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Adaptive quantum error mitigation using pulse-based inverse
evolutions
Ivan Henao1, Jader P. Santos 1 and Raam Uzdin1✉

Quantum Error Mitigation (QEM) enables the extraction of high-quality results from the presently-available noisy quantum
computers. In this approach, the effect of the noise on observables of interest can be mitigated using multiple measurements
without additional hardware overhead. Unfortunately, current QEM techniques are limited to weak noise or lack scalability. In this
work, we introduce a QEM method termed ‘Adaptive KIK’ that adapts to the noise level of the target device, and therefore, can
handle moderate-to-strong noise. The implementation of the method is experimentally simple — it does not involve any
tomographic information or machine-learning stage, and the number of different quantum circuits to be implemented is
independent of the size of the system. Furthermore, we have shown that it can be successfully integrated with randomized
compiling for handling both incoherent as well as coherent noise. Our method handles spatially correlated and time-dependent
noise which enables us to run shots over the scale of days or more despite the fact that noise and calibrations change in time.
Finally, we discuss and demonstrate why our results suggest that gate calibration protocols should be revised when using QEM. We
demonstrate our findings in the IBM quantum computers and through numerical simulations.
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INTRODUCTION
Quantum computers have reached a point where they outperform
even the most powerful classical computers in specific tasks1–3.
However, these quantum devices still face considerable noise
levels that need to be managed for quantum algorithms to excel
in practical applications. Quantum error correction (QEC) is a
prominent solution, although its implementation, particularly in
complex problems such as Shor’s factoring algorithm, might
demand thousands of physical qubits for each encoded logical
qubit4,5.
A different approach, quantum error mitigation (QEM), has

garnered substantial attention recently6–23. Its viability has been
demonstrated through experiments involving superconducting
circuits19–21,24–29, trapped ions30, and circuit QED31. QEM protocols
aim to estimate ideal expectation values from noisy measure-
ments, without the resource-intensive requirements of QEC. This
positions them as potential solutions for achieving quantum
advantage in practical computational tasks19,28. Some QEM
strategies require moderate hardware overheads and can be seen
as intermediary solutions between NISQ (Noisy Intermediate-Scale
Quantum) computers and devices that fully exploit QEC11,12. These
strategies aim to virtually refine the pure final state, by utilizing
extra qubits for error mitigation without actively correcting errors.
The approach introduced here fits into the more common class of
QEM techniques that maintain the qubit count of the original
circuit.
The objective of QEM is to reduce errors in post-processing,

rather than fixing them in real time. For instance, the zero-noise
extrapolation (ZNE) method6,7 employs circuits that mimic the
ideal target evolution but amplify noise by a controlled factor. The
noiseless expectation values are estimated via extrapolation to the
zero-noise limit, after fitting a noise scaling ansatz to the
measured data. While the construction of circuits that correctly
scale the noise is straightforward if the noise is time independent6

or if it is described by a global depolarizing channel13, it has been

observed that circuits designed to amplify depolarizing noise fail
to achieve the intended noise scaling, when applied to more
realistic noise models19. Our experimental findings also show
related issues when applying such circuits to QEM in a real system.
Another strategy is to simplify the actual noise appearing in multi-
qubit gates such as the CNOT, CZ, Toffoli and Fredkin gates, by
using randomized compiling, which renders the noise to a Pauli
channel32,33. A sufficiently sparse Pauli channel facilitates accurate
characterization and noise amplification for ZNE28. Additionally, as
in other QEM methods, the performance of ZNE can be enhanced
by integrating it with other error mitigation techniques34, such as
readout error mitigation17.
In comparison to ZNE, Probabilistic Error Cancellation (PEC) is a

QEM scheme that relies on experimental characterization of the
noise to effectively suppress the associated error channel6,8,9,20,25.
To this end, PEC uses a Monte Carlo sampling of noisy operations
that on average cancel out the noise, thereby providing an
unbiased estimation of the noise-free expectation value. However,
this objective can only be accomplished when precise and
complete tomographic details of the noise process are accessible.
In practice, the success of bias suppression in PEC is limited by the
scalability and accuracy of gate set tomography in realistic
scenarios. Additionally, since noise characteristics evolve over
time, the learning process for PEC must be carried out efficiently
within a timescale that is shorter than the timescale in which the
noise parameters change. A more realistic approach aims for a
partial characterization of the noise, using tools like local gate set
tomography8 or learning of a sparse noise model20. The latter
strategy was also employed to assist the implementation of ZNE in
the experiment of ref. 28. Alternatively, it is possible to learn a
noise model by taking advantage of circuits that are akin to the
target circuit but admit an efficient classical simulation9,10,16,35. By
concatenating the outcomes from the ideal (simulated) circuits
with their experimental counterparts, the noise-free expectation
value can be estimated through some form of data regression10,35.
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Similar learning-based schemes have also been integrated with
PEC9 and ZNE16.
In this work, we introduce the ‘Adaptive KIK’ method (‘KIK’ for

