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Probabilistic state synthesis based on optimal convex
approximation
Seiseki Akibue 1✉, Go Kato 2 and Seiichiro Tani1

When preparing a pure state with a quantum circuit, there is an unavoidable approximation error due to the compilation error in
fault-tolerant implementation. A recently proposed approach called probabilistic state synthesis, where the circuit is
probabilistically sampled, is able to reduce the approximation error compared to conventional deterministic synthesis. In this paper,
we demonstrate that the optimal probabilistic synthesis quadratically reduces the approximation error. Moreover, we show that a
deterministic synthesis algorithm can be efficiently converted into a probabilistic one that achieves this quadratic error reduction.
We also numerically demonstrate how this conversion reduces the T-count and analytically prove that this conversion halves an
information-theoretic lower bound on the circuit size. In order to derive these results, we prove general theorems about the optimal
convex approximation of a quantum state. Furthermore, we demonstrate that this theorem can be used to analyze an
entanglement measure.
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INTRODUCTION
The latest quantum computer applications require various
nontrivial quantum states for computation, secure communica-
tion, and the fundamental investigation of quantum mechanics.
Examples include the ground state (or its approximation) of a
Hamiltonian, which is used to compute the ground energy in
quantum chemistry1, a graph state (or its variants2,3), which has a
wide range of applications such as measurement-based quantum
computation4, blind computation5, and secret-sharing6, and data-
hiding states, which are utilized for quantum data hiding7 and the
study of local indistinguishability8,9. In addition, quantum linear
system solvers10,11, which have various applications in machine
learning, require a quantum state encoding classical data.
These applications have motivated researchers to optimize a

subroutine that synthesizes a target quantum state. In order to
capture the complexity of the state synthesis, there are extensive
studies about the size and depth of a circuit consisting of a
sequence of k(≤2)-qubit unitary gates needed to generate a target
state by applying the circuit to a fixed state 0j i�N12–18. While these
studies focus on the exact synthesis of a target state, a certain
level of error is allowed in many quantum information processing
protocols and algorithms. In practice, we have no choice but to
approximately synthesize a target state due to imperfections and
discretization when implementing unitary gates in a synthesis
circuit. The imperfection of gates can be almost removed for
specific unitary gates, called elementary gates, according to the
nature of the system19 or the quantum error correction20. The set
of elementary gates is usually a finite set of unitary gates, e.g.,
Clifford gates (on a constant number of qubits) + T gates, which
causes an approximation error when we synthesize a target state
since there are infinite quantum states. We focus on the synthesis
of a target state by using a finite number of perfectly
implementable elementary gates. In this case, the objective of
the optimization is reducing the size or depth of a circuit
consisting of elementary gates in order to synthesize a target state
with a certain level of approximation error. In other words, the

objective is to reduce the approximation error within a fixed
circuit size or depth.
Unfortunately, a simple volume consideration implies that the

size of a circuit required for the approximate synthesis of a
quantum state in an N-qubit system grows exponentially with N.
However, it is important to optimize the state synthesis even on a
small number of qubits since such small systems are often used
repeatedly in quantum cryptography6,7 and metrology21,22 proto-
cols. Such optimization is also beneficial to generate an
intermediate quantum state required for synthesizing a state on
a large system. Recently, theoretical physicists have taken an
interest in the minimum circuit size or depth for the state synthesis
on large systems due to its nontrivial physical interpretations23–25,
even if it may not be practically implementable.
The final goal of conventional synthesis algorithms is to

deterministically find one of the best circuits for the approximation
(even if an algorithm15 succeeds probabilistically). Thus, the
minimum approximation error obtained by such deterministic state
synthesis is given by minx2X ϕ� ϕ̂x

�� ��
tr, where ϕ is a target state,

ρ� σk ktr is the trace distance between two states ρ and σ, and X is
the label set of pure states ϕ̂x generated by circuits Cx within a
given cost, e.g., the circuit size, depth, or number of T-gates.
While it makes sense to approximate a target pure state by

utilizing an approximated state generated by a single circuit, a
recently proposed approach called probabilistic state synthesis
probabilistically samples a circuit for the approximation. Suppose
that the probabilistic algorithm independently samples a circuit Cx
(generating ϕ̂x ) in accordance with a probability distribution p(x)
each time the subroutine synthesizing ϕ is called. Then, each
generated state is described by a mixed state

P
xpðxÞϕ̂x . This can

be interpreted as the transition from unitary errors to stochastic
errors26–28, and recent studies have experimentally demonstrated
that this transition reduces the approximation error29.
Despite its importance, the limitation of probabilistic state

synthesis, especially the minimum approximation error
minp ϕ�PxpðxÞϕ̂x

�� ��
tr, remains unknown, nor is it clear how to

1NTT Communication Science Laboratories, NTT Corporation, 3–1, Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan. 2Advanced ICT Research Institute, NICT, 4–2–1,
Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan. ✉email: seiseki.akibue@ntt.com

www.nature.com/npjqi

Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-023-00793-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-023-00793-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-023-00793-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-023-00793-7&domain=pdf
http://orcid.org/0000-0001-9654-9361
http://orcid.org/0000-0001-9654-9361
http://orcid.org/0000-0001-9654-9361
http://orcid.org/0000-0001-9654-9361
http://orcid.org/0000-0001-9654-9361
http://orcid.org/0000-0001-5030-5230
http://orcid.org/0000-0001-5030-5230
http://orcid.org/0000-0001-5030-5230
http://orcid.org/0000-0001-5030-5230
http://orcid.org/0000-0001-5030-5230
https://doi.org/10.1038/s41534-023-00793-7
mailto:seiseki.akibue@ntt.com
www.nature.com/npjqi


find the optimal probability distribution p. While a few analytical
results are obtained for the case of a qubit state30–32 in the
context of the optimal convex approximation of a quantum state,
minimax optimization to compute the minimum approximation
error makes analyses quite difficult in general.
Before presenting our results, we provide intuitive examples

demonstrating the capability of probabilistic synthesis in Fig. 1. As
a generalization of the qubit examples, we obtain the funda-
mental relationship between the minimum approximation errors
obtained by the deterministic synthesis and the probabilistic one
in the following theorem.

Theorem 1. (simplified version) For any subset fϕ̂xgx2X of pure
states, it holds that

max
ϕ

min
p

ϕ�
X
x2X

pðxÞϕ̂x

�����
�����
tr
¼ max

ϕ
min
x2X

ϕ� ϕ̂x

�� ��2
tr ; (1)

where the maximization of ϕ is taken over the set of pure states.

