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Better-than-classical Grover search via quantum error
detection and suppression
Bibek Pokharel 1,2✉ and Daniel A. Lidar 1,2,3,4✉

We report better-than-classical success probabilities for a complete Grover quantum search algorithm on the largest scale
demonstrated to date, of up to five qubits, using two different IBM platforms. This is enabled by error suppression via robust
dynamical decoupling. Further improvements arise after the use of measurement error mitigation, but the latter is insufficient by
itself for achieving better-than-classical performance. For two qubits, we demonstrate a 99.5% success probability via the use of the
[[4, 2, 2]] quantum error-detection (QED) code. This constitutes a demonstration of quantum algorithmic breakeven via QED. Along
the way, we introduce algorithmic error tomography (AET), a method that provides a holistic view of the errors accumulated
throughout an entire quantum algorithm, filtered via the errors detected by the QED code used to encode the circuit. We
demonstrate that AET provides a stringent test of an error model based on a combination of amplitude damping, dephasing, and
depolarization.
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INTRODUCTION
The best possible classical strategy for finding a particular ‘marked’
element in an unsorted list of length N requires querying half of
the elements in the list on average; a quantum computer (QC) can
do this in quadratically fewer queries using Grover’s search
algorithm1. This algorithm is optimal and provably better than all
classical strategies2. As one of the first algorithms with a provable
quantum speedup, Grover search is often used as a subroutine for
other quantum algorithms3,4. Over the last two decades, Grover
search has been implemented on various quantum computing
platforms5–10, albeit for relatively small N.
Encoding a list of length N requires n ¼ dlog2ðNÞe qubits. The

list can be queried classically or using quantum queries; in both
cases, one finds the marked element with some probability, which
we refer to as the classical or quantum success probability. The
largest implementation of Grover’s algorithm to date is for n= 8
qubits, but without demonstrating a better-than-classical quan-
tum success probability5. Such better-than-classical performance
has been achieved for n= 36,7 and n= 48 qubits. Ref. 9 reported
better-than-classical success probabilities for n= 5 for a single
marked state, leaving open the possibility that the success
probability would be reduced by averaging over all marked
states. Here, employing two seven-qubit IBM Quantum Platform
(IQP) transmon qubit platforms ibm_nairobi (Nairobi) and
ibmq_jakarta (Jakarta), we demonstrate higher average success
probabilities than all previous implementations, for n ≤ 5.
Key to our demonstrations is the use of error suppression and

mitigation strategies. In particular, we use the [[4, 2, 2]] quantum
error-detecting code11,12, which encodes k= 2 logical qubits into
n= 4 physical qubits and detects arbitrary single-qubit errors, to
demonstrate a significant success probability enhancement
relative to using two copies of n= 2 physical qubits. These
success probabilities are further improved by combining error
detection with measurement error mitigation13,14.
We use the quantum error detection results to perform what we

call algorithmic error tomography: for each encoded algorithm

execution, based on the possible measurement outcomes we
compute the probability of an error detectable by the [[4, 2, 2]]
code or of a logical error. This allows us to compute a detailed
map of the errors that arise at the conclusion of the entire
algorithm. In this sense, algorithmic error tomography provides a
holistic and complementary perspective to techniques such as
gate set tomography15,16, which instead focuses on individual
gates applied during the algorithm.
We demonstrate better-than-classical performance for three or

more physical qubits by employing error suppression via
dynamical decoupling (DD)17–20. Toward this end, we consider
three robust DD families: universally robust (UR)21, concatenated
DD (CDD)22, and robust genetic algorithm (RGA)23 sequences. We
find that robust sequences with few pulses are vital in achieving
better-than-classical algorithmic performance.
We compare the experimentally obtained results for Grover’s

algorithm with an error model based on the concatenation of
amplitude damping, phase damping, and depolarization maps.
Each map is parameterized by the calibration metrics provided by
the IBM Quantum Platform (IQP) backend24. We test this model
using the observed success probabilities and the algorithmic error
tomography results; the latter provides a much more stringent
test. We find good agreement with the model, but only after using
DD. We interpret this in terms of the suppression of crosstalk by
DD25,26, which is unaccounted for by the error model.
In summary, we demonstrate a better-than-classical Grover

search on up to 5 qubits, enabled by quantum error detection and
dynamical decoupling. That is, we demonstrate algorithmic
performance that is enhanced beyond the break-even point—
where protected operations outperform their unprotected coun-
terparts—and the capabilities of the best possible classical
algorithm executing the same task. Along the way, we introduce
algorithmic error tomography—a characterization of errors afflict-
ing an entire quantum algorithm based on the syndromes of a
quantum error detecting code.
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The structure of this paper is as follows. In the section “Grover’s
Algorithm: background and implementation”, we summarize
Grover’s algorithm’s salient aspects and discuss its implementa-
tion. In the section “Open system model”, we describe the open
system model we use to compute the theoretically expected
algorithmic performance. Details about our dynamical decoupling
implementation are in the section “Dynamical decoupling”.
The section “Two-qubit encoded Grover algorithm protected by
quantum error detection” focuses on the performance of Grover’s
algorithm on n= 2 qubits with and without error detection.
Algorithmic error tomography is introduced in the section “Two-
qubit encoded Grover algorithm protected by quantum error
detection” as well. The results for 2 < n ≤ 5, where DD plays a
crucial role in achieving better-than-classical performance, are
given in the section “3-qubit to 5-qubit Grover’s algorithm
protected by dynamical decoupling”. We conclude with observa-
tions and the implications of our results in the section
“Discussion”. Additional details and calculations in support of
the main text are provided in the section “Methods”.

RESULTS
Grover’s Algorithm: background and implementation
Informally, the Grover problem is to search an unsorted list with
N= 2n elements for a marked element. Formally, the goal is to find
the marked n-bit bitstring m using the smallest number of queries
of an oracle that implements a function fm: {0, 1}n↦ {0, 1} defined
as fm(x)= δx,m. Classically, after q queries, the probability of
correctly identifying the marked element, which hereafter we refer
to as the success probability, is pCs ðq;NÞ ¼ ðqþ 1Þ=N (see the
section “Classical success probability”). Consequently, the classical
algorithm requires O(N) queries.
Grover’s algorithm provides a quadratic quantum speedup,

requiring only Oð ffiffiffiffi
N

p Þ queries1. This scaling remains valid with
more than one marked element27, or even for an arbitrary initial
amplitude distribution over the list elements28. In the original
setting of a single marked element, the state after q queries to the
oracle is

ψq

�� � ¼ sin½ð2qþ 1Þθ� mj i þ cos½ð2qþ 1Þθ� m?�� �
; (1)

where m?j i ¼ 1ffiffiffiffiffiffiffi
N�1

p
P

x≠m xj i and θ ¼ arcsin 1ffiffiffi
N

p
� �

. Thus, the

quantum success probability is pQs ðq;NÞ ¼ sin2 ð2qþ 1Þθ½ �, and
the theoretically optimal number of queries is qopt ¼ bπ4

ffiffiffiffi
N

p c. Note
that pCs ðq;NÞ<pQs ðq;NÞ for all q < qopt. However, the theoretically
optimal q is often not experimentally optimal. As circuit depth
increases with the number of queries and the problem size, there
is a trade-off between the added decoherence and the increase in
the success probability. Most experimental implementations of
Grover’s algorithm have focused on a single query5–8, but this
strategy does not scale well, as both pCs ð1;NÞ and pQs ð1;NÞ
decrease exponentially with n. We adopt an empirical approach to
identify the optimal number of queries such that ps is maximized.
We set q= 2 for all problem sizes other than n= 2 where qopt= 1.
We justify our choice of the number of queries in the section
“Survey of dynamical decoupling sequences”.
A schematic illustrating the implementation of the n-qubit

Grover algorithm is shown in Fig. 1a. The only multi-qubit
operation is the n-qubit controlled-phase gate Cn−1Z, which needs
to be implemented twice for each oracle query: once for the
oracle and again for the amplitude amplification step. Different
marked elements are represented by sandwiching the Cn−1Z gate
with Xi or Ii depending on whether the corresponding bit bi in the
marked bitstring m is 0 or 1. I.e., letting m= b1b2…bn, then Cn−1Z
in the oracle layer is preceded and followed by
X1�b1 � X1�b2 � � � � X1�bn . Likewise, amplitude amplification is
implemented as H⊗nX⊗n(Cn−1Z)X⊗nH⊗n.

For all problem sizes and oracles, we repeated each circuit for
the maximum number of shots allowed on the QPU: 20,000 and
32,000 for Nairobi and Jakarta, respectively. The reported success
probabilities were extracted by bootstrapping over these trials
and all N possible marked states. All error bars reflect 95%
confidence intervals obtained after bootstrapping unless specified
otherwise.