brevity) for handling time-dependent and spatially correlated
noise in QEM. This technique bears a certain (misleading) similarity
to a ZNE variant known as circuit (or ‘global’34) unitary folding13,
where noise is augmented through identity operations that
comprise products of the target evolution and its inverse. While
both methods utilize folding to mitigate noise, they differ in the
error mitigation mechanism and the way the measured data is
processed. Instead of extrapolating to the zero-noise limit, we
combine appropriately folded circuits to effectively construct the
‘inverse noise channel’ and approximate the ideal unitary
evolution. As opposed to PEC, the implementation of the KIK
method does not involve any tomographic information or noise
learning subroutine. More precisely, the coefficients that weigh
the folded circuits are analytically optimized according to a single
experimental parameter that probes the intensity of the noise.
Another distinctive aspect of KIK mitigation is a specific inversion
of the target circuit for the folding procedure. This constitutes a
pivotal difference with respect to circuit folding and has practical
consequences, as we show experimentally. The combination of a
proper inverse and coefficients adapted to the noise strength
allows us to mitigate moderate-to-strong noise and significantly
outperform circuit folding ZNE in experiments and simulations.
Although we show that the weak noise limit of our theory has a
clear connection with Richardson ZNE using circuit folding13, the
correct inversion of the target circuit is still crucial in this limit.
Recently, important results on the fundamental limitations of

QEM protocols have been obtained36,37. These studies address the
degradation in the statistical precision of generic QEM schemes, as
noise accumulates in circuits of increasing size. In this work,
instead of analyzing the degradation of statistical precision, our
focus is on the accuracy of error mitigation. We obtain upper
bounds for the bias between the ideal expectation value of an
arbitrary observable and the value estimated using the KIK
method, as a function of the accumulated noise. Our bounds show
exponential suppression of the bias with respect to the number of
foldings when the noise is below a certain threshold. This is in
contrast with ZNE schemes which, in general, do not provide
accuracy guarantees.
We test the KIK method on a ten-swap circuit and in a CNOT

calibration process, using the IBM quantum computing platform.
In the ten-swap experiment, we demonstrate the success of our
approach for mitigating strong noise. In the calibration experi-
ment, it is illustrated that a noise-induced bias in gate parameters
leads to coherent errors. KIK-based calibration can efficiently
mitigate these coherent errors by reducing the bias in the
calibration measurements. Furthermore, we find that circuit
folding (which uses the CNOT as its own inverse) produces
erroneous and inconsistent results. Our experimental findings are
enhanced by complementing the KIK method with randomized
compiling and readout mitigation. We also simulate the fidelity
obtained with a noisy ten-step Trotterization38 of the transverse
Ising model on five qubits. For unmitigated fidelities as low as
0.85, we show that KIK error mitigation produces final fidelities
beyond 0.99.

RESULTS
The KIK formula for time-dependent noise
To derive our results, we adopt the Liouville-space formalism of
Quantum Mechanics39 (see Supplementary Note 1), in which
density matrices that describe quantum states are written as
vectors, and quantum operations as matrices that act on these
vectors. In the following, we will employ calligraphic fonts to
denote quantum operations. For example, the unitary evolution

associated with an ideal (noise-free) quantum circuit and its noisy
implementation will be written as U and K, respectively.
In the standard representation involving superoperators and

density matrices, the noisy evolution is governed by the equation

d
dt

ρ ¼ �i½HðtÞ; ρ� þ L̂ðtÞ½ρ�: (1)

The ideal evolution is generated by the time-dependent
Hamiltonian H(t). On the other hand, the effect of noise is
characterized by the superoperator L̂ðtÞ. In the following, we will
refer to this superoperator as the ‘dissipator’. The equivalent of Eq.
(1) in Liouville space is the equation

d
dt

ρj i ¼ �iHðtÞ þ LðtÞð Þ ρj i; (2)

where ρj i is the vectorized form of ρ. Moreover, HðtÞ and LðtÞ are
square matrices that represent the Hamiltonian H(t) and the
dissipator, respectively. We refer the reader to Supplementary
Note 2 for more details.
The dynamics (2) gives rise to the noisy target evolution, which

we have denoted by K. As shown in Supplementary Note 3, we
can write the solution to Eq. (2) as K ¼ UeΩðTÞ, where ΩðTÞ ¼P1

n¼1 ΩnðTÞ is the so-called Magnus expansion40. The time T is the
total evolution time and Ωn(T) is the nth order Magnus term
corresponding to T. Here, we are specifically interested in the first
Magnus term Ω1(T), for reasons that will be clarified below. In our
framework, Ω1(T) characterizes the impact of noise and is given by

Ω1ðTÞ ¼
Z T

0
dtUyðtÞLðtÞUðtÞ; (3)

where UðtÞ is the noise-free evolution at time t. In particular,
U :¼ UðTÞ is the unitary associated with the noise-free target
circuit.
Our basic approximation is the truncation of the Magnus series

to first order. This leads to

K � UeΩ1ðTÞ: (4)

Next, we apply the same approximation to a suitable inverse
evolution KI , such that KI reproduces the unitary Uy in the
absence of noise. We construct KI through an inverse driving
HIðtÞ defined by

HIðtÞ ¼ �HðT � tÞ: (5)