This theorem compares the worst approximation errors
occurring when one synthesizes the target state that is most
difficult to approximate by using fϕ̂xgx . It implies that the optimal
probabilistic synthesis always quadratically reduces the worst
approximation error, moreover, it is impossible to further reduce
the approximation error.
In many cases, there is no need to synthesize all possible pure

states. Instead, it is more useful to understand the limitations of
probabilistic synthesis when a target state is chosen from a subset
SG of pure states. As shown in Fig. 1b, we can also anticipate the
quadratic error reduction in this scenario. This expectation is
confirmed in the comprehensive version of Theorem 1, which
includes the case of Fig. 1b.
The technique used to prove Theorem 1 is also applicable to

analyzing the minimum trace distance between a general mixed
state ρ and a convex hull of fϕ̂xgx . For example, we can analyze
the entanglement measure by setting fϕ̂xgx2X to be the set of

pure product states. As a byproduct, we obtain

min
σ2SEP

ρWER
q � σ

��� ���
tr
¼ q� 1

2 ; min
σ2SEP

ρISOq � σ
��� ���

tr
¼ d2�1

d2
q� 1

dþ1

� �
;

(2)

where SEP represents the set of separable states, ρWER
q and ρISOq

represent the Werner and isotropic state with a parameter q,
respectively. These coincide with a conjecture numerically found
in33. Moreover, we provide alternate succinct proof about a
recently identified coincidence between the entanglement
measure and coherence measure34.
We also show an efficient way to convert a deterministic state

synthesis algorithm into a probabilistic one that achieves
quadratic error reduction. We assume there exists a deterministic
state synthesis algorithm D with
INPUT: a target pure state ϕ in a constant number of qubits and

target approximation error ϵ,
OUTPUT: circuit Cx (generating ϕ̂x)
such that ϕ� ϕ̂x

�� ��
tr � ϵ and a matrix representation of ϕ̂x can

be obtained within runtime polylog 1
ϵ

� �
. We can construct D by

combining algorithms to generate an exact synthesis circuit where
arbitrary unitary transformations on a constant number of qubits
are allowed12–18 with the Solovay-Kitaev algorithm35 to decom-
pose the unitary transformations into a sequence of elementary
gates. Recent numerical analysis suggests that we could construct
better D that reduces the size of a synthesis circuit by skipping the
exact synthesis as an intermediate step17,36. The efficient
conversion is shown in the following theorem.

Theorem 2. (informal version) There exists a probabilistic state
synthesis algorithm P that calls a deterministic state synthesis
algorithm D as an oracle, and has
INPUT: a target pure state ϕ in a constant number of qubits and

target approximation error ϵ
OUTPUT: circuit Cx (generating ϕ̂x) sampled in accordance with

probability distribution p̂ : X̂ ! ½0; 1�
such that P satisfies the following properties:

● Efficiency: P calls D constant times, and runtime of P is
polylog 1

ϵ

� �
,

● Quadratic improvement: The approximation error
ϕ�Px2X̂ p̂ðxÞϕ̂x

�� ��
tr obtained with this algorithm is upper

bounded by ϵ2, whereas minx2X̂ ϕ� ϕ̂x

�� ��
tr � ϵ.

Since probabilistic state synthesis reduces the approximation error,
it also reduces the size of a circuit to approximately generate a target
state for a given approximation error. However, the reduction rate
depends on the circuit’s construction, e.g., what kind of elementary
gates and synthesis algorithms are used. Since there is an established
way to synthesize a single qubit state by using Clifford + T gates, we
perform a numerical simulation to demonstrate how the probabilistic
synthesis reduces the number of T-gates, called a T-count, for a
randomly selected target state in SG defined in Fig. 1b.
As a rigorous estimation, we also analyze a universal lower

bound on the size of synthesis circuits obtained by regarding the
circuit as a classical encoding of a pure state, where a description
of a circuit Cx and the state ϕ̂x generated by Cx correspond to a
label encoding a pure state and the reconstructed state by a
decoder, respectively. To analyze how probabilistic synthesis
reduces this lower bound, we investigate the minimum length of
classical bit strings that encodes a pure state ϕ so as to
approximately reconstruct the original state as shown in Fig. 2.
We compare two types of encoding: (1) deterministic encoding

that associates each ϕ to a single label x, and (2) probabilistic
encoding that associates each ϕ to a label x in accordance with a
probability distribution pϕ(x). The decoder Γ generates, in general, a
mixed state ρ̂x based on the input label x. Thus, the reconstructed

a b

Fig. 1 Quadratic reduction of the approximation error by using
probabilistic synthesis. We assume that we can exactly generate an
eigenstate ϕ̂x of the Pauli operators, represented by the six extreme
points of the octahedron. We represent the Bloch sphere by a sphere
with radius 1

2, where the trace distance between two quantum states
equals the Euclidean distance between the corresponding points. (a)
We can compute minp ϕ�PxpðxÞϕ̂x

�� ��
tr ¼ ϵ2 ¼ 1

2
ffiffi
3

p
ffiffiffi
3

p � 1
� �

and

minx ϕ� ϕ̂x

�� ��
tr ¼ ϵ, where ϕ is the furthest state from fϕ̂xg

6
x¼1,

represented as a large red point. (b) Suppose that the target state is
chosen from SG :¼ fϕ : ϕj i ¼ cos t 0j i þ sin t 1j i; t 2 Rg, represented
by a meridian. We can compute minp ϕ�PxpðxÞϕ̂x

�� ��
tr ¼ ~ϵ2 ¼

1
2 1� 1ffiffi

2
p

� �
and minx ϕ� ϕ̂x

�� ��
tr ¼ ~ϵ, where ϕ is the furthest state in

SG from fϕ̂xg
6
x¼1, represented as a large red point.
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state in the deterministic and probabilistic encoding is given by
ρ̂ ¼ ρ̂x and ρ̂ ¼PxpϕðxÞρ̂x , respectively. In the following theorem,
we show that probabilistic encoding exactly halves the bit length
required for deterministic encoding in the asymptotic limits.