Open system model
The QPUs used here are calibrated daily, and the following
calibration metrics are recorded: the gate error eg and gate
duration τg, the qubit damping timescale T1 and dephasing
timescale T2, and the response matrix M for readout errors (see
Supplementary Information). In this section, we describe how
we estimate the theoretical performance of Grover’s algorithm
using these metrics. The model described here is mathematically
equivalent to the one used in Qiskit’s Aer API’s Noise-
Model.from_backend() (see Supplementary information of
Ref. 29).
In a closed system described by a state ρ, a unitary gate U acts

as UðρÞ ¼ UρUy. In reality, the system is open, so we model gate U
as a CPTP map E ¼ D � Φ � A � U , where D;A;Φ are depolarizing,
amplitude damping and phase damping maps respectively30. The
amplitude damping and phase damping maps account for
thermal relaxation, which we represent as R ¼ Φ � A. The
single-qubit Kraus operators for A ¼ fA0; A1g and Φ= {F0, F1} are

A0 ¼
1 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pA

p
� �

; A1 ¼ ffiffiffiffiffi
pA

p
0j i 1h j (2)

F0 ¼ ffiffiffiffiffiffi
pΦ

p
I; F1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pΦ

p
Z: (3)

The n-qubit depolarizing map is

D : ρ 7! ð1� pDÞρþ pD
I
d ¼

P
j
K jρK

y
j ; (4)

where d= 2n and D has d2 Kraus operators:

K0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2 � 1

d2
pD

s
I�n; (5)

Kj ¼
ffiffiffiffiffi
pD
d2

r
Pj; Pj 2 fI; X; Y; Zg�nnI�n: (6)

We parameterize these maps by their respective error
probabilities pA, pΦ, and pD, which in turn depend on the
calibration metrics eg, τg, T1, and T2. In particular,

pA ¼ 1� e�τg=T1 (7)

pΦ ¼ 1
2
ð1þ e�τg=TΦÞ (8)

pD ¼ dðFðRÞ � 1þ egÞ
dFðRÞ � 1

; (9)

where

1
TΦ

¼ 1
T2

� 1
2T1

; (10)

and

FðEÞ ¼
Z

dψ ψh jUyEð ψj i ψh jÞU ψj i ¼ dFproðEÞ þ 1
d þ 1

(11)

is the average gate fidelity for a CPTP map E. Here FproðEÞ is the
process fidelity of the map E with the target map U , and d is the
dimension of the map31,32.
For each gate, we know the total gate error eg, and so we

compute pD by setting 1� eg ¼ FðD � RÞ, which gives us Eq. (9)
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(see the section “Extracting the depolarizing parameter from gate
errors” for more details). In other words, we assign any gate error
not accounted for by relaxation to depolarization.
We require that pD ≥ 0 (i.e. FðR>1� egÞ and if this condition is

not met, then we assume that the error is entirely due to
depolarization. In particular, when FðRÞ � 1� eg, we set pD= egd/
(d−1) and E ¼ D � U . For idle intervals in the circuit, no gate error
eg is reported by IQP24, and therefore we model idle intervals with
duration τ as identity operations where only the relaxation R
matters. This is equivalent to setting the gate error for idle
intervals to eidle ¼ 1� FðRÞ.
In summary, we model single-qubit gates U1Q with gate

duration τg as

DðpDÞ � RðT1; T2; τgÞ � U1Q; (12)

and two-qubit gates U2Q with duration τg acting on qubits j, k are
modeled as

DðpDÞ � ½RjðTj1; T j
2; τgÞ � RkðTk

1; T
k
2; τgÞ� � U2Q (13)

where DðpDÞ has 16 Kraus operators for n= 2 [see the section
“Open system model”]. Idle intervals with duration τ are described
by

RðT1; T2; τÞ: (14)

Note that while we implement D � R, Qiskit’s API reverses this
order. While these channels do not commute, we found no
significant difference between these two orderings in our
simulations. In order to account for systematic measurement
errors, the response matrix M is applied to all reported
probabilities.
The quantum circuit for each experiment is first compiled into

the QPU’s native gate set and then scheduled using IQP’s API24.
We use this circuit to determine the order of operations and then
replace each unitary map U with the corresponding CPTP channel
E. In the end, we acquire a probability distribution corresponding
to the theoretical estimate of the circuit’s output as measured in
the computational basis.

Dynamical decoupling
DD is an open-loop quantum control technique wherein a
sequence of pulses is strategically inserted between gates to
suppress unwanted system-bath interactions17–20. While DD is
fully compatible with quantum error correction33, its most
economical form requires no encoding, measurements, or post-
processing. It is, therefore, perhaps the least resource-intensive
error suppression strategy. Error suppression via DD has a long

Fig. 1 Setup for Grover’s algorithm and its implementation with DD. a Circuit description for Grover’s algorithm. The relative amplitudes of
all the states at each stage of the algorithm are shown. Starting with an equal superposition state, the oracle assigns a relative phase
difference of π to the marked state. The amplitude amplification step then performs an inversion about the mean, allowing mj i to have a
larger probability amplitude than all other states. This round of querying and amplifying is repeated q times. The optimal number of rounds
for the n-qubit Grover problem is qopt ¼ bπ4 2n=2c. The only multi-qubit operation required to implement both the oracle and the amplitude
amplification step is Cn−1Z (vertical line in the Oracle and Amplitude Amplification boxes). b Grover and DD. The timeline for one oracle query
for 4-qubit Grover with the marked state 1111j i is shown. Qubits q4 and q6 are spectators in this example. Recall that each oracle query for
4-qubit Grover requires two C3Z gates. C3Z requires 14 CNOTs, and the entire circuit uses 28 CNOTs; see the section “Circuit construction” for
circuit compilation details. The pre-DD circuit elements are grayed out, and the colored lines represent the DD pulses. The DD sequence
exemplified here uses four pulses for illustration purposes; in reality, we used longer sequences. The scheme demonstrated highlights four
primary features of our implementation: (1) all idle intervals, including the ones on inactive qubits, are filled, (2) only one repetition of each
sequence is performed, and the pulse interval is adjusted accordingly, (3) each pulse in the sequence can be unique, (4) a single qubit can
experience multiple DD repetitions if there are multiple idle intervals.
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history of experimental demonstrations on various quantum
devices (see ref. 34 for a review). Here, we employ a ‘decouple
then compute’ strategy35,36, whereby control pulses constituting
short but complete DD sequences are interleaved with the
quantum circuit, exploiting intervals when individual qubits in the
corresponding quantum circuits are idle. A scheme demonstrating
our strategy is shown in Fig. 1b. This interleaving strategy has
been used to improve quantum volume37, variational quantum
algorithms38, and most recently to demonstrate an algorithmic
quantum speedup39.
In addition to the popular basic DD sequences—CPMG40 and

XY418—we consider three robust sequence families: universally
robust (UR) DD21, concatenated DD (CDD)22, and robust genetic
algorithm (RGA) DD23 (see the section “Survey of dynamical
decoupling sequences” for more details). Other than CPMG, these
are all high-order, multi-axis sequences that are universal for
single qubits, i.e., they suppress arbitrary single-qubit errors
beyond first order in the Magnus or Dyson expansion41.
Robustness refers to the mitigation of axis-angle and over/
under-rotation errors. In addition, these sequences can cancel
crosstalk errors25,26. Our sequence choice is informed by the
results of ref. 42, which reported on a significantly more
comprehensive survey of sequences using superconducting
qubits and concluded that robust sequences are preferred default
choices. Here we do not utilize the OpenPulse functionality of the
IQP platforms, nor do we implement Uhrig-type43 non-uniform
pulse interval DD sequences such as quadratic DD (QDD)44, which
were also found to perform well in the survey42. Both have the
potential to enhance our results and are attractive options for
future studies.

Two-qubit encoded Grover algorithm protected by quantum
error detection
The [[4, 2, 2]] code11 is the smallest possible qubit-based error-
detecting code12 and has been invoked for proof-of-principle
demonstrations of quantum error detection45. Notably, it has been
used to improve Clifford gate set fidelities46 and the performance
of variational algorithms47. However, measurement error mitiga-
tion (MEM) played a dominant role in Ref. 47, and it is unclear if
error detection alone would have improved performance in that
work. Here, we compare the performance of the two-qubit Grover
algorithm with and without the [[4, 2, 2]] code and MEM. The
unencoded version needs two qubits, while the encoded version
requires four. To equalize resources, we simultaneously use two

copies of the unencoded circuit and report the best fidelity of the
two copies. We incorporate MEM using iterative Bayesian
unfolding via the pyIBU package48 (see the Supplementary
Information for details about MEM). Ultimately, we demonstrate
a conclusive improvement in algorithmic performance due to
quantum error detection.

Encoding into the [[4, 2, 2]] code
The stabilizers of the [[4, 2, 2]] code are XXXX and ZZZZ. The logical
operators of this code can be chosen as
X1 ¼ XIXI; X2 ¼ XXII; Z1 ¼ ZZII, and Z2 ¼ ZIZI. Two-qubit Grover
also requires the encoded Hadamard H and controlled-phase C Z.
The deconstruction of the logical circuit into physical components
is detailed in the section “Circuit construction”, and the resultant
encoded two-qubit Grover circuit is shown in Fig. 2.
The encoding and decoding circuits, Uenc and Uy

enc, are also
depicted in Fig. 2. The logical basis states are:

00
�� � ¼ Uenc 0000j i ¼ 0000j i þ 1111j iffiffiffi

2
p (15)

01
�� � ¼ Uenc 0010j i ¼ 0011j i þ 1100j iffiffiffi

2
p (16)

10
�� � ¼ Uenc 0111j i ¼ 0101j i þ 1010j iffiffiffi

2
p (17)

11
�� � ¼ Uenc 0101j i ¼ 1001j i þ 0110j iffiffiffi

2
p (18)

These are also the four possible marked states in the two-qubit
Grover problem. Consequently, after applying Uy

enc to decode the
results, only states from the set I ¼ f 0000j i; 0010j i; 0111j i; 0101j ig
could have arisen from valid logical states. Therefore, we postselect
by removing any of the 12 measurement outcomes that do not
correspond to valid logical states, i.e., states in I? ¼ f0; 1g4nI . This
does not guarantee that all measurement outcomes in I correspond
to the correct marked state: logical errors that prepare the wrong
marked state are undetected by the code and also appear as
measurement outcomes in I (more on this below). However, since
we know which marked state the circuit was supposed to prepare,
we can still reliably check whether a given valid measurement
outcome (in I ) corresponds to the intended marked state.