The driving HIðtÞ undoes the action of HðtÞ, and it produces Uy.
By usingHIðtÞ, we find in Supplementary Note 3 that, to first order
in the Magnus expansion, the solution to the corresponding noisy
dynamics satisfies

KI � eΩ1ðTÞUy: (6)

Note that this approximation does not mean that we keep only
the linear term Ω1(T), since all the powers of Ω1(T) are included in
the exponential eΩ1ðTÞ . In Eqs. (6) and (7), we use the symbol ‘ ≈ ’ to
denote equality up to the first Magnus term.
The fact that Ω1(T) is also present in the inverse evolution KI

allows us to express the error channel as eΩ1ðTÞ � KIKð Þ12. While
HIðtÞ is not the only alternative for generating Uy, it guarantees
the generation of a noise channel that is identical, within our
appoximation, to the noise channel of K. Thus, by working within
the first-order truncation of the Magnus expansion, we can
combine Eqs. (4) and (6) to obtain

U � Ke�Ω1ðTÞ

� K KIKð Þ�1
2:

(7)

The ‘KIK formula’ in the second line of (7) is our main result. In the
next section, we discuss the implementation of the KIK method
through polynomial expansions of the operator KIKð Þ�1

2 appear-
ing in this formula.
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We stress that until now the only assumption regarding the
nature of the noise is that (see Supplementary Note 2)

LIðtÞ ¼ LðT � tÞ; (8)

where LIðtÞ is the dissipator acting alongside HIðtÞ. This relation-
ship follows from the form of the driving (5), and is schematically
explained in Fig. 1. As detailed in Supplementary Note 2, Eq. (8)
relies on the time locality of the noise. That is, on the assumption
that the dissipators LðtÞ and LIðtÞ are only determined by the
current time t and not by the previous history of the evolution.
Therefore, Eq. (8) may be violated or only hold approximately in
the presence of pronounced non-Markovian noise.
Due to the generality of LðtÞ, Eq. (7) is applicable to quantum

circuits K that feature time-dependent and spatially correlated
noise, as well as gate-dependent errors. In Supplementary Note 3,
we also discuss the scenario where noise parameters drift during
the experiment, which occurs for example due to temperature
variations or laser instability. We show that the impact of noise
drifts can be practically eliminated in our method, if the execution
order of the circuits K KIKð Þm in Eq. (9) is properly chosen. As a
final remark, we note that the time independent Lindblad master
equation41 is a special case of Eq. (1). Therefore, our formalism
goes beyond QEM proposals based on such a master equation,
like the one adopted in ref. 42.

QEM using the KIK formula
Since K KIKð Þ�1

2 is not directly implementable in a quantum
device, we utilize polynomial expansions of KIKð Þ�1

2 such that

UðMÞ
KIK ¼

XM
m¼0

aðMÞ
m K KIKð Þm: (9)

The notation UðMÞ
KIK represents an Mth-order approximation to UKIK,

with real coefficients faðMÞ
m gMm¼0. In this way, we estimate the error-

free expectation of an observable A as

Ah iðMÞ
KIK ¼

XM
m¼0

aðMÞ
m Ah im; (10)

where Ah im is the expectation value measured after executing the
circuit K KIKð Þm on the initial state ρ. Before discussing the
evaluation of the coefficients aðMÞ

m , used in Eq. (10), it is instructive
to clarify some similarities and differences between the KIK
method and ZNE based on circuit folding.
The application of the KIK formula is operationally analogous to

the use of circuit folding for ZNE13,34. However, there are two
crucial differences between these two techniques. Circuit folding
is a variant of unitary folding, first introduced in ref. 13 as a user-
friendly strategy for noise amplification in ZNE. It operates by
inserting quantum gates that are logically equivalent to the
identity operation, which leave the noiseless circuit unmodified. In

Fig. 1 Illustration of the pulse inverse used in the KIK method. a Quantum gates are executed via classical control signals, or pulses. The left
panel shows a pulse schedule used for a CNOT gate in the IBM quantum computing platform. The pulse schedule in the right panel performs
the inverse of the CNOT through the inverse driving HIðtÞ. It is constructed from the original pulse schedule HðtÞ, by inverting the amplitudes
of the pulses (black curved arrow) and their time ordering (red curved arrow). b Instead of the pulse inverse, circuit folding and other variants
of unitary folding13,34 use the CNOT as its own inverse. Therefore, the pulse schedule for the inverse evolution is not modified. c Noisy
implementations of K and KI. We assume that during the executions of K and KI temporal variations of the noise due to external factors (e.g.
temperature variations) are negligible. Thus, any time dependence in LðtÞ is induced by the time dependence ofHðtÞ. (Top) This leads to gate
dependent noise depicted by different border colors in the gates Ua, Ub, and Uc. (Bottom) Since HIðtÞ reverses the time ordering of HðtÞ, the
time ordering of LðtÞ is also reversed. However, the sign of LðtÞ does not change because otherwise the inverse evolution would undo
the noise.
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the case of ‘circuit folding’, identities are generated by folding the
target circuit with a corresponding inverse circuit. Hence, the
noise is scaled through evolutions that have the structure
U UyU� �m13. Notably, excluding the trivial case of a global
depolarizing channel13, a rigorous description of how noise
manifests when executing U UyU� �m

was never presented, to
the best of our knowledge. In this sense, circuit folding and other
variants of unitary folding can be considered as a heuristic
approach to QEM. Upon measuring the observable of interest on
these circuits, the noiseless expectation value is estimated by
combining the results corresponding to different values of m, with
weights that depend on the noise scaling ansatz.
The similarity with respect to the KIK method comes from the

fact that the circuits K KIKð Þm in Eq. (9) are noisy implementations
of U UyU� �m