Theorem 3. (simplified version) Let ndet (or nprob) be the minimum
bit length required for deterministic (or probabilistic) encoding that
reconstructs a state ρ̂ satisfying ϕ� ρ̂k ktr � ϵ for any pure state ϕ
in a d-dimensional Hilbert space. Then, it holds that

lim
ϵ!0

nprob
ndet

¼ lim
d!1

nprob
ndet

¼ 1
2
: (3)

Although several probabilistic synthesis methods suggest that
the approximation error can be reduced from ϵ into O(ϵ2)26–29,37,38,
these methods are not applicable for analyzing the achievable
minimum approximation error. This is mainly because the prior
research relies on the first-order approximation to show the error
reduction, which provides little information about the lower bound
on the error reduction. The achievable minimum approximation
error for the probabilistic unitary synthesis has been obtained by
us39. However, this result cannot be directly applied to the state
synthesis since the generated state in state synthesis is obtained
by applying a gate sequence to a fixed input state while the
approximation error in unitary synthesis is quantified for the worst
input state. Moreover, a target state could be approximated by
probabilistically mixing two unitary transformations whose beha-
viors are totally different, except for the fixed input state.
In the proof of Theorem 1, we analyze the minimum

approximation error minp ϕ�PxpðxÞϕ̂x

�� ��
tr ¼ minp max0�M�I tr

Mðϕ�PxpðxÞϕ̂xÞ
� 	

, which contains minimax optimization by
definition. The main tool for the analysis is the strong duality of
semidefinite programming. This enables us to formulate the
minimum approximation error as a semidefinite program (SDP).
Moreover, we show that the SDP can be dramatically simplified
when both ϕ and fϕ̂xgx exhibit symmetry. As discussed in the
previous subsection, these techniques can be utilized to analyze
the minimum trace distance between a general mixed state and a
convex set, such as the set of separable states.
The reformulation of the minimum approximation error as an

SDP enables us to compute the optimal probability distribution to
achieve it efficiently. By using Theorem 1, we can verify that by
solving this SDP with fϕ̂xgx2X satisfying
maxϕ minx2X ϕ� ϕ̂x

�� ��
tr � ϵ, which is called an ϵ-covering, we

obtain a probability distribution p̂ that achieves quadratic
reduction of the approximation error, i.e.,
ϕ�Px2X p̂ðxÞϕ̂x

�� ��
tr � ϵ2. However, the size of this SDP is too

large to achieve the efficiency shown in Theorem 2, since the size

∣X∣ of the ϵ-covering is 1
ϵ

� �Ωð1Þ
. This problem can be resolved by

proving that any ϕ̂x in the support of the optimal probability
distribution in the minimum approximation error is close to ϕ;
more precisely, ϕ� ϕ̂x

�� ��
tr � 2ϵ. This enables us to construct a

modified SDP whose size is independent of ϵ.

Theorem 3 is obtained by combining Theorem 1 with the
estimation of the minimum size of the ϵ-covering. Due to its
prominent role in algorithm design and asymptotic geometric
analysis, the order of the minimum size of the ϵ-covering has been
well-studied40–42. However, to obtain Theorem 3, we precisely
analyze the constant factor in the order, which refines the
previous estimations40,41.

RESULTS
Preliminaries
We consider only finite-dimensional Hilbert spaces in this paper.
The two-dimensional Hilbert space C2 is called a qubit. L Hð Þ and
Pos Hð Þ represent the set of linear operators and positive
semidefinite operators on Hilbert space H, respectively. I 2
Pos Hð Þ represents the identity operator. For Hermitian operators
A and B on H, A ≥ B represents A� B 2 Pos Hð Þ, and A > B means
A− B is positive definite. S Hð Þ :¼ ρ 2 Pos Hð Þ : tr ρ½ � ¼ 1f g and
P Hð Þ :¼ ρ 2 S Hð Þ : tr ρ2½ � ¼ 1f g represent the set of quantum
states and pure states, respectively. Pure state ϕ 2 P Hð Þ is
sometimes alternatively represented by complex unit vector ϕj i 2
H satisfying ϕ ¼ ϕj i ϕh j.
The trace distance ρ� σk ktr of two quantum states ρ; σ 2 S Hð Þ

is defined as Mk ktr :¼ 1
2 tr

ffiffiffiffiffiffiffiffiffiffi
MMyph i

for M 2 L Hð Þ. It represents the
maximum total variation distance between probability distribu-
tions obtained by measurements performed on two quantum
states. Thus, it satisfies ρ� σk ktr ¼ max0�M�I tr Mðρ� σÞ½ �. A
similar notion measuring the distinguishability of ρ and σ is the
fidelity function, defined by F ρ; σð Þ :¼ max tr ΦρΦσ½ �, where Φρ 2
P H�H0ð Þ is a purification of ρ, i.e., ρ ¼ trH0 Φρ½ �, and the
maximization is taken over all the purifications. Fuchs-van de
Graaf inequalities43 provide relationships between the two
measures with respect to the distinguishability as follows:

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ρ; σð Þ

p
� ρ� σk ktr �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F ρ; σð Þ

p
(4)

holds for any states ρ; σ 2 S Hð Þ, where the equality of the right
inequality holds when ρ and σ are pure.
An operator A : H ! H is called antilinear if it satisfies

Aðα ϕj i þ β ψj iÞ ¼ α�A ϕj i þ β�A ψj i, where α* represents the com-
plex conjugate of α 2 C. The Hermitian adjoint A† of an antilinear
operator A is defined by ψh jAy ϕj i ¼ ϕh jA ψj i. An antilinear operator U
is called antiunitary if it satisfies UyU ¼ I. An antiunitary operator Θ is
called a conjugation if it satisfies Θ†=Θ. An example of a conjugation
is the complex conjugation θ with respect to the computational basis.
Note that for Hermitian operators M1 and M2 and an antilinear
operator A, the cyclic property tr M1AM2Ay� 	 ¼ tr AyM1AM2

� 	
of the

trace holds.

Quadratic reduction of approximation error
We first show the lower bound of the approximation error obtained
by the optimal probabilistic mixture in the following lemma.

Lemma 1. For a finite set fϕ̂xgx2X � P Hð Þ of pure states and a pure
state ϕ 2 P Hð Þ, it holds that

min
p

ϕ�
X
x2X

pðxÞϕ̂x

�����
�����
tr
� min

x2X
ϕ� ϕ̂x

�� ��2
tr : (5)

Proof. Let p minimize the left-hand side of Eq. (5). The following
calculation completes the proof.

ðL:H:S:Þ � 1�
X
x2X

pðxÞtr ϕϕ̂x

� 	 !
� min

x2X
1� F ϕ; ϕ̂x

� �� � ¼ ðR:H:S:Þ; (6)

where we use ρ� σk ktr � maxϕ2P Hð Þ tr ϕðρ� σÞ½ � in the first
inequality and use the right equality in Ineq. (4) in the last equality.□

bits

Fig. 2 Probabilistic encoding of pure state ϕ on a d-dimensional
system using n-bit strings and a decoder Γ that generates an
approximated state ρ̂. State ϕ is probabilistically encoded in label x
in a finite set X in accordance with probability distribution
pϕ: X→ [0, 1]. As a special case of probabilistic encoding, we also
consider deterministic encoding that utilizes probability distribution
pϕ: X→ {0, 1}. Note that the length of classical bit strings to represent
x∈ X is given by n ¼ dlog2jXje.
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This lemma shows that the reduction rate of the approximation
error by using probabilistic synthesis is, at best, quadratic.
However, the two examples given in Fig. 1 indicate that a
precisely quadratic reduction is possible if we consider the worst
approximation error occurring when we synthesize the target
state that is most difficult to approximate in a particular subset SG
of states. To achieve the quadratic reduction, it is important to
carefully select SG. We use group symmetries in the following
lemma to characterize SG and prove the quadratic reduction. This
characterization also makes it easier to apply this lemma to
various settings in the state synthesis.

