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Quasiperiodic circuit quantum electrodynamics
T. Herrig 1, J. H. Pixley2,3, E. J. König 4✉ and R.-P. Riwar 1

Superconducting circuits are an extremely versatile platform to realize quantum information hardware and to emulate topological
materials. We here show how a simple arrangement of capacitors and conventional superconductor-insulator-superconductor
junctions can realize an even broader class of systems, in the form of a nonlinear capacitive element which is quasiperiodic with
respect to the quantized Cooper-pair charge. Our setup allows to create protected Dirac points defined in the transport degrees of
freedom, whose presence leads to a suppression of the classical finite-frequency current noise. Furthermore, the quasiperiodicity
can emulate Anderson localization in charge space, measurable via vanishing charge quantum fluctuations. The realization by
means of the macroscopic transport degrees of freedom allows for a straightforward generalization to arbitrary dimensions and
implements truly non-interacting versions of the considered models. As an outlook, we discuss potential ideas to simulate a
transport version of the magic-angle effect known from twisted bilayer graphene.
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INTRODUCTION
Superconducting circuits are a prime candidate for the realization
of large scale quantum computers1,2. Within this thrust, it has
been noticed in the last years that these circuits harbor an
enormous potential for the realization of topological phases of
matter, surprisingly without need for topological or strongly
correlated materials3–23. In a nutshell, the idea is that instead of
considering the regular band structure of a material (obtained
from position and momentum degrees of freedom of the
electron), the transport degrees of freedom of the circuit (charge
and phase across a given circuit branch) may encode a given
topological invariant.
However, when it comes to the emulation of condensed matter

systems by means of superconducting circuits there remains until
now a huge patch of uncharted territory: quasiperiodicity. In solid
state systems, quasiperiodicity may appear on the mean field level
in systems with incommensurate charge density or spin density
waves. Moreover, and possibly more importantly for applications,
incommensurate lattices ubiquitously appear in heterostructures
of van-der-Waals materials24. Within this context, twisted hetero-
structures25 at incommensurate twist-angles26–32 play a particu-
larly interesting role. Finally, electrons moving in a quasicrystalline
environment are subject to incommensuration effects, which can
lead to emergent critical behavior33. Motivated by these examples,
we here intend to show how quasiperiodicity can be engineered
in the transport degrees of freedom of a circuit by very
straightforward means, and how it can be exploited to unlock
previously inaccessible circuit behavior. The key to this endeavor
turns out to be a peculiar form of a nonlinear capacitor.
By far the most common capacitor is the regular, linear

capacitor, whose energy depends quadratically on the charge N

E ¼ 2e2

C
N2; (1)

where C is the capacitance, and the charge number N is counted
in units of Cooper-pairs. The quadratic form is simply a
consequence of standard electrodynamics, where the energy
stored in a capacitor is computed by means of the square of the

electric field. Now, it is interesting to think about alternative
capacitances that are, in one way or another, nonlinear. Ferro-
electric materials34–39, for instance, provide a mechanism leading
to a highly nonlinear capacitive behavior, with an energy which
can locally (close to zero charge on the capacitor) indeed be
approximated yet again as quadratic, but suprisingly, with an
effectively negative capacitance, C < 0. While the total capacitance
of any charged island must of course be positive to guarantee a
lower bound of the Hamiltonian eigenenergies, partial negative
capacitances are a real phenomenon, and have, e.g., been
proposed as a lever arm to amplify the voltage sensitivity of field
effect transistors40. Another way to engineer the electrostatic
properties of an island is a capacitive coupling to a nearby
electronic quantum system, a so-called polarizer, whose eigen-
energy depends yet again on the island charge in a nontrivial way.
This idea was pioneered by Little41 to induce superconducting
pairing in the absence of electron-phonon interactions. It has
recently been studied both experimentally and theoretically in
quantum dot systems to realize attractive interactions42,43—yet
again a form of negative capacitance. Finally, effective negative
capacitances have recently been shown to occur also as a dynamic
effect in the course of a time-dependent flux-drive, due to surface
charges induced by the electro-motive force44.
Here, we propose a circuit which realizes a quasiperiodic

nonlinear capacitor (QPNC) by coupling to a nearby transmon.
The resulting energy term is of the form

E ¼ �ES cos 2πλNð Þ; (2)

with the real parameter λ determining the periodicity of the
capacitance. At the surface, this seems to generalize the nonlinear
capacitance of phase slip junctions45–48 to a term whose
periodicity we can choose by design. Note however, that contrary
to conventional phase slip junctions where charge quantization
enters in a different form49, in our case, the QPNC is compatible
with N 2 Z. Interestingly, λ can assume any real value since it is
determined by a ratio of capacities; therefore it will naturally
assume an irrational value. In conjunction with N 2 Z, this leads to
the capacitance being in general quasiperiodic in charge space.
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To illustrate the versatility of this circuit element, we explore
various consequent effects in different combinations with other
elements. In fact, the possibility to realize a nonlinear capacitance
greatly expands the toolbox of building blocks to simulate
condensed matter systems. To start, we propose a setup which
emulates a Dirac material. The topology is defined in a mixed circuit-
parameter space of a superconducting phase and an offset charge,
which was already studied earlier to provide a highly stable circuit
realization of a Chern insulator22. The presence of the Dirac points has
a measurable influence on the current noise spectrum. In particular,
we show that the topology-induced vanishing of the Berry curvature
will suppress the influence of classical finite-frequency charge noise.
In a different setup, we fully utilize the quasiperiodicity of the