. However, a key difference is that in our case Uy is
performed using the driving (5). Hereafter, we shall refer to this
implementation as the ‘pulse inverse’. Conversely, unitary folding
(and particularly circuit folding) relies on a circuit-based inversion,
where gates that are their own inverses are executed in their
original form. This is true for both foldings of single gates (or
circuit layers) and for circuit foldings. A paradigmatic example
would be the CNOT gate. In contrast, the driving (5) reverses the
pulse schedule for each gate in the target circuit, including CNOTs
and other gates that are their own inverses. This translates into a
very distinct execution of Uy, as illustrated in Fig. 1a. Even if U is
just a single CNOT, we show in the section ‘Experimental results’
that properly folded circuits correspond to products between the
CNOT and its pulse inverse, while circuit folding (i.e. products of
the CNOT with itself) leads to erroneous results. Regarding the
implementation of our method on cloud-based platforms, we are
currently writing an open source Qiskit module that generates
pulse-inverse circuits automatically, using only gate-level control.
Consequently, users will not need to master pulse-level control to
utilize our QEM technique.
Let us now discuss another major difference between our

scheme and QEM protocols based on ZNE (including circuit
folding). In the case of ZNE, the coefficients that weigh different
noise amplification circuits are determined by the fitting of the
noise scaling ansatz to experimental data. Rather than that, we ask
how to choose these coefficients in such a way that UðMÞ

KIK
constitutes a good approximation to the KIK formula. This
problem can be formulated in terms of the eigenvalues of the
operators KIKð Þ�1

2 and
PM

m¼0 a
ðMÞ
m KIKð Þm. If λ denotes a generic

eigenvalue of KIK, our goal is to find a polynomial
PM

m¼0 a
ðMÞ
m λm

that is as close as possible to λ−1/2. Depending on the noise
strenght, we follow the two strategies presented in the following
two sections. This will further clarify why our method cannot be
not considered as a ZNE variant.

QEM in the weak noise regime
In the limit of weak noise, the circuit KIK resembles the identity
operation and therefore in this case it is reasonable to
approximate the function λ�

1
2 by a truncated Taylor series around

λ=1. The resulting Taylor polynomial leads to the Taylor mitigation
coefficients aðMÞ

m =aðMÞ
Tay;m, derived in Supplementary Note 4.

Explicitly,

aðMÞ
Tay;m ¼ ð�1Þm ð2Mþ 1Þ!!

2M½ð2mþ 1Þm!ðM�mÞ!� : (11)

In the same supplementary note we show that aðMÞ
Tay;m coincide

with the coefficients obtained from Richardson ZNE, by assuming
that noise scales linearly with respect to m. Nevertheless, it is
worth stressing that a distinctive characteristic of our approach is
the pulse-based inverse KI . As proven in Supplementary Note 4,
for gates that satisfy U2 ¼ I , using the circuit-based inverse KI ¼
K introduces an additional error term that afflicts UðMÞ

KIK (cf. Eq. (9))
for any mitigation order M. Thus, ignoring the pulse inverse

hinders QEM performance in paradigmatic gates such as the
CNOT, swap, or Toffoli gate.
As a final remark, we note that circuit folding does not explicitly

distinguish between noise amplification using powers of KIK or
KKI , as both choices reproduce the identity operation in the
absence of noise. However, we show in Supplementary Note 3
that a correct application of the KIK formula involves powers of
KIK.

QEM in the strong noise regime
In this section, we present a strategy to adapt the coefficients aðMÞ

m

to the noise strength, for handling moderate or strong noise. To
this end, we introduce the quantity

ε
ðMÞ
L2 :¼

Z 1

gðμÞ

XM
m¼0

aðMÞ
m λm � λ�

1
2

 !2

dλ; (12)

where μ ¼ Tr ρ0ρð Þ, ρ is the initial state, and ρ0 is the state obtained
by evolving ρ with the KIK cycle KIK.
Let us elaborate on the physical meaning of εðMÞ