Fig. 2 Encoded two-qubit Grover. The two-qubit single-query (q= 1) Grover circuit encoded using the [[4, 2, 2]] code for the marked state
01j i is shown. The encoding step (left dashed box) prepares the encoded initial state 00

�� � ¼ 1ffiffi
2

p 0000j i þ 1111j ið Þ (the 4-qubit GHZ state) from
the physical initial state 0000j i. The encoded Grover circuit is implemented by converting each physical gate of the n= 2 case of Fig. 1a into its
logical counterpart, which is then converted into a physical 4-qubit implementation (middle left and right dashed boxes). The amplitude
amplification step is the 00-oracle sandwiched by Hadamard gates. See the section “Circuit construction” for further details. P= diag(1, i) is the
phase gate. We post-select the measured results by decoding (right dashed box) and discarding any measurement outcome for which the
code detects errors, i.e., does not result in one of the four decoded states f 0000j i; 0010j i; 0111j i; 0101j ig. Note that the circuit is not meant to
be fault-tolerant, so decoding is acceptable.
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Algorithmic error tomography
While the states in I? do not correspond to valid (encoded)
Grover algorithm outcomes, there is important information in such
outcomes. They allow us to diagnose the frequency with which
different sets of errors corresponding to the different syndromes
of the [[4, 2, 2]] code appear at the end of the circuit (but before
decoding) for a given encoded marked state. In this sense, these
are the effective, or cumulative errors the code can detect at the
conclusion of the algorithm, which is why we refer to the
procedure we are about to describe as algorithmic error
tomography (AET).
Let us first consider the different ways errors can occur before

the measurement outcome is obtained. In principle, multiple
errors of arbitrary weight can occur at multiple locations
anywhere during the circuit, including between the decoding
and measurement steps or even during the measurement. We
will assume that the latter are perfectly implemented and show
later that even decoding or measurement errors have a
detectable signature. In other words, we assign a location to
the cumulative errors as if they happened just before decoding,
i.e., between the Amplitude Amplification and Measurement
boxes in Fig. 2.
Then, given an [[n, k, 2]] stabilizer error-detecting code C, in AET,

we treat all these errors either as detectable or as logical errors.
Formally, if b

�� � 2 C is a code basis state, where b∈ {0, 1}k, E is an
error, Ualg is the unitary implementing the algorithm over the
given encoding, Udec ¼ Uy

enc is the decoding unitary for C, and M
denotes a projective measurement in the computational basis,
then in AET we interpret each measurement outcome b0 2 f0; 1gn
as having arisen from MUdecEUalg 0

k
���

E
. More specifically, in the

Grover case Ualg 0
k

���
E
¼ b

�� �
, where Ualg implements Grover’s

algorithm for the marked state b (the first three boxes in Fig. 2).
M denotes a simultaneous measurement of the Pauli

observables fZigni¼1, and each value of b0 is one of the 2n possible
measurement outcomes. These outcomes label the 2k logical

outcomes of the logical Z operators fZigki¼1 and the 2n−k error
syndromes of the code C. Each error syndrome corresponds to a

particular set fð�1Þsi 2 f�1; 1ggn�k
i¼1 of eigenvalues of the n− k

stabilizer generators fSign�k
i¼1 , which we denote by si= 0 or si= 1

for the eigenvalue 1 or− 1, respectively. Thus, the no-error
subspace is labeled by the bitstring s= 0n−k, while all other
bitstrings s 2 f0; 1gn�k n 0n�k label errors that are detectable by
the code. The remaining k bits fzigki¼1 label the measurement
outcomes of the logical Z operators, i.e., the eigenvalues ð�1Þzi of
Zi , with 1 ≤ i ≤ k. Decoding the error syndromes and the logical
outcomes can be done by backpropagating the individual Zi
observables through the decoding circuit. This is best illustrated
via the example of the [[4, 2, 2]] code, as we do next.
In the case of the [[4, 2, 2]] code, the four measured bits

correspond to the eigenvalues of the stabilizer generators
S1= XXXX and S2= ZZZZ and two logical operators Z1 and Z2.
To see this, we backpropagate the Zi observables of each qubit
through the Udecoding circuit in Fig. 2. Each time Zi passes a gate,
we conjugate it by the gate’s inverse unitary (quantum evolution
in the Heisenberg picture). For example, Z1↦ HZ1H= X1↦ CNOT
X1 CNOT= X1X2↦…↦ X1X2X3X4, while Z2↦ CNOT Z2 CNOT=
Z1Z2↦…↦ Z1Z2, etc. In this manner, we find that given a
measured bitstring b0 ¼ b01b

0
2b

0
3b

0
4:

1. First (top) qubit: ð�1Þb01 ¼ XXXX

2. Second qubit: ð�1Þb02 ¼ ZZII ¼ Z1

3. Third qubit: ð�1Þb03 ¼ IZZI ¼ Z1Z2

4. Fourth qubit: ð�1Þb04 ¼ IIZZ ¼ ZZZZ Z1,

where we have equated the operator with its eigenvalue in a
slight abuse of notation. Consequently, S1 ¼ XXXX ¼ ð�1Þb01
and S2 ¼ ZZZZ ¼ ð�1Þb02þb04 , so that the error syndrome is given
by

s1 ¼ b01; s2 ¼ b02 þ b04: (19)

The logical outcomes are given by Z1 ¼ ð�1Þb02 and
Z2 ¼ ð�1Þb02þb03 , i.e.,

z1 ¼ b02; z2 ¼ b02 þ b03: (20)

It is simple to verify that the four states in the set I are then the
unique set for which s1= s2= 0 (no error detected) while
{z1, z2}∈ {00, 01, 10, 11}. Each of the remaining 12 bitstrings
corresponds to a non-trivial error syndrome; e.g., suppose that
we measure the bitstring b0 ¼ 1011. Then s1= 1, s2= 0+ 1= 1, so
an error is detected. Note that this string also yields z1= 0 and
z2= 0+ 1= 1 as a logical measurement outcome, but this
outcome must be ignored since it is accompanied by the
detection of an error. The complete mapping from measured
bitstrings b0 to error syndromes s is given in
Table 1.
As this analysis illustrates, the 4-qubit Hilbert space decomposes

as H ¼ C � C?, where the code space C ¼ Uenc span ðIÞ corre-
sponds to the four measurement outcomes s1= s2= 0 with
z1, z2∈ {00, 01, 10, 11}, and the error subspace C? ¼ Uenc span ðI?Þ
corresponds to the remaining 12 measurement outcomes where
s1 and s2 are not both zero. We can further decompose C? into the
three syndrome subspaces C?01 � C?10 � C?11, where the subscripts
denote s1 and s2 (z1 and z2 are arbitrary).
However, there is more we can extract from the measurement

outcomes than just the syndromes, as shown in Table 2. Namely,
each bitstring b0 arises from a particular set of Pauli errors we can
straightforwardly identify. Consider, e.g., the Grover circuit for
the marked state 00

�� �
. As mentioned above, in AET we treat the

errors occurring during this circuit as an effective Heisenberg-
picture Pauli error E between the conclusion of the circuit and
the start of the decoding. Hence, UdecE 00

�� �
represents the state

arising prior to measurement, and when it is measured on a
computational basis we obtain a bitstring b0. We can now
exhaustively identify the complete set of Pauli errors E giving rise
to the same b0, starting from 00

�� �
, by solving b0j i ¼ UdecE 00

�� �
for

all compatible 4-qubit Pauli errors E (we are slightly abusing
notation by writing b0j i in the binary representation instead
of ±1). This set is given in the bottom half of the error outcome
table (Table 2), where each column is labeled by the correspond-
ing measurement outcome b0, and the first four rows correspond
to the marked states 00

�� �
; ¼ ; 11

�� �
. For example, the entry 0001

Table 1. Mapping between measured bitstrings and syndromes as
computed from Eq. (20).