nonlinear capacitive energy term by realizing a simulation of the
Aubry-André (AA) model50,51, a paradigmatic lattice model for
Anderson localization of quantum particles moving in a quasiper-
iodic background potential. Our truly non-interacting setup yields
a platform which allows to directly probe Anderson localization in
charge space. The AA model is known to display a quantum phase
transition from extended to Anderson-localized states and has
attracted enormous attention over the years and in various fields
of research. It represents a fruit fly model of localization which is
solvable using rigorous mathematical52 and mathematical physics
methods53 and has been implemented in a variety of experi-
mental setups, including polaritonic waveguides54 as well as cold
atomic gases55. It is moreover related to the Hofstadter-butterfly
problem of 2D Bloch electrons in a magnetic field56. Clearly,
different experimental emulators of the AA model suffer distinctly
from a variety of imperfections (e.g. particle loss, finite size effects,
residual interactions, and associated reduced quantum coherence
at finite temperature). The proposed superconducting circuit
offers a platform which in particular mitigates the problem of
residual interactions: It is based on the coherent macroscopic
quantum mechanics of superconducting circuits in which micro-
scopic interactions are already fully incorporated.
A major advantage of the proposed set up is its versatility. First, we

show how this system can emulate the low energy excitations of a
two-dimensional Dirac semimetal. We then demonstrate how this

setup can also be used to realize the AA model as well as its
generalization to higher dimensions57–59. The nature of quasiperiodic
localization in higher dimensions and whether or not it is distinct
from its random counterpart in any way remains a timely question
and our proposed set up represents an experimental test of this. Last,
we discuss how to combine these perspectives to realize an emulator
of the magic-angle phenomena in twisted bilayer graphene26–28,32.

RESULTS
Quasiperiodic capacitance
Consider an island with Cooper-pair number operator bN and
superconducting phase φ. Let us add a capacitively coupled
auxiliary transmon, with Cooper-pair number operator bNT and a
Josephson junction of energy EJT coupling to the ground; see left
circuit of Fig. 1a. The offset charge NgT= CgTVgT/2e is controlled via
a gate voltage VgT. We remind the reader that this is not the
complete circuit but just a subsystem of a larger circuit, such that
eventually, more elements will be connected to the contacts
(giving rise to a dynamics of the island degrees of freedom). This
subsystem, however, effectively realizes a quasiperiodic nonlinear
capacitor (QPNC), as we will see below.
The Hamiltonian of the subsystem reads

bH ¼ 2ECT bNT þ NgT þ λbN� �2
þ 2ECbN2 � EJT cosðbφTÞ; (3)

where the superconducting phase operator bφT is canonically
conjugate to the number operator bNT, such that ½bφT; bNT� ¼ i. Find a
detailed derivation of this Hamiltonian in the Supplementary Note
1. The first two terms of the Hamiltonian are the charging energies
of the island and the transmon, EC= e2/Ctot and ECT= e2Ctot/
(CtotCT,tot− C2), with the total capacities of the island and
transmon, here, Ctot= C and CT,tot= C+ CgT+ CJT. The parameter

λ ¼ C=Ctot (4)

will play the crucial role of determining the (quasi)periodicity of
the nonlinear capacitance. Note importantly that as of now, λ= 1,
since the only capacitance the island has is the one which is

Fig. 1 Circuit realizing a quasiperiodic nonlinear capacitor (QPNC) and applications. a The element is implemented by a fast transmon
capacitively coupled (with capacity C) to a superconducting island (with phase bφ and charge bN) at the right contact. That is, we have an
auxiliary island for the transmon (with phase bφT and charge bNT) which is connected to ground via a Josephson junction (of energy EJT and
associated with a capacity CJT). For completeness, we also include a gate voltage VgT (via a capacitance CgT). The right island is assumed to be
connected to further elements as part of a larger circuit, like in (c, d). The QPNC is associated with an energy scale ES and the quasiperiodicity
parameter λ, and it always comes with a parasitic linear capacitance with the same capacity C as the coupling. b One way to counteract the
parasitic linear capacitance is by making use of a partial negative capacitance, here realized by a polarizer (P) giving an energy contribution
effectively described by a negative capacity CP < 0. c The Dirac circuit realizes topologically protected degeneracies in 2D. The QPNC is placed
in parallel with a Josephson junction (of energy EJ) and in series with a cotunneling junction (of energy E2J) connecting to ground with a phase
shift of δ. A cotunneling junction only allows for pairs of Cooper-pairs to tunnel. A gate voltage Vg (via a capacitance Cg) is also added to the
island. d The Aubry-André circuit is the same as the Dirac circuit but without the cotunneling junction. It simulates a trapped version of the
Aubry-André model on a charge lattice.
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coupling to the transmon. In a complete model, λ will not be
trivially one, as Eq. (4) implies here, but instead, the total
capacitance of the island Ctot will differ from C due to additional
capacitive elements; see Supplementary Note 1. That is, in general,
λ expresses the partition of the island charge that couples to the
transmon. This is the reason why we deliberately chose to write
the parameters (EC, ECT, and λ) in the above non-simplified form,
that is, to generalize them to arbitrary applications in larger
circuits with Ctot ≠ C.
Note that we could also invert the QPNC, that is, starting from

Fig. 1a, we switch the island at the right contact with the ground
at the left contact, and thus the charges bN and bNT are inductively
connected while only capacitively coupled to ground. While this
changes a few details in the treatment, the actual effects stay the
same when the auxiliary transmon island only couples to a single
other island (and to ground). However, one additional effect is that
λ is mapped to negative values, which becomes relevant when
extending the model by capacitively coupling additional islands to
the same QPNC as we show below.
In the following we assume that the dynamics of the auxiliary

transmon are much faster than any dynamics of bN. Thus we first
solve the transmon Hamiltonian while leaving N constant. This
allows us to simplify the Hamiltonian given in Eq. (3) to the low-
energy Hamiltonian, where we only take into account the lowest
energy level of the transmon60

bH � �ES cos 2πλbN þ 2πNgT

� �
þ 2ECbN2

: (5)