L2 . For a pure
state ρ, μ is the survival probability under the evolution KIK.
Note that, in this case, μ= 1 if KIK ¼ I . The lower integration
limit g(μ) in Eq. (12) is a monotonically increasing function of μ,
such that 0 ≤ g(μ) ≤ 1 for 0 ≤ μ ≤ 1 and g(μ)= 1 if μ= 1. Therefore,
g(μ) serves as a proxy for the intensity of the noise affecting the
circuit KIK. More precisely, g(μ) represents an approximation to
the smallest eigenvalue of KIK, which equals 1 in the noiseless
case. As the noise becomes stronger, both the smallest
eigenvalue of KIK and g(μ) get closer to 0, which implies that
the interval [g(μ),1] is representative of the region where all the
eigenvalues of KIK lie. Now, letting λ denote a general

eigenvalue of this operator, the eigenvalues of KIKð Þ�1
2 andPM

m¼0 a
ðMÞ
m KIKð Þm can be written as λ�

1
2 and

PM
m¼0 a

ðMÞ
m λm,

respectively. Since the integrand of Eq. (12) quantifies the

deviation between these quantities, ε
ðMÞ
L2 represents the total

error when using Eq. (9) to approximate the KIK formula (7).
Figure 2a, b illustrates the circuits involved in our adaptive

approach to error mitigation. The experimental data comprise the
expectation values measured on the noisy circuits KðKIKÞm,
shown in Fig. 2a, and the survival probility μ (Fig. 2b). In the weak
noise limit, the circuit of Fig. 2b is not necessary and the aðMÞ

m

become the Taylor coefficients given in Eq. (11) (which can also be
obtained by setting g(μ)= 1 in the adapted coefficients).
We point out that the L2 norm used to express εðMÞ

L2 in Eq. (12) is
not the only possibility to quantify this error. However, it allows us

to greatly simplify the derivation of aðMÞ
m . The adaptive aspect of

our method is based on the minimization of the error εðMÞ
L2 with

respect to these coefficients, under the condition that UðMÞ
KIK

constitutes a trace-preserving map. In this way, we obtain the

‘adapted’ mitigation coefficients aðMÞ
m ¼ aðMÞ

Adap;m, which depend on
g(μ) by virtue of Eq. (12) (for brevity, this dependence is not
explicit in the notation for the adapted coefficients but it is
expressed through the subscript ‘Adap’). In particular, we obtain in
Supplementary Note 4 the expressions

að1ÞAdap;0 ¼ 1þ 1

ð1þ ffiffiffi
g

p Þ3 þ
3

2ð1þ ffiffiffi
g

p Þ2 ; (13)

að1ÞAdap;1 ¼ � 5þ 3
ffiffiffi
g

p

2ð1þ ffiffiffi
g

p Þ3 ; (14)
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for M= 1, and

að2ÞAdap;0 ¼ 1þ 16

3ð1þ ffiffiffi
g

p Þ5 �
14

3ð1þ ffiffiffi
g

p Þ4 þ
4

ð1þ ffiffiffi
g

p Þ2 ; (15)

að2ÞAdap;1 ¼ �4
10þ 8

ffiffiffi
g

p þ 9gþ 3g
3
2

3ð1þ ffiffiffi
g

p Þ5 ; (16)

að2ÞAdap;2 ¼ 2
13þ 5

ffiffiffi
g

p

3ð1þ ffiffiffi
g

p Þ5 ; (17)

for M= 2. The coefficients corresponding to M= 3 are also
derived in the same supplementary note.
According to our previous remarks, we can recover the limit of

weak noise by setting g(μ)= 1. As expected, in this limit Eqs.
(13)–(17) coincide with the coefficients aðMÞ

Tay;m in Eq. (11) (and
similarly for M= 3, see Supplementary Note 4).
An important question is how the choice of g(μ) affects the

quality of our adaptive KIK scheme. We consider functions
{g(μ)}= {1, μ, μ2} in the ten-swap experiment presented below,
and {g(μ)}= {1, μ, μ2, μ2.5} for a simulation of the transverse Ising
model on five qubits, in Supplementary Note 5. In both cases, we
observe that g(μ)= 1 is outperformed by the functions that
explicitly depend on μ. This shows that the adaptive KIK method
consistently produces better results, and demonstrates the
usefulness of probing the noise strength through the survival
probability μ. For M sufficiently large, the adaptive scheme and the
Taylor scheme produce similar results. Yet, the adaptive scheme
enables to achieve substantially higher accuracies using lower
mitigation orders. This is of key importance in practical applica-
tions, as low-order mitigation involves fewer circuits with lower
depth (cf. Eq. (9)) and is therefore more robust to noise drifts. In
addition, the approximation of keeping only the first Magnus term
becomes less accurate as M increases.

The function g(μ)= μ2 yields the best error mitigation
performance, both in the ten-swap experiment and in the
simulation presented in Supplementary Note 5. To understand
why this happens, it is instructive to consider Fig. 2c, d. These
figures show plots of λ−1/2 (green solid curves), which denotes a

generic eigenvalue of the noise inversion operation KIKð Þ�1
2, and

the polynomial approximations involved in third-order error

mitigation (cf. Eq. (12)). The polynomials with coefficients að3ÞTay;m

(Taylor mitigation) and coefficients að3ÞAdap;m (adaptive mitigation)
correspond to the red solid and black dashed curves, respectively.
The jagged line in the background depicts a possible distribution

of the eigenvalues of KIKð Þ�1
2 (the height for a given value of λ

represents the density of eigenvalues close to that value). In Fig.
2c, the adapted coefficients are evaluated at g(μ)= μ2, and the
interval [μ2,1] approximately covers the full region where the

eigenvalues of KIKð Þ�1
2 are contained. Thus, the associated

polynomial constitutes a very good approximation to the curve
λ−1/2, as seen in Fig. 2c. In contrast, the black curve in Fig. 2d