Measured bitstring b0 ¼ b01b
0
2b

0
3b

0
4 error syndrome s= s1s2

{0000, 0010, 0101, 0111} 00

{0100, 0110, 0011, 0001} 01

{1000, 1010, 1111, 1101} 10

{1100, 1110, 1011, 1001} 11

The four bitstrings in the first row correspond to the no-error syndrome,
and we accept the corresponding values of the logical operators Z1; Z2.
The remaining 12 bitstrings can be grouped into three error syndromes.
These bitstrings correspond to measurement outcomes indicating that an
error has been detected. We use the corresponding measurement results
for AET.
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in column 5 of the row marked by 00
�� �

means that the
measurement outcome was b0 ¼ 0001 for the oracle marking
00
�� �

, and the complete set of errors that could have given rise to
this measurement outcome is IIIX, IIZY, IZIY,… (see column 5).
The [[4, 2, 2]] code does not distinguish between these errors but
does detect them.
We re-emphasize that these errors are in the Heisenberg

picture, i.e., they are the result of forward-propagating physical
errors from the start of the circuit to the location corresponding
to the point between the end of the Amplitude Amplification
step and the start of the Measurement step in Fig. 2 (indeed, we
derived them by back-propagating each Zi from the end of the
Measurement step). Therefore they do not necessarily represent
physical errors at this location, and an error operator such as ZIII
listed in column 9 of Table 2 should not be confused with a
physical Z error on the first qubit, since this ZIII error could have
arisen from an actual physical XIII error if the latter took place
between the P and H gates in the Amplitude Amplification step
(see Fig. 2). Nevertheless since all of the gates in the encoded
two-qubit Grover circuit after the CNOT gates of the Initializa-
tion step are single-qubit gates, any weight-1 physical error
appearing after these CNOT gates will remain a weight-1 error
in the Heisenberg picture. This means that if weight-1 physical
errors dominate the higher-weight errors, then this will
manifest as a predominance of a single column of the s= 10
syndrome, since by inspection of Table 2, column 9 corresponds
to the largest number of weight-1 errors: four out of twelve. We
will see the manifestation of this remark in the experimental
results below.
The first four columns in Table 2 correspond to undetectable

errors: the errors they list commute with the stabilizers of the

[[4, 2, 2]] code (boxed in the first column) and correspond to
logical errors. For example, IXYZ 00

�� � ¼ i 11
�� �

. Thus, even if the
measurement yields a bitstring in I (the first four columns), the
state prepared by the circuit could have been the wrong marked
state. Of course, this is only problematic when we do not know the
correct answer in advance; in the present case, since we program
the circuit, we can immediately check whether a given measure-
ment outcome in I is the correct answer or one of the three other
valid logical states.
We can now construct the algorithmic error tomography (AET)

table: given a marked state b, each observed state b0j i will have
an empirical probability pb0 jb ¼ Nb0=Ntot, where Nb0 is the number
of times b0j i is observed out of a total of Ntot observations. The
AET table thus gives us the empirical probabilities associated
with the different errors classified in the error outcome table
(Table 2).
Figures 3 and 4 show the AET tables after implementing or

simulating the encoded two-qubit Grover algorithm on Jakarta
and Nairobi, respectively. Each of the four panels corresponds
to a different AET table, with the top row representing
experiments and the bottom row representing simulations
using the model of the section “Open system model”. The left
and right panels of Fig. 3 exclude or include DD, respectively.
We did not use DD in the Nairobi case (Fig. 4). Each row
corresponds to a different encoded marked state z= z1z2 within
each syndrome table. Other than the logical errors counted
during postselection (first column), all other columns represent
outcomes ignored during the postselection step. More pre-
cisely, the columns represent the empirical probabilities of
observing the bitstrings starting from column 5 of Table 2.

Table 2. Error outcome table.

Marked state b0

00
�� �
01
�� �
10
�� �
11
�� �

0000
0010
0111
0101
s ¼ 00

0010
0000
0101
0111
s ¼ 00

0111
0101
0000
0010
s ¼ 00

0101
0111
0010
0000
s ¼ 00

0001
0011
0110
0100
s ¼ 01

0011
0001
0100
0110
s ¼ 01

0110
0100
0001
0011
s ¼ 01

0100
0110
0011
0001
s ¼ 01

1000
1010
1111
1101
s ¼ 10

1010
1000
1101
1111
s ¼ 10

1111
1101
1000
1010
s ¼ 10

1101
1111
1010
1000
s ¼ 10

1001
1011
1110
1100
s ¼ 11

1011
1001
1100
1110
s ¼ 11

1110
1100
1001
1011
s ¼ 11

1100
1110
1011
1001
s ¼ 11

Error type IIXX IXIX IXXI IXXX IIXY IXIY IXXZ IIXZ IXIZ IXXY

IIYY IXZY IXYZ IIZY IIYZ IXZZ IXYY IIYX IXZX IXYI IIZX IXZI IXYX

IZXY IYIY IYXZ IZIY IZXZ IYIZ IYXY IZXX IYIX IYXI IZIX IZXI IYXX

IZYX IYZX IYYI IZZX IZYI IYZI IYYX IZZZ IZYY IYZY IYYZ IZZY IZYZ IYZZ IYYY

IIZZ XXII XIXI XIIX XXXI XXIX XIXX XXXY XXIZ XIXZ XIIY XXXZ XXIY XIXY XIIZ

IZIZ XXZZ XIYZ XIZY XXYZ XXZY XIYY XIZZ XXYX XXZI XIYI XIZX XXYI XXZX XIYX XIZI

IZZI XYIZ XZXZ XZIY XYXZ XYIY XZXY XZIZ XYXX XYII XZXI XZIX XYXI XYIX XZXX XZII

XXYY XYZI XZYI XZZX XYYI XYZX XZYX XZZI XYYY XYZZ XZYZ XZZY XYYZ XYZY XZYY XZZZ

XYXY YXIZ YIXZ YIIY YXXZ YXIY YIXY YIIZ YXXX YXII YIXI YIIX YXXI YXIX YIXX

XYYX YXZI YIYI YIZX YXYI YXZX YIYX YIZI YXYY YXZZ YIYZ YIZY YXYZ YXZY YIYY YIZZ

YXXY YYII YZXI YZIX YYXI YYIX YZXX YZII YYXY YYIZ YZXZ YZIY YYXZ YYIY YZXY YZIZ

YXYX YYZZ YZYZ YZZY YYYZ YYZY YZYY YZZZ YYYX YYZI YZYI YZZX YYYI YYZX YZYX YZZI

YYXX ZIXY ZXIY ZXXZ ZIIY ZIXZ ZXIZ ZXXY ZIXX ZXIX ZXXI ZIIX ZIXI ZXII ZXXX

ZIIZ ZIYX ZXZX ZXYI ZIZX ZIYI ZXZI ZXYX ZIZZ ZIYY ZXZY ZXYZ ZIZY ZIYZ ZXZZ ZXYY

ZIZI ZZXX ZYIX ZYXI ZZIX ZZXI ZYII ZYXX ZZIZ ZZXY ZYIY ZYXZ ZZIY ZZXZ ZYIZ ZYXY

ZZII ZZYY ZYZY ZYYZ ZZZY ZZYZ ZYZZ ZYYY ZZZI ZZYX ZYZX ZYYI ZZZX ZZYI ZYZI ZYYX

The top half gives the possible measurement outcomes b0 for each of the four (encoded) marked states prepared by the Grover oracle. The bottom half gives
the Pauli error types that could have generated the measurement outcome in the same column, for a given marked state. In the fifth row, we list the
corresponding syndrome, computed using Eq. (20). The boxed operators in the first column are the four stabilizers of the [[4, 2, 2]] code. Every other operator
corresponding to the s= 00 syndrome (the first four columns) is a logical error or logical operator. The other boxed operators highlight all the weight-1 errors,
of which 4/12 belong to a single column of the s= 10 syndrome. Columns 5–12 correspond to the detectable errors. Errors are listed in lexicographical order in
each column.
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The column headers of the AET tables are the first row (i.e.,
marked state 00

�� �
) of Table 2.

It is visually clear from both Figs. 3 and 4 that the percentages in
column 5 are higher than the rest. This result can be explained in
terms of the above analysis of errors in the Heisenberg picture.
Namely, column 5 corresponds to the errors in column 9 of
Table 2, which contains the largest number of weight-1 errors. The
data presented in Figs. 3 and 4 thus support the notion that the
error processes underlying weight-1 errors are dominant. This
analysis highlights the utility of AET as a diagnostic of the

dominant errors in a given circuit and suggests that error-
correcting codes can be correspondingly tailored and optimized.
We discuss these results in more detail in the following section,

showing how AET in addition allows us to identify and mitigate
qubit crosstalk.

DD protection and comparison with the open system model
Recall that we define the success probability ps as the probability of
correctly identifying the marked element. We denote the empirical

Fig. 4 AET table for Nairobi. Data entries are as in Fig. 3, except that only data without DD is shown. Good agreement is observed between
the results of our error model and the experiment. In particular, compared to the AET table for Jakarta (Fig. 3), we do not observe an
asymmetry in s= 10 type errors across marked states.