Lemma 2. Let X be a finite set, G be a finite subgroup of unitary and
antiunitary operators, and SG :¼ fϕ 2 P Hð Þ : 8U 2 G; ½U;ϕ� ¼ 0g
be the set of pure states invariant under the action of G. If a set
fϕ̂x 2 P Hð Þgx2X of pure states is invariant under the action of G, i.e.,
fϕ̂xgx2X ¼ fUϕ̂xU

ygx2X for all U∈ G, it holds that

max
ϕ2SG

min
p

ϕ�
X
x2X

pðxÞϕ̂x

�����
�����
tr
¼ max

ϕ2SG
min
x2X

ϕ� ϕ̂x

�� ��2
tr : (7)

Lemma 2 is a direct consequence of the following lemma for
computing the minimum trace distance between a mixed state
and a convex subset of mixed states.

Lemma 3. Let X be a finite set and G be a finite subgroup of unitary
and antiunitary operators. Let PG be the set of positive semidefinite
operators invariant under the action of G, i.e.,
PG :¼ fP 2 Pos Hð Þ : 8U 2 G; ½U; P� ¼ 0g. If ρ 2 PG \ S Hð Þ and a
set fρ̂x 2 S Hð Þgx2X of mixed states is invariant under the action of
G, i.e., fρ̂xgx2X ¼ fUρ̂xUygx2X for all U ∈ G, it holds that

min
p

ρ�
X
x2X

pðxÞρ̂x
�����

�����
tr
¼ max

0�M�I
M2PG

tr Mρ½ � �max
x2X

tr Mρ̂x½ �

 �

; (8)

where the minimization is taken over a probability distribution p
over X. In particular, when ρ is a pure state ϕ, it holds that

min
p

ϕ�
X
x2X

pðxÞρ̂x
�����

�����
tr
¼ max

ψ2PG\P Hð Þ
tr ψϕ½ � �max

x2X
tr ψρ̂x½ �


 �
: (9)

Proof. We start from a mixed state ρ. By using the minimax
theorem, we obtain

ðL:H:S: of Eq:ð8ÞÞ ¼ min
p

max
0�M�I

tr Mρ½ � �
X
x2X

pðxÞtr Mρ̂x½ �
 !

(10)

¼ max
0�M�I

min
p

tr Mρ½ � �
X
x2X

pðxÞtr Mρ̂x½ �
 !

(11)

¼ max
0�M�I

tr Mρ½ � �max
x2X

tr Mρ̂x½ �

 �

: (12)

This proves (L. H. S. ) ≥ (R. H. S. ). Let M maximize Eq. (12). Due to
the invariance of ρ and fρ̂xgx under the action of G, we can verify
that U†MU also maximizes Eq. (12). By defining M̂ ¼ 1

jGj
P

U2GU
yMU,

we obtain

ðR:H:S: of Eq:ð8ÞÞ � tr M̂ρ
� 	�max

x2X
tr M̂ρ̂x
� 	 ¼ tr Mρ½ � �max

x2X
1
jGj
P
U2G

tr MUρ̂xU
y� 	
 �

� tr Mρ½ � � 1
jGj
P
U2G

max
x2X

tr MUρ̂xU
y� 	

¼ tr Mρ½ � �max
x2X

tr Mρ̂x½ � ¼ ðL:H:S: of Eq:ð8ÞÞ;

(13)

where we use Eq. (12) in the last equality.

When ρ is a pure state ϕ, we can derive

ðL:H:S: of Eq:ð9ÞÞ ¼ max
σ2PG\S Hð Þ

tr σϕ½ � �max
x2X

tr σρ̂x½ �

 �

(14)

by the same argument starting from

ðL:H:S: of Eq:ð9ÞÞ ¼ min
p

max
σ2S Hð Þ

tr σ ϕ�
X
x2X

pðxÞρ̂x
 !" #

¼ max
σ2S Hð Þ

tr σϕ½ � �max
x2X

tr σρ̂x½ �

 �

;

(15)

where we use the fact that the dimension of the eigenspace of
ϕ�Px2XpðxÞρ̂x associated with positive eigenvalues is zero or
one in the first equality, and use the minimax theorem in the
second equality. We complete the proof of Eq. (9) by using the
following observation: When (L. H. S. of Eq. (9))= 0, Eq. (9) holds
since there exists x∈ X such that ρ̂x ¼ ϕ. When (L. H. S. of Eq. (9))
> 0, σ maximizing Eq. (14) is a pure state. For if σ with σk k1<1
maximizes Eq. (14), we can show a contradiction by setting ρ= ϕ
and M ¼ σ

σk k1 in Eq. (12). □

Proof of Lemma 2. By setting ρ̂x in Eq. (9) to be ϕ̂x , we obtain

max
ϕ2SG

min
p

ϕ�P
x2X

pðxÞϕ̂x

����
����
tr

¼ max
ψ2SG

max
ϕ2SG

tr ψϕ½ � �max
x2X

tr ψϕ̂x

� 	
 �

¼ 1�min
ψ2SG

max
x2X

tr ψϕ̂x

� 	 ¼ max
ψ2SG

min
x2X

ψ� ϕ̂x

�� ��2
tr ;

(16)

where we use the right equality in Ineq. (4) in the last equality. □

As consequences of Lemma 2 or Lemma 3, we obtain the
following implications.

1. When G ¼ fIg, we obtain SG ¼ P Hð Þ. This case is applicable
to any fϕ̂xgx2X and proves the quadratic reduction of the
approximation error given in Fig. 1(a).

2. When G ¼ fI; θg with the complex conjugation θ, we obtain
SG ¼ fϕ 2 P C2� �

: ϕj i ¼ cos t 0j i þ sin t 1j i; t 2 Rg. In this
case, the quadratic reduction of the worst approximation
error occurring when we synthesize a target state in SG is
possible if fϕ̂xgx is reflection-symmetric with respect to the
XZ-plane in the Bloch representation. This proves the
quadratic reduction of the approximation error given in
Fig. 1b. In general, conjugation-invariant pure states are
often utilized in the optimal parameter estimation22.