corresponds to coefficients að3ÞAdap;m evaluated at g(μ)= μ, which
leads to a poor approximation outside the interval [μ,1] (area
enclosed by the gray ellipse). This behavior sheds light on the
advantage provided by g(μ)= μ2 in our experiments and
simulations. Note also that all the polynomials converge as λ
tends to 1 but the Taylor polynomial (red curve) substantially
separates from λ−1/2 for small λ.
It is important to remark that Eq. (12) represents a measure of

the distance between the polynomial (9) and the KIK formula (7),
in terms of the L2 norm. In this expression, we assume that the
eigenvalues λ of KIK are uniformly distributed across the
integration interval. This is a conservative approach, given that
no information besides μ is available, and in this sense it is also
agnostic to the specific noise structure of KIK. However, the

Fig. 2 Adaptive KIK error mitigation. The estimate Ah iðMÞ
KIK of a noiseless expectation value involves the execution of the circuits shown in (a)

and (b). In particular, the survival probability μ is used to evaluate the coefficients aðMÞ
Adap;m½gðμÞ�, for adaptive error mitigation (see main text for

details). The green curve in (c, d) is the plot of λ−1/2 and it contains the eigenvalues of the operation that effectively suppresess the error
channel ( KIKð Þ�1

2 in Eq. (7)). The black dashed curves represent the polynomial approximations
PM

m¼0 a
ðMÞ
m λm that appear in the integrand of

(12), for third-order mitigation (M= 3). The better these approximations, the more accurate the corresponding error mitigation. This accuracy
is related to the argument g(μ) in the optimal coefficients að3Þm ¼ að3ÞAdap;m½gðμÞ�, which are obtained by minimizing (12) over the interval [g(μ),1].

Figures (c) and (d) correspond to g(μ)= μ2 and g(μ)= μ, respectively. In (c), λ−1/2 is very well approximated by
P3

m¼0 a
ð3Þ
Adap;m½μ2�λm in the

interval where the eigenvalues of KIKð Þ�1
2 are distributed (jagged line in the background). In (d), the interval [μ,1] is too small to cover the full

eigenvalue distribution and thus
P3

m¼0 a
ð3Þ
Adap;m½μ�λm starts to deviate significantly from the green curve, as shown by the gray ellipse. The red

curve corresponds to the Taylor polynomial
P3

m¼0 a
ð3Þ
Adap;m½1�λm and is the less effective approximation, as seen in both (c) and (d).
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evaluation of the distance ε
ðMÞ
L2 could benefit from additional

knowledge about the eigenvalue distribution, which can be
incorporated through a weight function w(λ) ≠ 1 in the integrand
of Eq. (12).
We leave the study of experimental criteria for choosing g(μ) and

the potential improvements that this possibility entails for the KIK
method for future work. For example, by considering higher order
moments such as μ2 :¼ hρjðKIKÞ2jρi it is possible to devise more
systematic choices of g(μ), e.g. gðμÞ ¼ μ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 � μ2
p

. Yet, in the
studied examples we observed no significant advantage over the
simple heuristic choice g(μ)= μ2. As for other modifications and
improvements, one could also explore the use of norms other than
the L2 norm employed in Eq. (12). Furthermore, the approximating
polynomial can be determined in a non-integral manner. For
example, by using Lagrange polynomials or a two-point Taylor
expansion43.
Finally, we remark that, apart from the circuits K KIKð Þm, used

for the error mitigation itself, the estimation of μ only involves the
additional circuit KIK. Therefore, our adaptive strategy is not
based on any tomographic procedure or noise learning stage.
Since μ is a survival probability, its variance is given by μ(1− μ)
and has the maximum value 0.25, irrespective of the size of the
system. This allows for a scalable evaluation of the coefficients for
adaptive KIK mitigation. Once these coefficients are determined,
the next step is the estimation of the noise-free expectation value
using Eq. (10). In the section ‘Fundamental limits and measure-
ment cost of KIK error mitigation’, we will present the
corresponding measurement cost, for 1 ≤M ≤ 3, and discuss why
and in what sense the KIK method is scalable.

Experimental results
In the experiments described below, the KIK mitigation of noise on
the target evolution K is complemented by an independent
mitigation of readout errors and a simple protocol for mitigating
the coherent preparation error of the intial state ρ ¼ 00j i 00h j44.
The results of the section ‘Quantum error mitigation in a ten-swap
circuit’ also include the application of randomized compiling32 to
the evolutions K and KI , where circuits logically equivalent to the

corresponding ideal evolutions are randomly implemented. This is
useful for turning coherent errors into incoherent noise, which can
be addressed by our method. Details concerning these experi-
mental methods can be found in Supplementary Note 6.

