate-error probabilities p∈ [0, pc] which allow for
chemically-accurate simulations.

Scaling. The energy fluctuations are bounded by the spectral
range of H: δE 	 Emax � E0. Thus, Eq. (26) suggests that noise
susceptibility grows linearly with NII, as δE is constant. Figure 4
supports this claim. The curves indicate that χ/

�
NII and

δE � Oð1Þ, for a variety of molecules, ADAPT-VQE algorithms
and circuit depths. Combining these observations with Eq. (27), we
estimate that

pc � ΔEC
δE ´ 1

NII
/
�

1
NII
: (28)

where ΔEC= 1.6 × 10−3 Hartree (chemical accuracy). This result is
supported by recent results in condensed matter systems76. The
inverse proportionality between pc and NII suggests that gate-error
probabilities will have to reach extremely small values for useful
chemistry calculations with VQE algorithms to be viable.

Alternatively, we require improved VQE algorithms with shallower
circuits and fewer noisy (two-qubit) gates.

Quantum error mitigation
In the absence of error-corrected hardware, several strategies to
mitigate the effect of noise have been suggested31–33,77. Quantum
error mitigation is a family of strategies which generally rely on
knowledge of a circuit, noise model, or both to generate a set of
modified circuits. Sampling from these circuits can generate a
better estimate of the noiseless circuit’s output77. While these
strategies have been demonstrated in simple VQE implementa-
tions14,78,79, they suffer, in general, from exponential scaling of
sample requirements with qubit number35,74,75, potentially
preventing their viability in useful NISQ VQE implementations.
Indeed, leading reviews on quantum computational chemistry1,
state that ‘it seems unlikely that error-mitigation methods alone
would enable more than a small multiplicative increase in the
circuit depth.’ This unfavorable scaling has also been observed
experimentally, where it has prevented the use of all but the most
simple mitigation strategies26.
The main goal of this work is to assess the required error rates

for useful VQE implementations of molecules with more than 100
spin-orbitals. Due to the uncertainty around their scalability, as
well as the unclear performance in the presence of time-
dependent noise (particularly two-level-system defects80 which
drift in frequency), a study of this type should not include
quantum error mitigation in its current form. Despite this, we
believe it is relevant to extend our study to ascertain the
maximally allowed gate-error probability pc to calculate molecular
energies within chemical accuracy for an error-mitigation protocol
with polynomial sampling overhead. To partially address this
question, we repeat our numerical simulations using linear zero-
noise extrapolation31,32 with a noise multiplication factor of 3.
Despite being biased and heuristic81, we choose linear zero-noise
extrapolation for its modest sampling overhead and numerical
stability, which proved useful in recent large-scale demonstrations
of error mitigation26.
The results for H2, H4 and LiH are depicted in Fig. 5. Compared

to their counterparts in Fig. 3(a), we note the following: (i) The
maximally allowed error probability increases by one or two
orders of magnitude. This demonstrates the utility of error
mitigation to make VQE more viable, especially for smaller
molecules. (ii) The resulting energy error displays a roughly
parabolic behavior. This is expected from the series expansion of
the depolarizing noise and indicates that further improvement (at
an increased sampling overhead) may be possible by using
higher-order extrapolations. (iii) We note that while all VQE
algorithms display an increased noise resilience from error
mitigation, their relative pc-ranking does not change. This
suggests that a VQE algorithm with higher noise resilience in
the absence of error mitigation would remain more noise resilient
when error mitigation is applied. Finally, we put the improved
gate-error probabilities pc into context by plotting them as crosses
in Fig. 6. Given the sharp decrease of pc with the problem size N, in
the presence and absence of error mitigation, it is unlikely that
error mitigation will improve pc sufficiently for useful system sizes,
N > 100. Ultimately, it remains an open question whether the
unfavorable scaling of error mitigation prevents its use in realistic
quantum-chemistry applications.

DISCUSSION
Any quantum algorithm aimed at near-term NISQ devices must be
designed to tolerate some level of noise. In this work, we
numerically quantify the maximally allowed depolarizing gate-
error probabilities, pc, required by leading gate-based VQEs to
achieve chemically accurate energy estimates. Based on numerical

Fig. 4 Numerical noise susceptibility scaling. Noise susceptibility
(top) and average energy fluctuation (bottom) as functions of the
number NII of CNOT gates for all molecules and algorithms reported
in Sec. II C, at all circuit depths.
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simulations, we reach five conclusions. First, even the best-
performing VQE algorithms require gate-error probabilities
between 10−6 and 10−4, for the small molecules we assess. Such
errors are at least an order of magnitude below state-of-the-art
experiments25,50 and the surface-code threshold8,11. If error
mitigation is viable, the pc values can be improved to 10−4 to
10−2 with linear zero-noise extrapolation. Second, larger mole-
cules tend to require longer ansatz-circuits and thus, lower gate-
error probabilities, see Fig. 6. This is the case both with and
without error mitigation. Third, in the presence of noise, ADAPT-
VQEs can tolerate approximately an order of magnitude greater
gate-errors pc than equivalent fixed-ansatz VQEs, including those
with the shortest ansatz circuits30,38. Fourth, the more gate-
efficient the ADAPT-VQE ansatz pool, the more noise resilient the
algorithm. From a noise-resilience perspective, qubit excitations
and Pauli-string excitations outperform fermionic excitations. Fifth,

the maximum gate-error probability allowed to reach chemical
accuracy is roughly inversely proportional to the number of CNOT
gates: pc /� N�1