Fig. 3 AET table for Jakarta. The bitstring observed after Udec either corresponds to a marked entry or an error tabulated in Table 2.
Column headers correspond to the bitstrings for the marked state 00

�� �
, but the values inside the table are organized identically to Table 2

(starting from its first row, column 5). I.e., the c’th column of each of the four tables shown corresponds to the c+ 4’th column of Table 2.
For example, the percentages in the second row and fifth column of each of the four tables shown correspond to measuring the bitstring
b0 ¼ 1010 when the marked state is 01

�� �
(since this is the bitstring found in column 9 of Table 2 in the row of 01

�� �
). The complete set of

errors that could have given rise to this outcome is listed in column 9 of Table 2. Top: experimental results. The numbers in each box are
the empirical percentage probabilities with 2σ standard deviation. Logical error percentage probabilities are shown in the first column of
each table. Each row corresponds to a different marked state. The probabilities in each row do not sum to unity since we do not display
the probability of obtaining the correct marked state. Left: without DD protection. Right: with DD protection. Bottom: the same for the
simulated model.
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success probability obtained for a list of N elements after q oracle
queries by pes ðq;NÞ. Our results are summarized in Fig. 5, which
shows the failure probability (1� pes ð1; 4Þ) for the unencoded and
the encoded implementations on two different QPUs.
Before comparing the results with and without encoding, we

analyze whether the observed performance matches the model of
the section “Open system model” in both cases. Let us focus first
on Jakarta, where without DD, the empirical failure probabilities in
the unencoded case are slightly higher than predicted; see the
leftmost column of Fig. 5. Fortunately, in the encoded case,
Jakarta’s failure probability overlaps with the prediction bands
(Fig. 5, third column from the left). However, a closer look at the
detected errors via AET reveals a different discrepancy. The
simulated results for Jakarta (bottom-left panel in Fig. 3) do not
quite match the empirical error profile (top-left panel of Fig. 3), in
particular in the 1000 column for the marked state 00

�� �
(the

yellow entry), which captures the errors listed in column 9 of
Table 2. In other words, Jakarta does not quite match the
simulations for unencoded or encoded circuits without DD: the
empirical results show stronger syndrome s= 10-type errors and
also a stronger marked state-dependent asymmetry in these
errors than the simulations. In contrast, for Nairobi, Fig. 4 shows
that the AET simulation results essentially agree with the
empirically observed ones. This also holds for the simulated
failure probabilities (Fig. 5).
To investigate Jakarta’s observed discrepancy, we first

attempt to systematically amplify pD, T1, and T2 by multiplying
each quantity by a phenomenologically determined variable λi

(see Supplementary Information). This leads to a better overlap
between predicted and observed success probabilities but does
not reproduce the AET asymmetry seen in Fig. 3. This shows the
limitations of the phenomenological model of the section
“Open system model” and highlights the level of detail provided
by AET.
However, the Jakarta discrepancy is effectively removed after

the application of DD, as can be seen by comparing the top-right
and bottom-right panels of Fig. 3. Our two-qubit Grover
implementation uses four qubits, leaving three inactive qubits in
the 7-qubit QPUs used in our experiments. As there are no idle
intervals in the unencoded two-qubit Grover circuit, we applied
the XY4 sequence on the inactive qubits—q2,q4, and q6 (see
Supplementary Information). We applied the XY4 sequence to
both the active and inactive qubits for the encoded case. Due to
the relative sparsity of idle intervals in the two-qubit Grover
circuits, we did not attempt to implement robust sequences,
which require more pulses than XY4.
Figure 5 shows how the failure probability and the rates of

various detected errors in Jakarta are affected by the presence
of DD. For the unencoded case (the first two columns from the
left of Fig. 5), DD improves the performance slightly, and the
discrepancy between the predicted and observed failure
probabilities is removed. The improvement by DD in the
unencoded two-qubit Grover case is in concurrence with
refs. 25,26, which showed the efficacy of the XY4 sequence in
suppressing static ZZ crosstalk in superconducting qubits. In
other words, these results confirm that ZZ crosstalk—which is
well-documented for superconducting QCs49—likely contributes
to the observed performance being slightly worse than
expected from the model.
Adding the XY4 sequence removes most of the empirical-

theoretical discrepancies in both the magnitude and the asymmetry
of the errors exhibited by the AET profiles, as seen by comparing the
top and bottom right of Fig. 3. With DD, the encoded circuits have a
weaker state-wise asymmetry in s= 10-type errors than seen in the
left column of Fig. 3. Moreover, the DD-protected circuits more
closely reproduce the distribution of detected errors predicted by
the model of the section “Open system model” than the same
circuits without DD. This observation—that the agreement between
our theoretical model and the experimental results improves under
DD—is further validated below.
The close agreement we found for Nairobi between our

(crosstalk-free) model and the experimental results without DD or
MEM (Fig. 4 and the first and third from left columns of Fig. 5)
suggests that crosstalk does not play a significant role in this QPU.
Figure 5 does exhibit a significant discrepancy between the model
and the experimental Nairobi results when MEM is included
(second and last columns of Fig. 5). As we show in the
Supplementary Information, this discrepancy arises from the choice
to mitigate readout errors using iterative Bayesian unfolding (IBU)14.
Finally, Fig. 6 complements the first and last columns of Fig. 5, as

well as the AET results, and shows the output distributions for
Jakarta and Nairobi for the two-qubit Grover case, with and without
encoding and MEM. The main observation is that for the unencoded
case, the maximum success probability is obtained for the marked
state 00j i, which is also the QPU’s ground state; this is unsurprising
given the dominance of amplitude damping errors. With encoding
plus error mitigation, the overall performance increases and
becomes independent of the marked state.

Success probability: beyond break-even improvement
We now focus on the effect of error detection on two-qubit
Grover performance as seen in Fig. 5. Due to the shallow circuit
depth, even without any error detection, pes ð1; 4Þ 	 93:0%—
already much higher than the classical success probability
pCs ð1; 4Þ ¼ 1

2. Adding error detection improves the success

Fig. 5 Two-qubit Grover results. Two-qubit single-query Grover
failure probability results without (Unenc) and with (Enc) postselec-
tion using the 4; 2; 2½ �½ � code on Jakarta and Nairobi are shown. The
transparent boxes represent the theoretically expected failure
probabilities from the model described in the section “Open system
model”, which does not include DD; their centers correspond to the
average over marked states, and their boundaries correspond to
95% confidence intervals after bootstrapping. The colored bars
represent the experimental results (see the legend), and the
experimental error bars (black for Jakarta with DD and Nairobi, or
pink for Jakarta without DD) correspond to 95% confidence intervals
after bootstrapping. Dark green appears where the pink and light
green colors (i.e., Jakarta with and without DD) overlap. In the Unenc
case, we run two identical copies of the two-qubit Grover problem
to equalize resources with the Enc case and choose the copy with
the highest success probability. Also shown are the results with
MEM using iterative Bayesian unfolding (see the Supplementary
Information for details). Failure probabilities with and without DD
protection are shown for Jakarta but not for Nairobi, where the
simulated and observed error tomography and failure probabilities
are in agreement (see the section “DD protection and comparison
with the open system model”). The presence of DD does not affect
the success probability in the encoded implementation, and as a
result, the pink bars are mostly hidden behind the green bars.
However, the nature of detected errors, even in the encoded case, is
affected by DD (see Fig. 3). All data for different runs on the same
QPU were collected on the same day; data from different QPUs were
collected on different days.
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probability to ~96.0%. The effect of MEM is similar to that of error
detection: the success probability increases to ~97.0%. Combin-
ing error detection with MEM results in additional improvement:
we obtain success probabilities of ~98.5% on Nairobi and ~99.5%
on Jakarta. Due to error detection and MEM, Jakarta’s success
probabilities increase by an order of magnitude.
This improvement over the unencoded case is non-trivial,

considering that the [[4, 2, 2]] code can only detect weight-1
errors, and the encoded circuit requires six two-qubit gates. In
contrast, the unencoded version requires only two. The
relatively high success probabilities we observe in the encoded
case suggest that most errors, even those due to the two-qubit
gates, manifest as weight-1 errors. This shows, albeit for a
relatively small problem size, that error detection can more than
offset the extra errors introduced due to increased circuit depth
and complexity.
We have demonstrated an algorithmic beyond-break-even

improvement using error detection in the sense that the
protected algorithm clearly outperforms its unprotected counter-
part. Previous break-even improvements were at the individual
gate level50,51. Here we have demonstrated such an improvement
at the level of the execution of an entire algorithm, albeit of a
fixed size. The holy grail is to demonstrate the implementation of
an algorithm for a family of problem sizes at the logical level with
higher fidelity than the same algorithm executed at the physical
level. Achieving this in our setting would require increasing the
problem and code sizes. The family of [[2k+ 2, k, 2]] subsystem
quantum error detecting codes is an attractive option in this
regard since all their logical operators can be chosen to be
2-local52, which simplifies the circuit design. An experimental

implementation of such larger codes and problem sizes remains a
coveted goal.