KIK-based gate calibration for mitigating coherent errors. A usual
approach to handle coherent errors in QEM is to first transform
them into incoherent errors via randomized compiling32, and then
apply QEM. In this section, we discuss the application of the KIK
formula to directly mitigate the coherent errors caused by a faulty
calibration of a CNOT gate.
The calibration process involves measurements and adjust-

ments of gate parameters to achieve the results that these
measurements would produce in the absence of noise. Since noise
affects measured expectation values, the resulting bias leads to
incorrect adjustments, i.e. miscalibration. This ‘noise-induced
coherent error’ effect may be small in each gate but it builds up
to a subtantial error in sufficiently deep circuits. Our idea is to
complement the KIK error mitigation for a whole circuit, with a
KIK-based calibration of the individual gates.
Figure 3 shows the results of our calibration test of a CNOT in

the IBM processor Jakarta. We apply the gate on the initial state
ρ ¼ 1ffiffi

2
p 0j i þ 1j ið Þ � 0j i, and measure the expectation value of the

Pauli matrix Y acting on the target qubit (i.e. the qubit prepared in
the state 0j i), denoted by Y1. We repeat this procedure for
different amplitudes of the cross-resonance pulse45, which
constitutes the two-qubit interaction in the IBM CNOT implemen-
tation. Experimental details can be found in Supplementary Note
6. Each data point of Fig. 3 is obtained by applying Taylor
mitigation (i.e. by applying Eq. (10) with the coefficients (11)), for
0 ≤ M ≤ 3, and linear regression (least squares) is used to
determine the line that best fits the experimental data. We also
verify that in this case error mitigation with the adapted
coefficients aðMÞ

Adap;m does not yield a noticeable advantage. This
indicates that noise is sufficiently weak, which is further supported
by the quick convergence of the lines corresponding to M ≥ 1 in
Fig. 3a.
Keeping in mind that the calibrated amplitude must reproduce

the ideal expectation value Y1h i ¼ 0, we can see from Fig. 3a that

Fig. 3 Calibration curve of the pulse amplitude of a CNOT gate in the IBM processor Jakarta, using the KIK method. In (a) and (b) KI is
given by the pulse inverse and the circuit inverse KI ¼ K, respectively. The initial state is ρ ¼ ψj i ψh j, with ψj i ¼ 1ffiffi

2
p 0j i þ 1j ið Þ � 0j i. The default

amplitude is increased by the factors F shown in the x axis of the figure, and for each factor we apply Eq. (9) to evaluate the expectation value
Y1h i, where Y1 is the y-Pauli matrix acting on the target qubit. The factor F Y1h i¼0 corresponds to the ideal expectation value Y1h i ¼ 0 and yields
the calibrated amplitude. The factors F Y1h i¼0 associated with the magenta and black dashed lines are different, which indicates a shift in the
amplitude obtained without KIK calibration. In (b), we see that the convergence achieved for increasing M in (a) is spoiled by the use of the
circuit inverse.
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the predicted amplitude without QEM (M= 0) and with QEM are
different. Since the CNOT is subjected to stochastic noise, without
QEM the measured expectation values will be shifted and the
corresponding linear regression results in a calibrated amplitude
that is also shifted with respect to the correct value. This is
illustrated by the separation between the black and magenta
dashed lines in Fig. 3a. The magenta line represents the calibrated
amplitude using KIK error mitigation, while the black one is the
amplitude obtained without noise mitigation. Calibration based
on the black line leads to a noise-induced coherent error. It is
important to stress that the benefit of this calibration procedure
would manifest when combined with QEM of the target circuit in
which the CNOTs participate. The reason is that the calibrated field
is consistent with gates of reduced (stochastic) noise (due to the
use of QEM in the calibration process), and therefore it is not
useful if the target circuit is implemented without QEM.
In Fig. 3 we also observe that a proper implementation of KIK

QEM requires the pulse-based inverse KI (Fig. 3a), performed
through the driving (5), while the use of another CNOT for KI (Fig.
3b) does not show the expected convergence as the mitigation
order M increases. Note also that although a CNOT is its own
inverse in the noiseless scenario, it leads to a coefficient of
determination R2 whose values show a poor linear fit. This further
illustrates the importance of using the pulse inverse instead of the
circuit inverse, characteristic of ZNE based on global folding. We
point out that odd powers of the CNOT gate are a common choice
for the application of local folding ZNE34,46,47, where the goal is to
amplify the noise on local sectors of the circuit rather than
globally. As such, we believe that in practice this procedure would
display inconsistencies similar to those observed in our CNOT
experiment. More generally, we show in Supplementary Note 4
that foldings of any self-inverse gate with itself produce a residual
error that is not present when the pulse inverse is applied.

Quantum error mitigation in a ten-swap circuit. In Fig. 4a, we show
the results of QEM for a circuit K given by a sequence of 10 swap
gates. The experiments were executed in the IBM quantum
processor Quito. The schematic of K is illustrated in Fig. 4b.
We mitigate errors in the survival probability Tr ρσð Þ, where σ is

the noisy final state that results from applying K to ρ. To perform
QEM, we consider the truncated expansion (9) with mitigation
orders 1 ≤M ≤ 3. The blue curve in Fig. 4a corresponds to Taylor

mitigation aðMÞ
m ¼ aðMÞ

Tay;m. Coefficients aðMÞ
m ¼ aðMÞ

Adap;m that are
adapted with functions g(μ)= μ and g(μ)= μ2 in Eq. (12) give rise
to the orange and green curves, respectively. Furthermore, for KI
we perform the pulse inverse according to the pulse schedule
described by Eq. (5).
In Fig. 4a we observe that the adapted coefficients aðMÞ