We identify a nonlinear capacitance in addition to an unavoidable
linear capacitance, such that we can express the circuit as two
parallel capacitive elements, as shown in Fig. 1a. Strictly speaking,
the above low-energy approximation is well-justified in the
transmon regime ECT < EJT, where the amplitude

ES ¼ 16
ECTE3JT
4π2

� �1
4

e
�4

ffiffiffiffiffi
EJT
ECT

q
; (6)

is small and the energy gap to the first excited state of the
transmon � 2

ffiffiffiffiffiffiffiffiffiffiffiffi
ECTEJT

p
is large. However, for our purposes it is

advantageous to have a sufficiently large ES such that its effect is
not merely perturbative. We therefore note that we do not
necessarily need to go very deep into the transmon regime, where
ECT≪ EJT: the cosine expression is still a good approximation when
we consider the intermediate regime of ECT ~ EJT, where ES is not
exponentially suppressed; see Supplementary Note 2. Instead we
find ES and ECT to have a similar order of magnitude. To be precise,
the value of ES maxes out at ~ ECT/4, which can be easily seen by
looking at the Hamiltonian in Eq. (3) in the limit EJT→ 0. A very
minor drawback of ECT ~ EJT is that the energy gap to the first
excited level of the transmon is no longer large, such that it can be
occupied. Since the energy dependence of the excited level
resembles a cosine with an amplitude of reversed sign, these
excitations effectively reduce again ES, such that there is an
optimal trade-off for moderate parameter regimes; for more
details see Supplementary Note 3. At any rate, we identify the
regime in which our low-energy description is valid as the one
where EC does not exceed the gap. For ECT ~ EJT that provides the
bound EC≲ ECT.
A remaining obstacle that we have to discuss is the possible

parameter range for the ratio between ES and EC. For the nonlinear
capacitor effect to become dominant, we would ideally need
ES≫ EC. Importantly however, these two energies are not
independent, as both depend rather non-trivially on the
capacitances of the circuit. As a matter of fact, if all capacitances
involved are regular, positive capacitances, our analysis shows that
ES≫ EC can only be realized for λ close to one or close to zero,
which might seem to severely limit the applicability of our
proposal. But there are several successful work-arounds. One

possibility we explore in this work is to selectively suppress EC (but
not ES) by adding nontrivial Josephson junction elements. Another
strategy is to allow for partial negative capacitances. Let us first
demonstrate that negative capacitances actually lift any remaining
restrictions, such that we can tune ES/EC and λ at will. Then we
briefly sketch some feasible ideas for implementing negative
capacitances based on the polarizer principle41–43.
In Fig. 2 we choose to depict the ratio EC/ECT as well as λ as a

function of ΔC≡ Ctot− C and ΔCT≡ CT,tot− C relative to C. The
ratio EC/ECT is readily translated to ~ EC/4ES, see the discussion
above on the maximal value for ES and, for more details,
Supplementary Note 2. Note that we allow for partial negative
capacitances (i.e., ΔC and ΔCT may be negative), but only insofar as
EC, ECT > 0 (that is, Ctot, CT,tot > 0), as otherwise there is no lower
bound in the Hamiltonian (as stated already in the introduction).
Illegal values for the capacitances, which break the positivity of
the charging energies, are greyed out. Note that we can also
consider C to be negative (with the same restrictions on positivity
of course), which yields a mirror image of Fig. 2 but with negative
values for λ, without the need for inverting the QPNC. However,
the below presented polarizer concept for negative capacitances
cannot realize negative cross-couplings between two islands,
which would require methods like using ferro-electric materials.
The values of ΔC and λ are directly related (see Fig. 2b), which is

Fig. 2 Evaluation of allowed parameter regimes to achieve a
dominant quasiperiodic capacitance. Depicted are the achievable
parameter values for (a) the ratio EC/ECT and (b) λ as a function of the
capacitances of the superconducting islands. The grey areas are
illegal instability-regions marked by a negative charging energy.
Note that we could also achieve negative values for λ when
choosing C to be negative. a The values below EC < 0.1 ECT are cut off
and depicted in the same shade of green. The solid black line marks
the border for which EC= ECT, thus, where the low-energy
approximation breaks down. The dashed line is at a value of EC/
ECT= 1/4 under which ES can exceed EC.
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obvious, given the relationship in Eq. (4). The impact of ΔCT on the
other hand requires a more detailed discussion. As a general rule,
we find that ΔCT should be as small as possible; see Fig. 2a. The
solid line marks EC= ECT that is the border above which the low-
energy approximation breaks down. More importantly, EC can
drop below ES ~ ECT/4 only for values underneath the dashed line.
When using strictly positive capacitances, EC/ECT has a minimal
reachable value depending on λ which is the highest for λ= 1/2 at
EC/ECT= 1/4. This restriction is only lifted close to the trivial value
λ= 1, or for general λ when allowing for partial negative
capacitances.
As already stated in the introduction, ferro-electric materi-

als34–39 can be used to create partial negative capacitances.
However, as of today, we are unaware of attempts to include
ferro-electric materials into superconducting devices at low
temperatures. We believe however, that there is a much more
feasible approach, readily integrable into superconducting device
architecture, relying on a capacitive coupling to a polarizer.
Ultimately, the effect of the polarizer is included in exactly the
same way as for the auxiliary transmon (for a schematic, see Fig. 1b).
We again fix the island charge N, and compute the ground state
energy of the polarizer as a function of N (assuming again the
existence of an energy gap, see below). This energy is added as a
contribution to the total charging energy of the resulting circuit.
To illustrate the basic principle studied by Ref. 43, consider a
capacitive coupling between the island and a generic two-level
system, with a Hamiltonian of the formbHP ¼ uNbσz þ pbσx : (7)