3. When G ¼ fI; 2Π� Ig with Hermitian projector Π whose
range is V , SG ¼ fϕ 2 P Hð Þ : ϕj i 2 V _ ϕj i 2 V?g. In this
case, the quadratic reduction of the worst approximation
error occurring when we synthesize a target state in V is
possible if fϕ̂xgx is reflection-symmetric under the action of
2Π� I. This is because

max
ϕj i2V

min
p

ϕ�
X
x2X

pðxÞϕ̂x

�����
�����
tr
¼ max

ψ2SG
max
ϕj i2V

tr ψϕ½ � �max
x2X

tr ψϕ̂x

� 	
 �

(17)

¼ max
ψj i2V

max
ϕj i2V

tr ψϕ½ � �max
x2X

tr ψϕ̂x

� 	
 �
(18)

¼ 1� min
ψj i2V

max
x2X

tr ψϕ̂x

� 	 ¼ max
ϕj i2V

min
x2X

ϕ� ϕ̂x

�� ��2
tr ; (19)

where we use Eq. (9) in the first equation. In general, preparing a
state in a particular subspace is a widely used subroutine in
various quantum information processing tasks.

We obtain the following theorem as a summary of Lemmas
1 and 2.
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Theorem 1. Let X be a finite set, G be a finite subgroup of unitary
and antiunitary operators, and SG :¼ fϕ 2 P Hð Þ : 8U 2 G; ½U;ϕ� ¼
0g be the set of pure states invariant under the action of G. If ϕ∈ SG
and fϕ̂x 2 P Hð Þgx2X ¼ fUϕ̂xU

ygx2X for all U∈ G, it holds that

ϵ2ϕ � min
p

ϕ�
X
x2X

pðxÞϕ̂x

�����
�����
tr
� ϵ2G with ϵϕ

¼ min
x2X

ϕ� ϕ̂x

�� ��
tr; ϵG ¼ max

ψ2SG
min
x2X

ψ� ϕ̂x

�� ��
tr:

(20)

This theorem indicates that by using mixed states, we can
reduce the approximation error with respect to the trace distance.
When attempting to estimate the expectation value tr Oϕ½ � of an
observable O for ϕ, this theorem implies that the bias of the
expectation value can be reduced by using

P
x2XpðxÞϕ̂x instead of

using ϕ̂x as a substitute of ϕ.

Efficient probabilistic state synthesis algorithm
In this section, we present an efficient method for converting any
deterministic state synthesis algorithm, denoted as D, into a
probabilistic one. If it takes polylog 1

ϵ

� �
-time for D to achieve an

approximation error ϵ with an l(ϵ)-size circuit such as the Solovay-
Kitaev algorithm, then our method allows us to construct a
probabilistic synthesis algorithm that achieves an approximation error
ϵ2 by sampling l(ϵ)-size circuits, with a total runtime of polylog 1

ϵ

� �
.

Note that our method assumes the target state is taken from a
constant-dimensional Hilbert space. As mentioned in the intro-
duction, constant-qubits states are commonly utilized in quantum
cryptography and metrology protocols. Although the existence of
highly complex pure states results in an exponential runtime with
respect to the number of qubits for any state synthesis algorithms,
we discuss the potential of probabilistic state synthesis for a high
dimensional system in Supplementary Note 3. Our conversion is
based on the following proposition and lemma.

Proposition 1. Let ρ and fρ̂xgx2X be a target mixed state and a
finite set of mixed states in S Hð Þ, respectively. Then, distance
minp ρ�Px2XpðxÞρ̂x

�� ��
tr and the optimal probability distribution

{p(x)}x∈X, which minimizes the distance, can be computed with the
following SDP:

Primal problem Dual problem

maximize : tr½Mρ� � t minimize : tr½Y�
subjectto : 0≤M≤ I; subjectto : Y ≥ 0 ^ Y ≥ ρ�Px2X pðxÞρ̂x;
8x 2 X; tr½Mρ̂x �≤ t: 8x 2 X; pðxÞ≥ 0;P

x2X pðxÞ≤ 1:

(21)

Note that the strong duality holds in this SDP, i.e., the optimum
primal and dual values are equal.

Proof. Recall that for two states ρ and σ, ρ� σk ktr can be
computed by the following SDP:

Primal problem Dual problem

maximize : tr½Mðρ� σÞ� minimize : tr½Y�
subject to : 0≤M≤ I; subject to : Y ≥ 0 ^ Y ≥ ρ� σ:

A formal SDP and proof of the strong duality are provided in
Supplementary Note 1.
By extending the dual problem of this SDP to include the

minimization of probability distribution {p(x)}x∈X, we obtain Eq.
(21). Note that the last condition ∑x∈Xp(x) ≤ 1 in the dual problem
is different from the condition ∑x∈Xp(x)= 1 of a probability

distribution; however, the optimum dual value can be achieved
under the latter condition. Again, a formal SDP and proof of the
strong duality are provided in Supplementary Note 1.□

Lemma 4. Let G be a finite subgroup of unitary and antiunitary
operators, and SG :¼ fϕ 2 P Hð Þ : 8U 2 G; ½U;ϕ� ¼ 0g be the set of
pure states invariant under the action of G. For a positive number
ϵ > 0, if ϕ∈ SG and fϕ̂xgx2X is a finite ϵ-covering of SG that is
invariant under the action of G, i.e., maxψ2SG minx2X ψ� ϕ̂x

�� ��
tr � ϵ

and fϕ̂xgx2X ¼ fUϕ̂xU
ygx2X for all U ∈ G, then

min
p

ϕ�
X
x2X

pðxÞϕ̂x

�����
�����
tr
¼ min

p̂
ϕ�

X
x2X̂

p̂ðxÞϕ̂x

�����
�����
tr

(22)

holds, where X̂ :¼ fx 2 X : ϕ� ϕ̂x

�� ��
tr � 2ϵg and the minimiza-

tion of p and p̂ are taken over probability distributions over X and
X̂ , respectively.

To understand this lemma, it is helpful to refer to the examples
shown in Fig. 1. If the goal is to optimally approximate a target state ϕ
depicted by the red point in (a) (or (b)), it is sufficient to mix three (or
two) Pauli eigenstates that are 2ϵ (or 2~ϵ) close to ϕ. This fact is shown
to be true for any target state in this lemma, and its proof can be
found in Supplementary Note 2 as it involves technical details.
By combining Proposition 1 and Lemma 4, we can efficiently

convert a deterministic state synthesis algorithm into a probabil-
istic one. We assume there exists a deterministic state synthesis
algorithm D with
INPUT: a target pure state ϕ∈ SG in a constant-dimensional

Hilbert space and a target approximation error ϵ 2 0; 1ð Þ
OUTPUT: a set fCðUÞx gU2G of circuits (generating Uϕ̂xU

y)
such that ϕ� ϕ̂x

�� ��
tr � ϵ and a matrix representation of Uϕ̂xU

y

can be obtained within runtime polylog 1
ϵ

� �
, where G is a finite

subgroup of unitary and antiunitary operators and SG is the set of
pure states invariant under the action of G.