3-qubit to 5-qubit Grover’s algorithm protected by dynamical
decoupling
Crossing the classical threshold in Grover’s search for an increas-
ingly larger number of qubits is a meaningful goal, not only
because the quadratic speedup offered by Grover’s algorithm leads
to a more dramatic improvement as the problem size increases but
also because it becomes more challenging to realize the speedup
experimentally as the controlled phase gate Cn−1Z is an n-qubit
entangling operation. In the implementation of ref. 5, 5-qubit
Grover required nearly a thousand two-qubit gates, and for 8-qubit
Grover, nearly 15,000 gates were used. Notably, this exponential
increase in the number of two-qubit gates with problem size is
because ref. 5 did not use ancilla qubits to make the circuits
shallower. It is possible to implement Cn−1Z with circuits where
two-qubit gates scale linearly with n (see the section “Circuit
construction”). Ref. 8 employed shallower circuits for Cn−1Z and
solved 5-qubit Grover with slightly better-than-random success
probabilities but without better-than-classical performance. Ref. 9,
which improved upon ref. 8, has reported the highest Grover’s
algorithm success probabilities to date for n= 5, using a Honeywell
ion-trap device; however, only a single marked state ( 01011j i) was
tested. Whether the success probability averaged over all 25

marked states crosses the classical threshold remains to be tested.
Ref. 8’s results on superconducting-qubit-based QCs for the same
marked state had lower success probabilities than reported in our
experiments. Using quantum multiprogramming, ref. 10 improved
algorithmic success probabilities for quantum partial search (a
variation of the canonical Grover search) even on superconducting-
qubit-based devices. However, quantum multiprogramming could
not increase algorithmic performance for the canonical Grover
algorithm. While noteworthy, Ref. 10’s approach requires modifying
Grover’s algorithm and substantially increasing the number of
physical qubits used in the algorithm. Here our goal is to provide a
comprehensive demonstration of better-than-classical performance
for Grover’s algorithm, along with a theoretical model for the open-
system effects that explain our results.
We use an efficient, ancilla-assisted implementation of general-

ized Toffoli-type gates8,53 to implement Cn−1Z (see the section
“Circuit construction”). Our implementation, which builds upon
the circuits from ref. 8, uses 8, 14, and 22 CNOTs for a single Cn−1Z
gate for n= 3, 4, and 5, respectively. The deepest circuit we
implement is two oracle queries for 5-qubit Grover, totaling 88
CNOTs. Despite being far shallower than ref. 5’s implementation,
this is still a relatively deep circuit; e.g., the quantum supremacy
demonstration of ref. 54 and the algorithmic quantum speedup
demonstration of ref. 39 involved circuits of depth up to 40 and 44,
respectively. As we detail next, owing to error suppression via DD,
we crossed the classical probability threshold for all problem sizes,
including for 5-qubit Grover.

Implementation with dynamical decoupling
DD sequences are inserted into idle intervals of a quantum circuit
using the ‘decouple then compute strategy’ demonstrated in
Fig. 1b, which shows the DD insertion scheme for a single query
on a 4-qubit Grover circuit. In contrast to two-qubit Grover, where
we restricted DD implementation to XY4, n ≥ 3 has ample idle
intervals. Therefore we can implement robust sequences (RGA,
CDD, UR) requiring more than four pulses. Each of these families
has multiple members that are parameterized by the number of
pulses in the sequence. We restrict our implementation to DD
sequences with fewer than 32 pulses and, for each circuit, only
consider sequences that we can fit in the idle intervals available in
the quantum circuit.

Fig. 6 Two-qubit Grover results. The left and right panels show
the output distribution for Jakarta (a) and Nairobi (b) with all
possible oracles and two setups: unencoded and encoded with
MEM. As in Fig. 5, Unenc corresponds to two copies of unencoded
two-qubit Grover, of which the best result is reported. Enc
corresponds to the results encoded using the [[4, 2, 2]] code. The
Enc results are reported after postselection. Let ps(m, b, e) be the
observed success probability for marked state m, detected state b,
and experiment type e ∈ {Enc,Unenc+MEM,Enc+MEM}. The
success probability changes from orange to green when
psðm; b; eÞ>maxm;b psðm; b; Unenc Þ. Error bars correspond to 95%
confidence intervals.
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At each problem size n, there are 2n possible oracles, each
corresponding to one marked state bj i, where b∈ {0, 1}n. We
proceed as follows to avoid implementing this exponentially large

set of oracles. Given 0 ≤ k ≤ n, there are
n
k

� �
distinct bitstrings

that are identical to 0k1n−k up to qubit permutation. Recall that
marked states differ only by whether X or I gates surround the
Cn−1Z gate. Thus, we only consider the n+ 1 oracles with marked
states 0k1n�k

�� �
; k 2 f0; ¼ ; ng. We then estimate the average

success probability by computing

hpðnÞi ¼ 1
2n

Xn

k¼0

n

k

� �
p 0k1n�k
�� �	 


: (21)

We use 〈p(n)〉 as the metric for selecting the optimal DD
sequences among those we tested and to identify the experi-
mentally optimal number of queries qeopt. Once the optimal DD
sequence and qeopt are identified for each n, we run the
unprotected and the DD-protected Grover’s algorithm again at
qeopt, but this time for all 2n oracles.

Optimal DD sequence and number of queries
Our first goal is to identify the best DD sequence and qopt. The
determinations made in this step inform our choices for the next
step. For conciseness, in this section, we focus on the results of
the largest problem size we implemented, i.e., n= 5. The section
“Survey of dynamical decoupling sequences” shows the results
for 3 ≤ n ≤ 5 on both Nairobi and Jakarta. The performance of
various DD sequences for Nairobi for 5-qubit Grover are
compared in Fig. 7a by computing 〈p(5)〉. The unprotected
evolution (Free) is marginally better than choosing an element
randomly and does not cross the classical threshold. DD
protection is necessary to cross this threshold, but the two-
pulse sequences RGA2x and CPMG still result in worse-than-
classical performance. The RGA and UR sequences perform well,
particularly those with fewer than 12 pulses. RGA8a and RGA8c
are tied as the best-performing sequences; we choose RGA8a for
the next step, where we implement all of the 25 oracles.

The performance improvement seen due to robust sequences is
consistent across problem sizes and devices, as detailed in the
section “Survey of dynamical decoupling sequences”.
We also use 〈p(n)〉 to identify the experimentally optimal

number of oracle queries qeopt. The theoretically optimal number
of repetitions for n= 3, 4, 5 is qopt = 2, 3, 4, respectively. How-
ever, the section “Survey of dynamical decoupling
sequences” shows that in reality, the theoretically expected
qopt often leads to worse performance than qeopt. For the DD-
protected implementation, q= 2 maximizes the success prob-
ability ps in all cases other than 5-qubit Grover on Jakarta, where
the performance at q= 2 is comparable to q= 1. As DD
protection is necessary to cross the classical threshold, for
simplicity of analysis and to maximize ps we set q= 2 from here
on.

Better-than-classical performance
Figure 8 shows our results for the 5-qubit Grover problem on
Nairobi with and without DD. Even in our relatively shallow-
depth implementation, before error suppression via DD
(whether Free or Free+MEM), the final results are indistinguish-
able from randomly guessing the marked state. The results
change significantly when we implement DD. With DD, the
classical threshold is crossed by all marked states. Adding
MEM improves the results slightly, but only when accompanied
by DD.
This dramatic improvement due to DD holds for other

problem sizes as well. Figure 7b shows the success probabilities
after two oracle queries on both devices for 3 ≤ n ≤ 5 (see
Supplementary Information for the role of postselection in these
results). At the two smaller problem sizes (n= 3, 4), the
unprotected implementations are better than random sampling,
but the success probability is relatively low. For n= 4, the
unprotected quantum Grover circuit does not exceed the
classical single-query threshold. It is effectively on par with
random sampling for n= 5. In contrast, for all problem sizes, the
DD-protected quantum strategy at q= 2 outperforms the

Fig. 7 Performance of Grover with DD. a Average success probability for 5-qubit Grover with two oracle queries on Nairobi. The DD
sequences are ranked in order of decreasing success probability. The two dotted lines represent success probabilities corresponding to a
random and classical strategy, respectively. RGA8a and RGA8c are tied as the best-performing sequences. Free denotes the result of an
unprotected implementation. Error bars correspond to 99% confidence intervals. b Success probabilities vs problem size. Nairobi (green) and
Jakarta (orange) success probabilities for n∈ {3, 4, 5} are shown for DD-protected and unprotected implementations. The translucent bands
indicate the theoretically estimated success probabilities using the model described in the section “Open system model”. We performed q= 2
queries to the quantum oracle in all cases. The ideal success probabilities are 0.945, 0.908, and 0.602 for n= 3, 4, and 5, respectively. The white
lines correspond to the success probabilities for the classical strategy and random sampling from the unsorted list (q= 0). Error bars
correspond to 99% confidence intervals.
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classical strategy for q ≤ 3. DD-protected Grover performance at
n= 3, 4, 5 is equivalent to classical q= 4, 5, 3 for Jakarta and
q= 4, 5, 4 for Nairobi, respectively. Thus, DD is essential in
attaining a better-than-classical performance.
The translucent bands in Fig. 7b and the boxes in Fig. 8 (left)

show the theoretically expected results computed from the open
system model with the IQP-supplied parameters. The success
probability in this unprotected Grover case [dashed lines in
Fig. 7b] is considerably lower than the theoretical expectation. This
discrepancy is likely due to crosstalk and non-Markovianity, which
are well-documented for IQP’s superconducting qubit-based
QPUs. Once we use DD, the observed fidelities improve and are
close to the theoretical predictions. This improvement is expected
given DD’s ability to reduce the effect of crosstalk25,26 and non-
Markovian effects.
With DD, the algorithmic performance approaches the

expectations based on our error model. However, we empha-
size that this model does not predict the QPU’s performance
under DD; it simply tells us what the performance would be if
the reported calibration metrics corresponded to observed
dynamics. The overlap between the theoretically
predicted (translucent) and the DD-protected (solid) perfor-
mance implies that DD successfully mitigates the errors that our
simple model does not account for. However, the model does
not provide an upper bound on the possible performance
improvement due to error suppression. For instance, better-
optimized sequences could suppress idle-time errors further,
and dynamically corrected gates can suppress errors during
operations55,56.
We note that the restriction to n ≤ 5 arose not because of

circuit width but depth. In particular, we used two oracle
queries, though theoretically qopt = 4 at n= 5. The gap between
the theoretically and experimentally optimal number of queries
is expected to grow with problem size. As is true for any
quantum algorithm, optimizing circuit compilation and increas-
ing metrics such as T1, T2, and gate fidelities are all vital for
scalability.