The resulting eigenvalues are ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2N2 þ p2

p
. As indicated above,

assuming a large gap (here given by p), we again reduce the
interaction to a simple energy term due to the ground state
ϵ0ðNÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2N2 þ p2

p
. The effective polarizer capacitance is

given by the curvature of the energy profile, CP � ∂2Nϵ0, which is
here obviously negative. Again, if the gap is not sufficient to
eliminate the excited state, there will be an effective reduction of
the negative capacitance, due to the positive curvature of the
excited state. For a more concrete example, imagine a discrete
chain of charge islands (e.g. quantum dots), which are linearly
arranged away from the superconducting island. Then, the
electrostatic interaction due to the charge N will decay as the
inverse of the distance. Suppose in addition that the onsite energy
on the chain is tunable with additional gates, giving rise to a
polarizer potential. Let us for simplicity take for the latter a linear
dependence on the distance, ~ j. The resulting polarizer Hamilto-
nian is of the form

bHP ¼ �t
XJ

j¼2

jj ih j � 1j þ jj � 1i jh jð Þ þ
XJ

j¼1

u
N � N0

j
þ pj

� �
jj i jh j;

(8)

where t accounts for inter-dot hopping, and the shift N0 accounts
for an offset charge which is not necessarily the same as Ng. We
can estimate the energy dependence of the ground state by
finding the minimum of the potential energy of the above
Hamiltonian, ϵminðNÞ (i.e., neglecting for simplicity the kinetic
term ~ t). For N > N0, this amounts to an energy profile
ϵmin � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N � N0
p

, which yet again has the sought-after negative
curvature. The advantage with respect to the two-level model is
that here, the energies of the lowest few excited states also exhibit
a negative curvature, such that the system is less susceptible to
occupations of excited states.
Finally, another potentially successful strategy to improve the

ratio between ES and EC is to replace the Josephson junction of the
auxiliary transmon with a Cooper-pair cotunneling junction (CCJ,
see below for details), realizing a � cosð2bφTÞ term. This decouples
the even and odd Cooper-pair parity states, effectively increasing
both ECT and ES by a factor of 4 while decreasing λ by 2. This lifts

the above mentioned minimum restriction on EC/ECT for the Dirac
circuit we discuss in a moment, where we need λ= 1/2. The
drawback here is however that we would need a near perfect
decoupling of the even and odd Cooper pair number states to
avoid significant disturbance of the cosine behavior. This would
require the manufacturing of CCJs without residual regular
Josephson effect, which may still be challenging.

Dirac material
In the previous section, we have already pointed out a variety of
ways to render the quasiperiodic nonlinear capacitor (QPNC)
dominant. Here we want to provide an additional strategy, which,
surprisingly, turns out to give rise to an interesting side effect.
Namely, this will allow us to emulate a protected 2D Dirac
material, importantly, by using only topologically trivial materials
and circuit elements.
Consider that in the space of the superconducting phase bφ, the

QPNC term can be written in terms of phase translation operators
shifting the phase by ± 2πλ, while the linear capacitance
corresponds to infinitesimal phase shifts analogously to an
ordinary kinetic energy term but in phase space instead of
position space. Due to this difference in their behavior (one acting
non-locally and the other locally in phase space) we can attempt
to suppress the linear capacitance without deprecating the effects
of the QPNC.
This feat can be achieved as follows. To suppress the local

kinetic term of the linear capacitor we may include an additional
potential energy term with minima that are well separated in
phase space. If the potential barrier is high, the tunneling between
the minima due to ordinary quantum phase slips by means of the
EC-term are then suppressed. The simplest nontrivial circuit
element that fits this bill would be a Cooper-pair cotunneling
junction (CCJ) (see Fig. 1c), described by a � cosð2bφÞ energy term.
Note that the cosðbφÞ-term of a regular Josephson junction does
not work here since charge quantization renders the phase space
2π-periodic and, hence, the single energetic minimum would also
suppress any non-local phase slips. A CCJ can be realized by
means of a symmetric superconducting quantum interference
device (SQUID) while applying a magnetic flux of half a flux
quantum Φ0/2 through the loop of the SQUID. This will cause the
regular tunneling events to interfere destructively such that the
next-higher-order terms become dominant involving the tunnel-
ing of pairs of Cooper-pairs61,62. A separate recent realization of a
CCJ is in Josephson junctions formed by twisting stacks of the
optimally doped high-temperature copper oxide superconductor
Bi2Sr2CaCu2O8+y at an angle of 45∘63–68. Here, the residual single
Cooper-pair tunneling term precisely vanishes due to the
symmetry of the d-wave superconductors, and the observation
of the second harmonic of the Josephson relation was observed in
both the Fraunhoffer pattern and fractional Shapiro steps in twist
junctions near 45∘69. Beyond these realizations, the CCJ recently
enjoyed a lot of interest: on the experimental side it was used to
build a modified transmon62, giving rise to two ground states with
the same fermion parity. On the theory side, it was proposed as a
key ingredient to engineer flat-band materials21.
While ordinary quantum tunneling between the minima of the

additional cosð2bφÞ-potential will be suppressed, the nonlinear
capacitor may still provide non-local tunneling processes. Here,
this tunneling is most prominent if we set the parameters such
that λ= 1/2. We also add a regular Josephson junction of energy
EJ in parallel, creating an asymmetry between the minima of the
potential. Thus, we arrive at the Hamiltonian

bHD ¼ 2EC bN þ Ng

� �2
� ES cos π bN þ Ng

� �
þ 2πNgT

h i
�EJ cos bφð Þ � E2J cos 2 bφ� δð Þ½ �;