Theorem 2. For a given gate set, there exists a probabilistic state
synthesis algorithm P that calls a deterministic synthesis algorithm
D as an oracle, and has
INPUT: a target pure state ϕ∈ SG in a constant-dimensional

Hilbert space, a target approximation error ϵ 2 0; 1ð Þ, and precision
δ 2 0; 1ð Þ
OUTPUT: circuit Cx (generating ρ̂x) sampled from a set X̂ in

accordance with probability distribution p̂ : X̂ ! ½0; 1�
such that P satisfies the following properties:

● Efficiency: P calls D a constant number of times, and runtime
of P is poly log 1

ϵ

� �
; log 1

δ

� �� �
,

● Quadratic improvement: The approximation error ϕ�Pk
x 2 X̂p̂ðxÞρ̂xktr obtained by P is upper bounded by ϵ2+ δ,
whereas minx2X̂ ϕ� ρ̂xk ktr � ϵ.

Proof. In the following, we explicitly construct the algorithm.

1. Set free parameters c > 0 and c0 > 0 satisfying c þ c0 � 1.
2. Generate a list fϕxgx2~X � SG such that for any ψ ∈ SG,

minx2~X ψ� ϕxk ktr � cϵ if ϕ� ψk ktr � 2ϵ. That is, fϕxgx2~X is
a (cϵ)-covering of fψ 2 SG : ϕ� ψk ktr � 2ϵg.

3. Call D to find CðUÞx generating Uϕ̂xU
y such that

ϕx � ϕ̂x

�� ��
tr � c0ϵ for all x 2 ~X and all U ∈ G.

4. Numerically solve the SDP shown in Proposition 1 by setting
ρ= ϕ and fρ̂xgx2X̂ ¼ fUϕ̂xU

ygx2~X;U2G and obtain a prob-
ability distribution p̂, which causes the approximation error
δ-close to minp ϕ�Px2X̂pðxÞρ̂x

�� ��
tr.

5. Sample CðUÞx in accordance with p̂, whose domain is
X̂ ¼ ~X ´G.
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The two properties can be verified as follows:

● Efficiency: We can verify that all steps of the algorithm take
poly log 1

ϵ

� �
; log 1

δ

� �� �
-time by using the following observa-

tions: We can construct a list fϕxgx2~X whose size is
independent to ϵ. From the assumption on D, we can also
obtain a list of matrix representations of fUϕxU

ygx2~X;U2G
within polylog 1

ϵ

� �
-time. The ellipsoid method guarantees

that the optimal value of our SDP can be computed in
poly log 1

ϵ

� �
; log 1

δ

� �� �
-time within an approximation error

δ44.
● Quadratic improvement: The minimum approximation error

min
p

ϕ�Px2X̂pðxÞρ̂x
�� ��

tr is at most ϵ2 since fρ̂xgx2X̂ is a
subset of an ϵ-covering fρ̂xgx2X̂ ∪ fψygy of SG, where
fψy 2 SGgy is a finite ϵ-covering of fψ 2 SG :
ϕ� ψk ktr > 2ϵg and ϕ� ψy

�� ��
tr > 2ϵ for any y,

fρ̂xgx2X̂ ∪ fψygy is invariant under the action of G, and we
can thus apply Theorem 1 and Lemma 4.
□

While this theorem assumes the dimension d of the Hilbert
space is constant, we can also provide an estimation of the
runtime of P when d grows. The runtime varies depending on the
symmetry G that target states possess (see Supplementary Note
3). In the worst case where target states have no common
symmetry, i.e., G ¼ fIg, the size of X̂ will be jX̂j ¼ polyðexpðdÞÞ. In
this case, we can provide the upper bound on the runtime of P as
poly log 1

ϵ

� �
; log 1

δ

� �
; expðdÞ� �

-time, based on the proof of
Theorem 2.

Numerical simulation of T-count reduction
In this section, we demonstrate how Theorem 2’s probabilistic
synthesis algorithm can reduce the T-count through numerical
simulation. We select a target state ϕ from
SG ¼ fϕ 2 P C2� �

: ϕj i ¼ cos t 0j i þ sin t 1j i; t 2 Rg, as shown in
Fig. 1(b). Recall that SG consists of G-invariant pure states, where
G ¼ fI; θg with the complex conjugation θ.
We assume that the set of elementary gates consists of Clifford

gates and T-gate, which is a commonly utilized gate set in FTQC
based on stabilizer codes or surface codes. Considering that the
implementation cost of a T-gate is much higher than that of
Clifford gates, it is necessary to minimize the T-count of the
circuits. To do this, we use the Ross-Selinger algorithm45 to

synthesize Ryð2tÞ ¼ cos t � sin t
sin t cos t


 �
and obtain a gate

sequence that realizes a unitary operator Ut(≃ Ry(2t)). This allows
us to obtain an approximated state
Ut 0j ið’ Ryð2tÞ 0j i ¼ cos t 0j i þ sin t 1j iÞ. Note that the Ross-
Selinger algorithm can achieve an almost minimal T-count for
synthesizing Ry(2t)45. We run this deterministic synthesis algorithm
for multiple randomly selected target states ϕ in SG, with multiple
target approximation errors. By utilizing the description of each
output gate sequence, we determine the T-count and the actual
approximation error.
We perform probabilistic synthesis based on Theorem 2 to

synthesize the same multiple target states ϕj i with the same
multiple target approximation errors. When the target approxima-
tion error is ϵ, we execute the Ross-Selinger algorithm within a
target approximation error of 0:3

ffiffiffi
ϵ

p
for a ð0:7 ffiffiffi

ϵ
p Þ-covering of

fψ 2 SG : ψ� ϕk ktr � 2
ffiffiffi
ϵ

p g. A set consisting of the target state
ϕ1j i ¼ cos t 0j i þ sin t 1j i and two shifted states f ϕxj ig3x¼2 ¼
fcos t0 0j i þ sin t0 1j i : t0 ¼ t ± 2 arcsinð0:7 ffiffiffi