II . We now conclude this work with a couple of
comments.
In this work, we quantify the maximally allowed gate-error

probability of ADAPT-VQEs, UCCSD VQE and the leading fixed-
ansatz VQE, k-UpCCGSD38. The latter is chosen as due to its
favorable circuit depth scaling with molecule size30. This ignores
plenty of other VQE algorithms which would benefit from similar
studies in the future, as discussed in the main text40–43,82–87.
As opposed to a fault-tolerance threshold in error correction,

the maximally allowed gate-error probability pc crucially depends
on the size of the input problem, see Fig. 6. More specifically, pc
tends to shrink as the number of spin orbitals N increases. A key
question for future research is to elucidate how fast pc decreases
with N. Our numerical data in Fig. 6 suggests an exponential
scaling, both with and without error mitigation. Meanwhile,
assuming VQEs achieve molecular ground-state energies with
polynomially shallow circuits (NII= poly(N)), Eq. (28) suggests a
polynomial scaling. Having analytical expressions of the decrease
of pc with the number of spin orbitals N, would inform us whether
quantum advantage is at all feasible for input problems beyond
100 spin orbitals.
While this study is entirely focused on gate-errors, other sources

of noise may also be relevant. These include errors from state
preparation and measurement as well as statistical noise due to
sampling of expectation values from a limited number of shots. As
mentioned when justifying the noise model, errors due to state
preparation and measurement tend to be smaller than the
accumulated gate errors, and there are widely-implemented
methods to compensate for them53–58. However, in principle,
measurement errors may lead to sub-optimal parameter values or
operator choices during ansatz growth of ADAPT-VQE, which may
prevent the algorithm from reaching the global minimum energy.
A detailed analysis of such effects is left for future work.
While it is possible to sample any expectation value with ϵ

accuracy in polynomially few shots1,30, the scaling prefactor
may lead to prohibitively large run-times30,88–90. This issue is
particularly acute for ADAPT-VQE algorithms, where each
growth step requires shots for both parameter optimization
and element selection. In this case, the number of necessary
gradient measurements for each ansatz growth step is greater
than that for VQE parameter optimization, by a factor which
scales linearly in the number of qubits91. Holistic studies of VQE

Fig. 5 Plot representing the energy error (from FCI) using different noise probabilities and VQE algorithms. Plotted for H2 (a), H4 (at 1 Å)
(b), LiH (c), and BeH2 (d), using linear zero-noise extrapolation31,32. Energy accuracies lower than chemical accuracy are highlighted by the
yellow region. The crosses represent the intercepts of the curves with this region.

Fig. 6 Plot representing the noise probability required to reach
chemical accuracy, pc, for different ansätze and molecule sizes
(number of orbitals). For molecules with the same number of
orbitals, the mean probability is taken. The crosses and circles
represent the noise probabilities required to reach chemical
accuracy with and without error mitigation, respectively. The data
without error mitigation is taken from Table 1, and the data with
error mitigation is taken from the crosses in Fig. 5. Additionally, a
recent state-of-the-art two-qubit gate-error rate with superconduct-
ing qubits is shown in purple93.
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run-times30,88–90 provide predictions which vary greatly
depending on the estimation methodology. The estimated
run-times are often intractable without significant paralleliza-
tion. The number of necessary measurements for parameter
optimization can potentially be reduced via alternate group-
ings of Pauli operators83–85, or tensor contraction of the
Hamiltonian (such as by double factorization86,87,92). Despite
this progress, run-time scaling remains a significant obstacle to
overcome before ADAPT-VQEs can perform useful computa-
tions on real hardware. A balance must be found between run-
time and the acceptable level of statistical noise. This is
complicated by the combination of gate errors, measurement
errors and statistical errors, which may affect VQEs adversely in
a non-trivial way. We leave this as an open problem for the
community as, in this work, we focus on the noise resilience of
ADAPT-VQEs.
This work numerically investigated the maximally allowed gate-

error probability pc required to achieve chemically accurate
predictions as a core metric of VQE performance. Similar to a
fault-tolerance threshold in error correction, pc should provide a
transparent metric to compare the noise resilience of VQEs as well
as provide useful guidance for the experimental community.
Having demonstrated that pc is between 10−4 and 10−6 for very
small molecules (and worse for larger molecules), we conclude
that quantum advantage in VQE-based quantum chemistry
requires: (i) Substantially improved error mitigation, (ii) error
correction, and/or (iii) significantly improved hardware in which
gate errors are reduced by orders of magnitude.
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