(9)
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where the offset charge Ng is induced by the gate voltage Vg
connected to the island, δ is the phase difference across the
circuit, and E2J is the cotunneling energy of the CCJ.
In order to create a strong confinement of the phase, we

consider the cotunneling E2J to be the dominant energy scale,
which—considering the aforementioned recent experimental
advances62—seems within reach. Hence, the lowest two energy
eigenstates are localized in the minima of the cotunneling term at
φj= δ+ jπ with j∈ {0, 1} and their energetic difference is much
smaller than the gap to the next excited state, which, for E2J≫ EC,
is achieved by assuming EJ; ES � 4

ffiffiffiffiffiffiffiffiffiffiffi
ECE2J

p
. In the following we

make use of this energy separation of the eigenstates to reduce
the size of the Hilbert space. Namely, we are splitting the
Hamiltonian into two terms bHD ¼ bH0 þ bVD where bVD ¼
�ES cos½πðbN þ NgÞ þ 2πNgT� � EJ cosðbφÞ is a small perturbation

to bH0 ¼ 2ECðbN þ NgÞ2 � E2J cos½2ðbφ� δÞ�. We can thus first
diagonalize bH0 (in principle exactly), and then take into account
the effect of bVD perturbatively, in the low-energy basis of bH0.
Since charge and phase have the same duality as position and

momentum we can use Bloch’s theorem to solve bH0. However, as
is well-established by now60, the important difference to a regular
particle in a 1D potential is the 2π-periodicity constraint on the
wave function ψ(φ), in addition to the periodicity of the
Hamiltonian. Since this aspect is of importance below, let us
reiterate it for completeness—first, with the example of a regular
transmon Hamiltonian, which is 2π-periodic in φ. Any attempt to
try and gauge away the offset charge Ng by a unitary
transformation eψðφÞ ¼ eiNgφψðφÞ is bound to fail, as Ng now
simply reenters in the boundary condition of eψðφÞ, ensuring the
periodicity of the original wave function ψ. In this analogy eψ is a
Bloch function and the offset charge Ng takes the role of the
quasimomentum k in the solid state—except that instead of being
a continuous quantum number, Ng is an external parameter,
selecting a particular Bloch wave function eψn from each Bloch
band n. This gives us a discrete spectrum depending on Ng instead
of continuous bands. Note that in contrast to usual applications of
Bloch’s theorem, where the non-periodic Bloch function takes the
role of the wave function, here the wave function ψn is the
periodic function that modulates the plane wave eiNgφ of the Bloch
function eψn.
With the CCJ, the Hamiltonian is now π-periodic, but we still

have the same 2π-periodicity constraint on the wave function ψ.
That is why Ng now selects two states per Bloch band, ψþ

n and ψ�
n

with k= Ng and Ng+ 1, which are related via ψ�
n ðφÞ ¼ eiφψþ

n ðφÞ
and with ψþ

n being π-periodic. Thus ψþ
n (ψ�

n ) is (anti-)symmetric
under π-translation. As argued above, we now focus on the two
states of the lowest band, ψ±

0 . Due to large E2J, we can
approximate them as superpositions of two Gaussian-like wave
packets each localized at a minimum φj. Moreover, the two states
form a quasi-degenerate ground state for all values of Ng, up to
exponentially suppressed phase slip terms, such that, when
eliminating all but these two low energy states, bH0 � const. ,
which can thus be set to zero (deviations from this assumption
cannot destroy the effect, as we explain in a moment). The
remaining low-energy Hamiltonian is entirely due to bVD, and can
be computed by projecting it onto the eigenbasis of H0,bHD;eff ¼ �ES cos πNg

� �bσz � EJ cos δð Þbσx: (10)

The offset charge NgT leads only to a shift in Ng. Apart from that, it
does not affect the eigenspectrum and is therefore being omitted.
Here, bσx and bσz are the Pauli matrices withbσz ¼ ψþ

0

		 
hψþ
0 j � jψ�

0 i ψ�
0

� 		.
This Hamiltonian shows four Dirac points in the parameter

space of (δ, Ng) located at δ ∈ {π/2, 3π/2}, Ng∈ {1/2, 3/2}. Thus the
Dirac physics is here defined in a mixed parameter space of phase
and charge. This is reminiscent of an earlier work by some of the

authors, simulating a Chern insulator22 in charge and phase space.
Surprisingly, we find that, here, the interplay between the QPNC
and the CCJ allows for a mechanism to protect degeneracies in a
2D parameter space, which could not have been anticipated in
Ref. 22. To demonstrate this remarkable protection let us discuss
the stability of the effect when tuning away from the ideal
parameter setting.
First of all, the Dirac nature of the system is completely

insensitive to any small detuning δλ from the exact λ= 1/2. The
only effect of such a deviation is a small reduction of the
amplitude in front of the cosðπNgÞ-term in Eq. (10) (to a value
slightly below ES) because it reduces the overlap of the matrix
elements hψ±

0 jbVDjψ±
0 i. Actually, when considering the full model,

it turns out that a small detuning can even have a positive effect
on the spectrum by counteracting other imperfections; see
Supplementary Note 4.
Another important perturbation might come from the fact that

the realization of the CCJ might not be ideal and create a residual
δE2J cosðbφ� δÞ term. In Ref. 62, this term is important, as it could
lift the degeneracy of the two same-parity ground states of H0. In
our system however, yet again, small perturbations of this kind
only shift the Dirac points but cannot gap the spectrum. The
perturbed Hamiltonian is of the formbHD;eff ¼ �ES cos πNg