ϵ
p Þg forms such a

ð0:7 ffiffiffi
ϵ

p Þ-covering when ϵ ≤ 0.07. Thus, we obtain three gate

sequences to generate states fϕ̂xg
3
x¼1 after executing the Ross-

Selinger algorithm. To apply Theorem 2, we also require gate

sequences to generate fθϕ̂xθg
3
x¼1, the complex conjugation of

fϕ̂xg
3
x¼1. These gate sequences can be obtained by modifying the

gate sequence to generate ϕ̂x without increasing the T-count. This
is because θTθ∝ ZST and the set of Clifford gates is closed under
the complex conjugation. After obtaining six synthesized states

fϕ̂x ; θϕ̂xθg
3
x¼1, we solve the SDP described in Proposition 1 to

determine the actual approximation error. Theorem 2 guarantees
the actual approximation error is smaller than ϵ. Note that without
exploiting the symmetry of the target state, we need 13 states to
form a ð0:7 ffiffiffi

ϵ
p Þ-covering of ð2 ffiffiffi

ϵ
p Þ-ball around ϕ due to the disk

covering problem.
We examine how the T-count and the approximation error for a

specific target state are related in Fig. 3. As we can see, we were
able to achieve a 50 ~ 60% reduction in T-count. We observe
similar behavior for other randomly selected target states (see
https://github.com/akibue/prob-synthesisfor details).

Halving bit representation of pure states
We verify that the existence of probabilistic and deterministic
encoding given in Fig. 2 can be reduced into a property of output
states of the decoder Γ, as shown in the following propositions.

Proposition 2. A probabilistic encoding of PðCdÞ with approxima-
tion error ϵ and a label set X exists if and only if there exists set
fρ̂x 2 S Cd

� �
g
x2X

of mixed states satisfying

max
ϕ2P Cdð Þ

min
p

ϕ�
X
x2X

pðxÞρ̂x
�����

�����
tr
� ϵ; (23)

where the minimization is taken over a probability distribution p
over X.

Proposition 3. A deterministic encoding of P Cd
� �

with approx-

imation error ϵ and a label set X exists if and only if there exists set

fρ̂x 2 S Cd
� �

g
x2X

of mixed states satisfying

max
ϕ2P Cdð Þ

min
x2X

ϕ� ρ̂xk ktr � ϵ: (24)

A set fρ̂xgx2X of mixed states satisfying Eq. (24) is called an

external ϵ-covering of P Cd
� �

. A set fρ̂x 2 P Cd
� �

g
x2X

of pure

states satisfying Eq. (24) is called an internal ϵ-covering of P Cd
� �

.

The minimum size of internal (or external) ϵ-coverings is called the
internal (or external) covering number and denoted by Iin (or Iex).
Note that Iex ≤ Iin by definition and the minimum bit length ndet
required for deterministic encodings is equal to dlog2Iexe. We
obtain the following lemma by using the volume consideration
and applying the construction of an ϵ-covering shown in42.

Lemma 5. For any ϵ 2 0; 12
� 	

and an integer d ≥ 2 specified below,
the internal and external covering numbers Iin and Iex of an
ϵ-covering of PðCdÞ are bounded by

2 	 lðd; 2ϵÞ � log2Iex � log2Iin ^ 2 	 lðd; ϵÞ � log2Iin � 2 	 lðd; ϵÞ þ log2ð5d ln dÞ;
(25)

where lðd; ϵÞ :¼ d � 1ð Þlog2 1
ϵ

� �
. Moreover, if d ≥ 4, the first lower

bound can be strengthened as 2 	 lðd; ϵÞ � log2Iex.

The details of the proof are given in Supplementary Note 4. By
combining this lemma with Theorem 1, we obtain the following
theorem about the minimum bit length.

Theorem 3. For any ϵ 2 0; 12
� 	

and an integer d ≥ 2 specified
below, the minimum bit length ndet (or nprob) of the deterministic

(or probabilistic) encoding of P Cd
� �

with approximation error ϵ is
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bounded by

2 	 lðd; 2ϵÞ � ndet � 2 	 lðd; ϵÞ þ log2ð5d ln dÞ; (26)

lðd; ϵÞ � log2d � nprob � lðd; ϵÞ þ log2ð5d ln dÞ; (27)

where lðd; ϵÞ :¼ d � 1ð Þlog2 1
ϵ

� �
. Moreover, if d ≥ 4, the first lower

bound can be strengthened as 2 	 lðd; ϵÞ � ndet.

Proof. Since the bounds on ndet are a direct consequence of
Lemma 5, we show the bounds on nprob. The upper bound is
obtained by setting fρ̂xgx in Proposition 2 to be the minimum

internal
ffiffiffi
ϵ

p
-covering of P Cd

� �
. This is because Theorem 1 with

G ¼ fIg guarantees that fρ̂xgx satisfies Eq. (23), and an upper
bound on the size of the internal

ffiffiffi
ϵ

p
-covering is given by

Lemma 5.
Next, we show the lower bound on nprob. Let fρ̂x 2 SðCdÞgx2X

satisfy Eq. (23). We obtain

ϵ � max
ϕ2P Cdð Þ

min
p

ϕ�P
x2X

pðxÞρ̂x
����

����
tr
� max

ϕ2P Cdð Þ
min
p

1�P
x
pðxÞtr ϕρ̂x½ �


 �

¼ 1� min
ϕ2P Cdð Þ

max
x2X

F ρ̂x ;ϕð Þ;

(28)

where we use ρ� σk ktr � maxϕ2P Hð Þ tr ϕðρ� σÞ½ � in the second
inequality.
By letting ρ̂x ¼

Pd
i¼1 pðijxÞϕijx , we ensure that for any

ϕ 2 PðCdÞ, there exists i and x such that

1� ϵ � F ρ̂x ;ϕð Þ ¼
Xd
j¼1

pðjjxÞF ϕjjx ;ϕ
� �

� F ϕijx ;ϕ
� �

¼ 1� ϕ� ϕijx
��� ���2

tr
:

(29)

Thus, fϕijxgi;x is an internal
ffiffiffi
ϵ

p
-covering of PðCdÞ. Hence, the

lower bound can be obtained by applying Lemma 5 as
log2ðjXjdÞ � 2 	 lðd; ffiffiffi

ϵ
p Þ ¼ lðd; ϵÞ. □

Applications for analysis on entanglement measure
Determining whether a quantum state ρ is separable or entangled
is a crucial inquiry in quantum information, as entanglement
provides quantum advantages in various information processing
tasks. The separability test is also fundamental to various
optimization problems in distributed quantum computation. The
separability test is computationally hard even if we are given the
matrix representation of ρ46. Further analysis of the computation
complexity of the separability test has resulted in several
important findings relating to QMA(2)47–50. Although the separ-
ability test for general states is challenging, there are specific
classes of states that make it easier to test for separability, e.g., low
rank51,52 and symmetric53,54 states.
In order to identify the tractable states in the separability test, the

study of the optimal convex approximation examines a generalized
problem of how to approximate a target state ρ with a probabilistic
mixture of a restricted subset fρ̂xgx of quantum states30–32. When this
subset consists of product states, it becomes the separability test.
From this general perspective, we demonstrated that restricting a
target state to be rank-one or symmetry simplifies the optimization, as
shown in Lemma 3. Furthermore, we demonstrate that our general
lemma for the optimal convex approximation can reproduce the
nontrivial facts about entanglement, either already known or
derivable through known facts, in a simpler and unified way.
Recall that the set of separable states is defined as follows.