DISCUSSION
We implemented Grover’s algorithm of various sizes on multiple
superconducting qubit devices. To our knowledge, this is the

largest successful demonstration of Grover’s algorithm for which
the quantum strategy outperforms its classical counterpart. For
two-qubit Grover, we focused on error detection via the [[4, 2, 2]]
code and showed that it allowed us to achieve near-optimal
performance. Along the way, we introduced the method of
algorithmic error tomography. We showed that it provides a
wealth of information complementary to previous protocols, such
as gate set tomography or just measuring the success probability
of an algorithm. We showed that error suppression via DD is
essential in attaining better-than-classical performance for larger
problem sizes.
Grover’s algorithm is a demanding algorithm5 as it requires

multiple implementations of Cn−1Z – a fully entangling operation.
The superconducting trimon device6, which prior to our results
achieved the highest success probability for 3-qubit Grover, is an
example of algorithm-tailored hardware where C2Z is a native
gate. Constructing hardware that can natively perform such
entangling operations may be one path to realizing the full
potential of Grover’s algorithm. Still, it is desirable to achieve this
goal with more general-purpose quantum hardware, as we have
strived to do here.
Today’s quantum experimentalists have various error mitiga-

tion tools at their disposal. Measurement error mitigation14,57,
dynamical decoupling, zero noise extrapolation13, and quantum
error detection41 are complementary strategies that address
different kinds of errors. Whether and which error mitigation
method to employ must be decided based on the problem and
available resources. In this work, we combined MEM with DD
and quantum error detection. As expected, these strategies
complement each other. However, we found that often, MEM
only became useful after DD was employed. Dynamical
decoupling, which arguably has the lowest resource overhead
and requires no postprocessing, was the single most effective
strategy in improving the performance of our implementation of
Grover’s algorithm. Our work adds to the growing litera-
ture25,37–39,42,58 on the effectiveness of error suppression
through DD.
While we demonstrated a crossing of the classical threshold at

every problem size we tested, better-than-classical success
probabilities are not enough to claim a provable quantum
speedup59. Such a claim would require computing the scaling of
the time-to-solution metric (including the overhead of post-
selection and error mitigation, if applicable) as a function of

Fig. 8 5-qubit Grover results on Nairobi. Left: average success probability with and without DD or MEM for 5-qubit Grover implemented
on Nairobi. The boxes correspond to the theoretically expected success probabilities. The quantum oracle is queried twice; in the ideal
case, the success probability is 0.602. The unprotected (Free) evolution is on par with a random guess, significantly worse than the optimal
classical strategy (dashed vertical line), and just adding MEM does not change the result. In contrast, the DD-assisted implementation
crosses the classical threshold, and the results improve even more with MEM, up to a success probability of 0.15. Error bars correspond to
99% confidence intervals. Middle and right: the complete input-output maps for all 25 marked states, without and with DD+MEM, are
shown. States are sorted by increasing Hamming weight; in the Free case, low Hamming weight states have a higher success probability
(more green on the left). This is likely to be a consequence of amplitude damping (spontaneous emission), which favors the 0j i state of
each qubit. In the unprotected case (Free, middle), there is no discernible correlation between the input marked state and the output
detected state. In the protected case (DD+MEM right), black-to-purple signifies better-than-classical success probability, and this
threshold is crossed for all 32 marked states. The DD sequence used here is RGA8a23, which was the top-performing sequence in our DD
survey [see Fig. 7a].
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problem size and extending it to the largest possible problem size
that can be embedded on the device. Here we could not go to the
largest possible problem size as even at n= 5, our circuit is quite
deep—two queries required 88 two-qubit gates, and for a larger
number of queries or qubits, we no longer observed a quantum
advantage. Achieving quantum speedup for Grover search will
require devices that can implement circuits much deeper than
those used here without a catastrophic drop in fidelity. Recent
results60,61 suggest that without significant improvements in the
implementation of the surface code, the latter will not necessarily
provide an advantage in the context of Grover’s algorithm (or
other algorithms providing a quadratic speedup) over the type of
error suppression and mitigation methods we have explored here.
Thus, our results are likely to be necessary (but not sufficient)
stepping stones toward a quantum speedup for Grover’s
algorithm.

METHODS
Classical success probability
Let pCs ðq;NÞ be the classical success probability after q oracle
queries for an unsorted list with N elements. Suppose that we
have made q calls to the oracle. The probability that the
marked element is among the q queried elements is q/N. Since
the oracle will confirm that the marked element is among these
queries, the probability of correctly identifying the
marked element is 1 in this case. Conversely, the probability
that the marked element is among the remaining N−q elements
is (N−q)/N, and in this case the probability of correctly
guessing the identity of the marked element is 1/(N−q). By
the law of total probability, we then have
pCs ðq;NÞ ¼ q

N ´ 1þ N�q
N ´ 1

N�q ¼ qþ1
N .

Survey of dynamical decoupling sequences
In addition to the well-known XY4 and CPMG sequences, we
consider three families of robust dynamical decoupling
sequences. These sequences are expected to work well on a
superconducting device with finite pulse width and flip-angle
errors. The first sequence family is concatenated DD (CDD). CDD
comprises recursively generated sequences by concatenating a
base sequence such as the XY4 sequence. Formally,

XY4=CDD1 
 Y � X � Y � X (22)

CDDn 
 XY4 CDDn�1½ �ð Þ (23)

Here we could only proceed as far as CDD2, as the idle intervals
in the circuit were too short to incorporate higher-order CDD
sequences.
The second family comprises the robust genetic algorithm

(RGA) sequences23. These were found by assuming a generic
single-qubit error term and a numerical optimization using
genetic algorithms. A subset of the sequences was enforced to
be robust against flip-angle errors. Therefore, these sequences are
called robust genetic algorithm sequences. Due to duration
constraints, we only attempted sequences up to 32 pulses, even

though longer sequences were identified in ref. 23.

RGA4 
 Y � X � Y � X (24)

RGA4p 
 Y � X � Y � X (25)

RGA8a 
 X � Y � X � Y � Y � X � Y � X (26)

RGA8c=EDD 
 X � Y � X � Y � Y � X � Y � X (27)

RGA16b 
 RGA4p RGA4p
� �	 


(28)

RGA32a 
 RGA4 RGA8a½ �ð Þ (29)

RGA32c 
 RGA8c RGA4½ �ð Þ: (30)

Here X means a π-rotation about the+x axis. In contrast, X
means a π-rotation about the—x-axis (see ref. 42 for a concise and
detailed summary with more explicit definitions, including the
effect of pulse width and the associated errors).
Finally, the third family is that of universally robust (UR)

sequences21. UR sequences are defined such that

URn ¼ ðπÞϕ1
� ðπÞϕ2

� ¼ � ðπÞϕn
(31)

ϕk ¼
ðk � 1Þðk � 2Þ

2
ΦðnÞ þ ðk � 1Þϕ2 (32)

Φð4mÞ ¼ π

m
Φð4mþ2Þ ¼ 2mπ

2mþ 1
; (33)

where (π)ϕ is rotation about the axis at an angle of ϕ from the+x-
axis. We choose ϕ1= 0, and ϕ2=Φ(n) so that all URn sequences
are palindromic. Once again, we constrained our survey to
sequences with up to 32 pulses.
Our results from testing these three robust families of DD

sequences are shown in Fig. 9. For n > 3, almost all DD
sequences improved the success probability, but even among
the sequences tried, there was considerable variation. Robust
sequences with fewer than 12 pulses per DD cycle were the best
performers. The eventual decrease in the performance of
sequences with an increasing number of pulses is to be
expected as they are implemented using noisy gates, and there
is a trade-off between the protection provided by DD and the
accumulation of gate errors. The RGA8c and RGA8a sequences
performed consistently well and are the only sequences to cross
the classical threshold on Jakarta for n= 5. RGA8c is also
commonly known as the Eulerian DD (EDD) sequence, and
RGA8a is a slightly modified version of EDD. These palindromic
sequences are known to be robust against flip-angle and finite-
width errors. The best sequence at each problem size is shown
in Table 3.
Figure 9g and h shows the experimental success probabilities

for the unprotected and DD-protected Grover circuits for all
queries q. Here, only the best DD sequence from the survey above
(listed in Table 3) is used in each case. Theoretically, for
n= 3, 4, 5, qopt= 2, 3, 4 respectively. Unfortunately, for 5-qubit
Grover, software restrictions prevented us from going beyond
q= 2 and 3 on Jakarta and Nairobi, respectively. However, it is
already clear that the experimentally optimal value was reached in
both cases. Recall that we restricted our results to q= 2 oracle
queries in the main text. For n= 3, this is both experimentally and
theoretically optimal. For Nairobi, two queries have the highest
experimental success probability for all problem sizes. For Jakarta
and n= 5, a single query has a slightly higher success probability,
but the difference between q= 1 and q= 2 is not substantial.
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Overall, for simplicity of analysis, in the main text, we focused only
on results for q= 2.
Finally, Fig. 10 shows the results for all oracles at two queries

using the DD sequence found from the survey above. The results
are qualitatively identical on both devices. We have already
clarified that DD is necessary to cross the classical threshold. One
might suspect that majority voting may suffice to declare a
detected state as the marked state if it is the mode of its
corresponding probability distribution. However, even under this
criterion, for 5-qubit Grover, there is no way to detect the marked
state without DD.