� �bσz � EJ cos δð Þ þ δE2J½ �bσx ; (11)

where the Dirac points are shifted to δc and 2π− δc, with
δc ¼ arccosð�δE2J=EJÞ. As long as the residual term is smaller than
the CCJ term, δE2J < EJ, the spectrum is not gapped, and for a small
δE2J≪ EJ we find a linear shift δc= π/2+ δE2J/EJ. Finally, we note
that the position of the Dirac points can also minimally shift when
deviating from the ideal regime E2J≫ EC, which slightly lift the
degeneracy of the two low-energy basis states of H0 (thus adding
a small contribution in bσz).
Now we want to study how one can probe the presence of the

Dirac points in a straightforward fashion. We show that in this
particular case, the Dirac physics is responsible for a change in the
asymptotic behavior of the classical current-noise signal. We
consider a time-dependent driving of the offset charge Ng.
Consequently, there will be a geometric component of the current
response which can be cast into the form of a Berry curvature6,22

in the (δ, Ng) parameter space. Importantly, the Dirac material has
the special property that the Berry curvature vanishes exactly for
each point (δ, Ng), except for the Dirac points. Away from these
points the Berry curvature is nonzero only when the Dirac cones
are gapped. We therefore need to find a quantity capable of
measuring the presence or absence of the Berry curvature in a
local fashion. As we show in the following, this can be
accomplished by measuring the classical current noise spectrum
S ωð Þ ¼ R1

�1 dτ exp iωτð ÞIðtÞIðt þ τÞ as a response to fluctuations in
Ng.
We describe the offset charge noise, Ng ¼ Nð0Þ

g þ ξðtÞ, by white
noise such that ∂tξðtÞ ¼ 0 and ∂tξðtÞ∂tξðt0Þ ¼ 2δðt � t0Þ=T . Here, �
denotes the ensemble average and T characterizes the magnitude
of the noise correlations and has to be determined experimen-
tally70–72. Assuming slow noise (that is, ∂tξ(t) being always smaller
than the local gap size) and starting in the ground state 0j i, we
use an adiabatic approximation of the wave function73 to calculate
the expectation value of the currentbI ¼ 2e ∂δbH up to first order in
_Ng

I tð Þ ¼ I0 tð Þ þ I1 tð Þ; (12)

with the Josephson current I0ðtÞ ¼ h0jbIj0i ¼ 2e ∂δϵn and the linear
correction term I1ðtÞ ¼ �2e _NgB0½δ;NgðtÞ�. Here, ϵn are the
eigenvalues of the Hamiltonian with corresponding eigenstates
nj i and the Berry curvature is given by Bnðδ;NgÞ ¼
�2Im ∂δnj∂Ngn

� 

. The periodicity of the current in Ng can be

exploited by casting the contributions into a discrete Fourier
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series; for details see Supplementary Note 5. Ultimately, we find
two contributions to the current noise spectrum, one from the
Josephson current (with subscript J) and a Berry curvature
contribution (with subscript B)
S ωð Þ ¼ SJ ωð Þ þ SB ωð Þ: (13)

The respective asymptotic behavior (the power law) can be
computed by means of the respective dominant Fourier
component. For the Josephson current contribution, we get

SJ � ω�2; (14)

whereas the Berry curvature contribution yields

SB � const. ; (15)

where the respective constants of proportionality are quadratic in
the respective dominant Fourier coefficient. Note that we exclude
from these considerations the zeroth Fourier coefficients corre-
sponding to the time-averaged current contributions—they
naturally do not contribute to the noise spectrum. Moreover, in
the proximity of the degeneracies one might has to consider
multiple Fourier coefficients for a quantitative analysis; see
Supplementary Note 5. Now, depending on whether the Berry
curvature is zero or nonzero, this changes the asymptotic behavior
of the classical noise for large ω. The total spectrum S and its two
contributions SJ and SB are shown for the Dirac system and a more
general gapped system in Fig. 3. If the Berry curvature is zero, the
noise decays as ω−2. If it is nonzero, it goes to a constant value.
One way to realize the latter case in an experiment is to consider a
decreased E2J which introduces a gap into the spectrum. To
conclude, we can probe whether or not the system is gapped by
measuring the asymptotic value of the classical current noise
spectrum.
For the sake of completeness, let us briefly sketch a different

approach to measure the presence of the Dirac points, via
measuring the Berry phase. Namely, while the Berry curvature B
away from the degeneracies is exactly zero, taking an adiabatic
path around a Dirac point, where B is singular, allows us
nonetheless to pick up a Berry phase. However, since a full circle
will give us a phase of π for both states, we cannot measure any
phase difference. Therefore, one would have to perform a
semicircle around the degeneracy in (δ, Ng)-space, where the
two states gather a phase of ± π/2 giving a difference of π. We do
not discuss this possibility in more detail due to experimental
challenges, in particular the large amplitude off-set charge noise
which impede a precise control of Ng

70–72. As a matter of fact, the
very same offset-charge noise was a necessary ingredient for the
previously described current noise probe. Nonetheless, via active
measurement of background charges and backaction control, it is
perceivable that a sufficient time-dependent control of Ng could
potentially be achieved. Then, to realistically perform this
measurement, one should start and end the evolution at a value
of δ at a degeneracy. Thus, we do not care about the exact value
of Ng as long as the aforementioned feedback control allows to
sufficiently fix the value of Ng to stay away from the degeneracies.
One could then tune δ and Ng around a single cone; see Fig. 4.
Since the Berry phase depends only on the angle around the cone
and not the exact shape of the parameter curve, the topological
feature could be observed.