Definition 1. SEP :¼ fσ 2 S Cd �Cd
� �

: σ ¼PxpðxÞϕx � ψx ^
ϕx ; ψx 2 P Cd

� �
g.

In33, Girardin et al. used a neural network to conjecture Eqs. (2).
Recall that ρWER

q 2 SðCd �CdÞ is the Werner state defined as

ρWER
q :¼ 2ð1�qÞ

dðdþ1ÞΠ_ þ 2q
dðd�1ÞΠ^ with Hermitian projectors Π∨ and Π∧

whose ranges are the symmetric subspace and antisymmetric
subspace and ρISOq 2 SðCd �CdÞ is the isotropic state defined as

ρISOq :¼ 1�q
d2

Iþ qΦþ with Φþ��  ¼ 1ffiffi
d

p
Pd�1

i¼0 iij i, respectively. Since
the Werner (or isotropic) state is entangled if and only if 1

2 < q � 1
(or 1

dþ1 <q � 1), we assume they are entangled in Eqs. (2). By
exploiting the symmetry of the Werner (or isotropic) state and
using Lemma 3, we can prove this conjecture. The complete proof
is given in Supplementary Note 5.
Note that Eqs. (2) can be proven straightforwardly by

combining the following two facts: (i) the closest separable state
can be assumed to be the Werner (or isotropic) state without loss
of generality, and (ii) the Werner (or isotropic) state is separable if
and only if 0 � q � 1

2 (or � 1
d2�1

� q � 1
dþ1). In contrast, our proof

directly computes the minimum trace distance without construct-
ing the closest separable state, moreover, it includes a proof for
(ii). Since a POVM element M appeared in Eq. (8) can be regarded
as an entanglement witness, our proof can be regarded as a
method for “quantifying entanglement with witness opera-
tors”55,56. Taking account of the fact that the closest separable
state is not necessary in our method, it is expected that the
advantage of our method becomes obvious when the closest
separable state is unknown or analytically hard to obtain, as
shown in the next example.
Due to its clear operational meaning, the resource measure

based on trace distance has been investigated for various resource
theories, including entanglement and coherence57. Lemma 3
provides an alternate concise proof for the following recently
identified coincidence between entanglement and coherence
measures.

deterministic synthesis

probabilistic synthesis

T-count

140

120
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60

40

20

0
10-1 10-3 10-5 10-7 10-9 10-11 10-13 10-15

ε

Fig. 3 Relationship between T-count and the approximation error
for synthesizing ϕ

��  ¼ cos t 0j i þ sin t 1j i with t= 1. For each target
approximation error, we run the Ross-Selinger algorithm to obtain a
gate sequence to approximate ϕ. The blue dashed line interpolates
points, each of which represents a target approximation error and
the T-count of the gate sequence. The actual approximation error
and the T-count achieved by the gate sequence are plotted by blue
dots. Note that both the target and actual approximation errors are
represented by ϵ. For each of the target approximation errors, we
run the probabilistic synthesis algorithm and obtain a list of six gate
sequences to be probabilistically sampled. The purple dashed line
interpolates points, each of which represents a target approximation
error and the maximum T-count of gate sequences in the list. The
actual approximation error and the maximum T-count achieved by
optimally mixing the gate sequence are plotted by purple dots.
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Proposition 4. (34, Theorem 3) For pure states Φj i ¼Pd�1
i¼0 αi iij i

and ϕj i ¼Pd�1
i¼0 αi ij i, it holds that

min
σ2SEP

Φ� σk ktr ¼ min
ρ2I

ϕ� ρk ktr; (30)

where I :¼ conv f ij i ih jgd�1
i¼0

� �
is called a set of incoherent states

and f ij igd�1
i¼0 is an orthonormal basis.

Since it is suggested that a simple closed-form formula for Eq.
(30) might not exist34, the closest separable state is also hard to
obtain. However, our method is applicable to show the relation-
ship of the minimum approximation error between different types
of probabilistic approximation by exploiting the purity of the
target states. Moreover, it simplifies the proof of34,Theorem 3]. The
complete proof is given in Supplementary Note 5.

DISCUSSION
We investigated the limitation of the optimal probabilistic state
synthesis and its potential for reducing the size of a synthesis
circuit. As a main result, we verified the tight relationship between
the approximation error obtained by the optimal probabilistic
state synthesis and the optimal deterministic one. We also
constructed an efficient method to convert a deterministic
synthesis algorithm into a probabilistic one that quadratically
reduces the approximation error.
To estimate how the error reduction reduces the size of a

synthesis circuit, we performed a numerical simulation and
evaluated the length of the classical bit string required to
approximately encode a pure state. As a result, we found that
probabilistic encoding asymptotically halves the bit length. Note
that under the presence of noise on elementary gates, which was
not taken into account in this study, certain conditions on the
noise may be required to achieve the quadratic reduction of the
approximation error. However, our SDP can still be used to
numerically determine the optimal probabilistic synthesis in cases
where the noise is explicitly described.
In addition to our contribution to the state synthesis, the our

result would improve the performance of classical simulation of a
quantum computer as well as that of optimization algorithms
including a brute force search over pure states, e.g., the
separability test58. This is because we essentially show that the
set of pure states can be approximated by its ϵ-covering or
probabilistic mixtures of its

ffiffiffi
ϵ

p
-covering in the same accuracy,

where the size of the minimum
ffiffiffi
ϵ

p
-covering is almost the square

root of that of the minimum ϵ-covering.
These results are based on general theorems about the optimal

convex approximation of a quantum state. While the optimal
convex approximation and state synthesis have been studied in
different contexts, our theorems have demonstrated that analyz-
ing the former problem provides not only the fundamental
limitation of probabilistic synthesis but also a construction of an
efficient synthesis algorithm. Furthermore, our theorems con-
tribute to the original motivation of the studies of the optimal
convex approximation30–32, which is quantifying a resource
measure in convex resource theories59–61 such as the resource
theory of entanglement. Indeed, the SDP constructed in Proposi-
tion 1 would provide a basis for numerical investigation for such
resource measures. Our theorems would reveal more quantitative
relationships between different resource measures as shown in
Proposition 4.
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