Fig. 9 Performance of DD sequences and query numbers. a–f Performance of DD sequences, expanding on the results shown in Fig. 7a.
Average success probability for n= 3, 4, 5 with two oracle queries on Jakarta (a–c) and Nairobi (d–f). The DD sequences are ranked in order of
decreasing success probability. The two dotted lines represent success probabilities corresponding to a random and classical strategy,
respectively. For n > 3, the unprotected evolution (Free) is marginally better than choosing an element randomly and does not cross the
classical threshold. DD protection is necessary to cross the classical threshold, and the RGA and UR sequences with fewer than 12 pulses are
the best performers. Error bars correspond to 99% confidence intervals. g and h Performance under different oracle query numbers. Success
probabilities are shown as a function of the number of oracle queries for Jakarta (left) and Nairobi (right). All results included MEM and error
bars represent 99% confidence intervals. Dashed red lines correspond to the optimal classical success probability. Except for n= 3, the
classical threshold is crossed only with DD. In the main text, we set q= 2, which is the optimal number of repetitions for all instances other
than n= 5 on Jakarta. Error bars correspond to 99% confidence intervals.

Table 3. The best-performing DD sequence at each problem size for
both QPUs.

Problem size Jakarta Nairobi

n= 3 UR6 RGA8a

n= 4 RGA8a UR6

n= 5 RGA8c RGA8a

These sequences were determined by implementing n+ 1 oracles of the
form 0k1n−k for the n-qubit Grover problem.
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Extracting the depolarizing parameter from gate errors
IQP devices are calibrated daily, and for each gate, the gate error
eg and gate time τg are reported. The associated T1 and T2 times
are also reported for each qubit. As eg is extracted in the presence
of thermal relaxation errors, R ¼ Φ � A; pD ¼ f ðeg; τg; T1; T2Þ. In
order to extract pD from eg, we assume that

eg ¼ 1� FðD � RÞ: (34)

Using

FðD � RÞ ¼ ð1� pDÞFðRÞ þ pDFðD � RÞ; (35)

where D is the completely depolarizing channel, we get

1� eg ¼ FðD � RÞ (36)

¼ ð1� pDÞFðRÞ þ pDFðD � RÞ (37)

¼ ð1� pDÞFðRÞ þ pDFðDÞ (38)

¼ ð1� pDÞFðRÞ þ pD
d
: (39)

Consequently,

pD ¼ d
FðRÞ � 1þ eg
dFðRÞ � 1

: (40)

If we assume that there are no relaxation errors and only
depolarizing noise affects the gate error eg, then pD= d

d�1 eg.

Circuit construction
Recall that implementing the n-qubit Grover’s algorithm requires
the Cn−1Z gate, the only multi-qubit gate necessary for both the
oracle and the amplitude amplification step. We provide circuit

diagrams for how each n-qubit controlled phase gate, Cn−1Z, was
transpiled. We rely on previously known circuit designs for our
circuit construction, particularly the circuits used by ref. 8.

Two-qubit Grover circuits. For two-qubit Grover, CZ does not
require transpilation as CZ= H ⋅ CX ⋅ H. However, a few nuances
must be considered when constructing the encoded two-qubit
Grover circuits. There are three components to a Grover circuit
with marked element m= b1b2: initialization into the state ψj i,
oracle query Om, and amplitude amplification A. More precisely,

ψj i ¼ 1
4

X
bi ;bj¼f0;1g

bj
�� �� bkj i ¼ H � H 00j i (41)

Om ¼ ðX1�b1 � X1�b2Þ � C Z � ðX1�b1 � X1�b2Þ (42)

A ¼ H � H � O00 � H � H: (43)

To convert these circuits into their logical counterparts, we note
that X1 ¼ XIXI; X2 ¼ XXII; Z1 ¼ ZZII; Z2 ¼ ZIZI;H�4 ¼
SWAP12ðH1H2Þ and P�4 ¼ ðZ1Z2ÞC Z. It is also helpful to notice
that [SWAP12, U⊗ U]= 0 for any unitary U and [SWAP12, CZ]= 0.
Moreover, SWAP12 b1b1j i ¼ b1b1j i and [SWAP12, O00]= 0 as O00

only has operators of the form U⊗ U and CZ. Consequently,

ψj i ¼ H � H 00
�� �

(44)

¼ H � H � SWAP12 00
�� �

(45)

¼ SWAP12 � H � H 00
�� �

(46)

¼ H�4Uenc 0000j i: (47)

Implementing the encoded Grover oracle is straightforward and

Fig. 10 Output distribution for 3-qubit, 4-qubit, and 5-qubit Grover. The panels show the output distribution for Jakarta (left) and Nairobi
(right) after two oracle queries, complementing Fig. 8, which only shows Nairobi for n= 5. Each row represents a problem size in ascending
order. In a row, the horizontal bar plot on the left shows the success probability under no error suppression and mitigation (Free), with
measurement error mitigation (Free+MEM), with DD protection (DD), and with DD protection and measurement error mitigation
(DD+MEM). The dashed horizontal line and the boxes represent the classical and the theoretically expected success probability, respectively.
The second and third columns show the input-output map for Free and DD+MEM, highlighting the improvement offered by these strategies.
The states are sorted by increasing Hamming’s weight. The transition from green to black occurs at the classical success probability threshold.
With DD protection, the classical threshold is crossed in all cases.
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does not involve any two-qubit operations:

Om ¼ X1�b1 � X1�b2 � IZZI � P�4 � X1�b1 � X1�b2 : (48)

Lastly,

A ¼ H � H � O00 � H � H (49)

¼ H � H � O00 � H � H � SWAP12 � SWAP12 (50)

¼ SWAP12 � H � H � O00 � SWAP12 � H � H (51)

¼ H�4 � O00 � H�4 (52)

¼ H�4 � IXXI � IZZI � P�4 � IXXI � H�4: (53)

The corresponding circuits for the marked state 01j i are shown
in Fig. 2.

3-qubit to 5-qubit Grover circuits. The problem of transpilation
increases in complexity with problem size. Cn−1Z can be achieved
by finding a circuit decomposition for the n-qubit Toffoli gate
Cn−1X. It is known that the three-qubit Toffoli gate, C2X, can be
implemented using six CNOTs62. However, this requires a fully
connected architecture. As no fully connected group of three
qubits can be found in the QPUs we used, we rely on the 8-CNOT
decomposition8 of C2Z shown in Eq. (54).

ð54Þ

Here T= Z1/4. For C3Z and C4Z we use relative-phase Toffoli
gates53. Breaking down CkZ using CaZ and CbY such that
a+ b= k+ c allows for CkZ to be implemented with fewer CNOTs
as long as we use c ancillas. In our construction, we only use one
ancilla for C3Z and C4Z. C2Y is shown in Eq. (55),

ð55Þ

where G= Ry(π/4), and C3Y is shown in Eq. (56):

Finally, using the relative-phase Toffoli gates, C3Z can be written
as in Eq. (57):

ð57Þ

and likewise, C4Z can be constructed as in Eq. (58):

ð58Þ

This scheme—where relative phase Toffoli gates53 are sewn
together to generate a circuit for Cn−1Z (n > k+ 2)—can be
generalized. In particular, Cn−1Z can be implemented using C2Y,
C2Y† and Cn−2Z, which in turn uses Cn−3Z. As a result of this
recursion, the number of CNOTS for a Cn−1Z circuit is

#ðCn�1ZÞ ¼ 2ðn� 3Þ#ðC2YÞ þ#ðC2ZÞ: (59)

Thus, the number of CNOTs required to implement a single query
of n-qubit Grover scales as O(n). At the same time, the number of
necessary ancillas is n−2, i.e., it also scales linearly with n. As we
did by using Eq. (59), this linear scaling of ancillas could be
avoided by considering CkY with k > 2 while increasing the
number of CNOTs. Whether entangling fewer qubits by allowing
for deeper circuits is worthwhile will depend on the QPU
architecture under consideration. Note that the theoretically
optimal number of queries qopt= O(2n/2) so at qopt, the number
of CNOTs scales as O(2n/2n) where the exponential component will
dominate. However, as we noted before, the experimentally
allowed number of queries before decoherence takes over, might
be less than qopt.
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