Charge localization in the Aubry-André model
Previously, we interpreted the Josephson terms as potentials,
identifying the phase as position space (with torus topology),
while capacitive terms were taking the role of kinetic energies. In
this section we invert this identification, interpreting the
capacitive terms as potentials on an infinite charge lattice while
the Josephson terms introduce a hopping on this lattice.

Due to the charge operator being quantized, the nonlinear
capacitor is only truly periodic if λ is a rational number. For
irrational values, the associated energy term becomes quasiper-
iodic and by that realizes a quasiperiodic lattice in charge space.

Fig. 3 Classical current noise spectrum. The full noise spectrum
S(ω) (shown in a) can be split into (b) two contributions, SJ(ω) from
the Josephson current and SBðωÞ from the Berry curvature,
corresponding to the adiabatic approximation up to the first
correction. Depicted are two scenarios–the solid lines show what
we expect in our system while for the dashed lines, we introduced a
small artificial gap Δ of the Dirac points in form of an bσy-term. As
clearly shown here, in contrast to the former, the latter system
produces a finite Berry curvature leading to a finite asymptotic value
of high frequencies ω. We chose a gap of Δ= 1.06T−1 with
ES= EJ= 10T−1 and δ= π/4 such that β= S(∞)/S(0) ≈ 1; see Supple-
mentary Note 5.

Fig. 4 Noisy semicircle path around a Dirac cone. Depicted in
colors are five exemplary paths with possible realizations of the
offset-charge noise. The ideal path (see black line) halfway encircles
exactly one Dirac point. However, as long as the actual path starts
and ends at the value of δ where the degeneracy is located (here
δ= 1/2), while passing exactly one degeneracy, the Berry phase
picked up by the two states differs by π, independent of the exact
shape of the parameter curve. Hence, as long as the driving occurs
sufficiently faster than the offset charge fluctuations, or the offset
charge itself can be sufficiently controlled to avoid the Dirac points,
the measurement of the Berry phase can be achieved.
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This opens the possibility to study the interplay of this lattice with
kinetic energy implemented by a Josephson junction with energy
EJ in parallel to the capacitor (see Fig. 1d), giving us the
Hamiltonian

bHAA ¼ bT þ bV ; (16)

with the on-site energy of the quasiperiodic lattice

bV ¼ �ES cos 2π λ bN þ Ng

� �
þ NgT

h i� �
þ 2EC bN þ Ng

� �2
; (17)

and the Josephson energy bT ¼ �EJ cosðbφÞ. We can rewrite the
latter in the charge eigenbasis Nj i as a hopping term on the lattice

bT ¼ � EJ
2

X
N

Nj i N � 1h j þ h.c. ; (18)

due to the quantization condition between charge and phase,
½bφ; bN� ¼ i.
The model, Eq. (16), at EC= 0 corresponds to the Aubry-André

(AA) model and EC > 0 adds a quadratic trapping potential, which
is qualitatively similar to an ultra-cold atom realization of the AA
model55,74,75. In the absence of the potential (EC= 0) the AA
model is exactly solvable with a delocalized phase for ES < EJ, an
Anderson localized phase for ES > EJ, and all the eigenstates are
critical at the (self dual) critical point ES= EJ. It is has been shown
that for EC≪ ES, this trapping potential induces finite size effects,
in particular a rounding out of the transition, but the wave
functions for EJ≫ ES (EJ≪ ES) qualitatively retain their delocalized
(Anderson localized) characteristics76. It is worthwhile emphasiz-
ing that Anderson localization only occurs for irrational λ:
Otherwise, the ES-term merely introduces a ‘superlattice width’, a
rescaled (larger) lattice spacing, which in turn implies delocalized
Bloch waves living in an appropriately rescaled (smaller) Brillouin
zone. On the other hand, of course, once EC≫ ES the AA physics is
lost. However, as illustrated in Fig. 2 above, with the help of
negative capacitances (e.g. realized with the polarizer concept
outlined above), we can also tune the relative energy scales to
minimize the impact of the trap.
In this system, Anderson localization will manifest itself in the

form of charge localization. This effect could be probed in a
number of ways, e.g. by initializing the circuit in a given charge
state, and subsequently measuring the dispersion (or lack thereof)
in charge space as a function of time. We here choose to compute
a related, but even simpler quantity. Namely, we assume that the
system is prepared in the ground state, and compute the
quantum charge fluctuations associated with it. Here, charge
localization manifests very simply as

ΔN � bN2
D E

� bND E2
¼ 0: (19)

This effect is only broken if bV becomes degenerate in its ground
state, which happens for specific parameter values of λ, Ng, and
NgT. Here, the charge fluctuations of the ground state immediately
spike to a finite value. This gives rise to an interesting pattern of
suppressed charge fluctuations, which are lifted along character-
istic, rather complex contours, which we refer to as charge
fluctuation anomalies. As an illustration of the regimes of avoided
groundstate degeneracies, and hence strong localization physics,
see Fig. 5.
As mentioned in the introduction, higher dimensional analogs

of the AA model are much less understood. In particular, the
nature of quasiperiodic localization in higher dimensions and its
relation to the more conventional, disorder driven localization is
an interesting, timely and largely open question. Therefore, it is
quite important to have experimental settings where these ideas
can be tested and explored. A crucial advantage of the platform
offered by superconducting circuits is the possibility to realize a
model of in principle arbitrary dimension58; the 3D version of the
circuit is depicted in Fig. 6 but it can be generalized to dimension

d by continuation indicated with the dots. In particular, we show
that one can generalize the quasiperiodic nonlinear capacitor to a
multidimensional version, coupling several islands in a single
cosine term. Each of the d auxiliary transmons is connected to d
islands, whose charge and phase operators are condensed in a

charge vector bN � ðbNx ; bNy ; ¼ Þ> and a phase vectorbφ � ðbφx ; bφy ; ¼ Þ>, as well as corresponding offset charges Ng

and Josephson energies EJ connected to these islands. This
realizes the effective Hamiltonian

bHd

AA ¼ �EJ 	 cos bφð Þ þ
Xd
j¼1

bVd

j þ bVd

C; (20)

where we define the cosine of a vector component-wise
½cosðbφÞ�μ :¼ cosðbφμÞ. The on-site energy contribution due to the
j-th transmon is given by

bVd

j ¼ �ES;j cos 2πΛj 	 bNþ Ng

� �
þ 2πNgT;j

h i
; (21)

and the linear-capacitive contribution

bVd

C ¼ 2 bNþ Ng

� �>
EC bNþ Ng

� �
; (22)

where EC is a matrix representing the entire capacitive network of
the circuit (also containing capacitive cross-couplings between the
islands). We expect the circuit to include also cross-coupling
between the transmons which, according to a first analysis, appear
to be suppressed in the transmon regime of dominant EJT,j. The
parameters Λj � ðλj;x ; λj;y ; ¼ Þ>, EC, and ES,j can all be calculated
with the capacities of the circuit, analogously to above; see
Supplementary Note 1 for a derivation. By tuning those capacities
(shown in Fig. 6) we can tune the components of all
quasiperiodicity parameters

λj;μ ¼ CjμP
j0 Cj0μ þ Cj0 ;tot
� � ; μ 2 fx; y; ¼ g (23)

independent of each other, and thus, by choosing linearly
independent vectors Λj with only irrational and nonzero elements,
we realize a non-separable quasiperiodic model. Moreover, by
switching a transmon Josephson junction EJT,j with one of the
capacities coupling this transmon to the islands, we can tune each
Λj to have a single negative component, as already mentioned in
the discussion following Eq. (4). This allows for orthogonal vectors
realizing a self-dual model according to58. As above we can use
partial negative capacitances to improve the ratio of the
parameters, rendering EC negligible. Negative cross capacitances
are a further interesting concept to explore in future works, as
they would allow for the mitigation of unwanted cross talk, or (as
already mentioned) present an alternative strategy to flip the sign
of a specific component in the Λj vector.

Discussion
In summary, we have introduced a circuit element, the
quasiperiodic non-linear capacitor, which can be realized with
an appropriately designed combination of capacitors and
superconductor-insulator-superconductor junctions. We have dis-
cussed potential practical obstructions and mitigations thereof
and outlined two applications: A Dirac material emulator in
combined charge-flux space as well as an emulator of Anderson
localization within the 1D and higher dimensional Aubry-André
paradigm.
We conclude with a perspective on the quantum emulation of

twisttronics and the possibilities to explore and exploit synergies
between the quasiperiodic circuit element and circuit emulation
of topological band structures6. Specifically, it has been demon-
strated26,27,29,32 that the magic-angle effect in twisted bilayer
graphene (i.e. the massive flattening of Dirac bands to virtually

T. Herrig et al.

7

Published in partnership with The University of New South Wales npj Quantum Information (2023)   116 



vanishing kinetic energy) can be emulated in a variety of systems
even without the need of physically twisted atomic lattices.
Moreover, near the magic angle, quasiperiodicity was theoretically
found to be relevant and to lead to an eigenstate quantum phase
transition analogous to Anderson localization-delocalization tran-
sitions, but in momentum rather than coordinate space. While the
small absolute value of the magic twist-angle in graphene leads to
an extremely narrow parameter regime governed by quasiperiodic
effects, this restriction is generally absent in quantum emulators. It
will thus be an interesting topic for the future to study
experimental signatures of the interplay of quasiperiodicity and
Dirac physics in quantum circuit analogs of magic angle twisted
bilayer and multilayer graphene.
On a final note, as pointed out in the main text already, we

currently consider the transport degrees of freedom to simulate
the position of a single particle moving in a quasiperiodic
potential. Given the importance of the interplay between
quasiperiodicity and strong correlations, it is therefore a further

important question, whether many-body interaction effects can
be taken into account in a meaningful way in the here proposed
platform. We expect that such an endeavor would in principle
work similar in spirit to the generalization to higher dimensions,
see Fig. 6. For instance, instead of interpreting the wave function
of the circuit to simulate a particle in an n-dimensional space, it
could represent n particles in a 1-dimensional space (or any other
commensurable combination of spatial dimensions and particle
numbers). The crucial challenge that needs to be overcome for
this idea to work, is that the circuit wave function (if interpreted as
representing multiple particles) needs to satisfy fermionic,
bosonic, or potentially even anyonic commutation relations,
which is not naturally guaranteed (the circuit wave function
generically is not required to satisfy such symmetry constraints). It
will have to be investigated in future works if and how such
constraints can be included in the simulation. Such an approach
will in all likelyhood not be able to feasibly mimic a system in the

Fig. 5 Charge fluctuation anomalies related to charge localization in the Aubry-André model. For all white areas, the charge is localized
with negligible charge fluctuations. The black lines represent the values for the parameter pair (λ, Ng) for which the ground state is degenerate
and, thus, the quantum fluctuations of the charge are finite, ultimately leading to delocalized states. This breaking of the charge localization is
shown for NgT= 0 and the energy ratios (a) ES= EC, (b) ES= 5EC, and (c) ES= 25EC, as well as for (d) NgT= 1/4 and ES= 25EC. We see that the
complexity of the pattern increases for increasing ES/EC. Moreover, NgT ≠ 0 breaks the mirror symmetry along Ng but not the periodicity.
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thermodynamic limit77,78, but we expect that dilute systems79,80

could be tackled.
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