Adap;m

outperform Taylor mitigation. This shows that, beyond the limit of
weak noise, QEM can be substantially improved by adapting it to
the noise intensity. Within our Magnus truncation approximation,
we observe that the ideal survival probability is almost fully
recovered. The small residual bias is of order 10−3 and can be
associated with small experimental imperfections (e.g. small errors
in the detector calibration), or with the higher-order Magnus terms
discarded in our framework. In Supplementary Note 7, we also
provide a numerical example where neglecting higher-order
Magnus terms leads to an eventual saturation of the QEM accuracy.
However, in this example, we find that fourth-order QEM (M= 4)
yields a relative error as low as 10−4, which further illustrates the
accuracy achieved by the KIK formula.
Due to experimental limitations, it was not possible to implement

the ten-swap circuit using CNOTs calibrated through the KIK
method. Specifically, we could not guarantee that calibration
circuits and error mitigation circuits would run sequentially, and
without the interference of intrinsic (noncontrollable) calibrations of
the processor. Moreover, this demonstration requires that all the
parameters of the gate are calibrated using the KIK method, and
not just the cross resonance amplitude. However, we numerically
verify in Supplementary Note 6 that coherent errors vanish for a
gate calibrated using KIK QEM, to the point that randomized
compiling is no longer needed.

Fundamental limits and measurement cost of KIK error
mitigation
Fundamental limits of KIK error mitigation. The performance of
QEM protocols is often analyzed using two figures of merit. One of
them is the bias between the noisy expectation value of an
observable and its ideal counterpart, and the other is the statistical
precision of the error-mitigated expectation value. The bias
defines the QEM accuracy and is evaluated in the limit of infinite
measurements. However, any experiment has a limited precision
because it always involves a finite number of samples. In QEM

Fig. 4 Experimental QEM in the IBM processor Quito. a Error-mitigated survival probability for the circuit of (b), as a function of the
mitigation order. The ideal survival probability is 1 (dashed black line). Green and orange curves show QEM adapted to the noise intensity, and
the blue curve stands for mitigation assuming weak noise (Taylor mitigation). The thickness of the lines stands for the experimental error bars.
We see that Taylor mitigation is outperformed by adapted mitigation. b The circuit used in the experiments. Each swap is implemented as a
sequence of three CNOTs.
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protocols, the estimation of ideal expectation values is usually
accompanied by an increment of statistical uncertainty, which can
be exponential in worst-case scenarios36,37. This results in a
sampling overhead for achieving a given precision, as compared
to the number of samples required without using QEM.
In Supplementary Note 8, we derive the accuracy bounds

ε
ðMÞ
KIK �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr A2
� �� Tr Að Þ½ �2

Tr Ið Þ

s
1�

XM
m¼0

aðMÞ
Adap;mðμÞe�2ðmþ1=2Þ

R T

0
LðtÞk kdt

�����
�����; forM ¼ 1; 2; 3;

(18)

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr A2
� �� Tr Að Þ½ �2

Tr Ið Þ

s
1�

XM
m¼0

aðMÞ
Adap;mð1Þe�2ðmþ1=2Þ

R T

0
LðtÞk kdt

�����
�����; forM ¼ 1; 2; 3;

(19)

� ð2Mþ 1Þ!!
2Mþ1ðMþ 1Þ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr A2
� �� Tr Að Þ½ �2

Tr Ið Þ

s
ðe2
R T

0
LðtÞk kdt � 1Þ

Mþ1

: (20)

These are upper bounds on the bias ε
ðMÞ
KIK , for an arbitrary

observable A and an arbitrary initial state. We also note that the
only approximation in Eqs. (18)–(20) and any of our derivations is
the truncation of the Magnus expansion to its dominant term.
Importantly, this does not exclude errors of moderate or strong
magnitude associated with such a term. On the other hand,
discarding Magnus terms beyond first order naturally leads to a
saturation of accuracy. Such a saturation manifests in a residual
bias that cannot be reduced by indefinitely increasing the
mitigation order. Therefore, for the tighter bounds (18) and (19)
we restrict ourselves to the mitigation orders used in our
experiments and simulations, given by 1 ≤M ≤ 3.
On the other hand, the loosest bound (20) provides a clearer

picture of how the bias associated with the first Magnus term is
suppressed by increasing M. The quantity

R T
0 LðtÞk kdt is the

integral of the spectral norm of the dissipator LðtÞk k, over the
total evolution time (0, T). This parameter serves as a quantifier of
the noise accumulated during the execution of the target
evolution K. Since ð2Mþ1Þ!!

2Mþ1ðMþ1Þ! � 3
8, Eq. (20) implies that ε

ðMÞ
KIK is

exponentially suppressed if the accumulated noise is such that

e2
R T

0
LðtÞk kdt < 2: (21)

In the case of noise acting locally on individual gates, LðtÞ is given
by a sum of local dissipators and one can show that LðtÞk k is
upper bounded by the summation of all the gate errors in the
circuit.
We remark that, in the NISQ era, errors escalate in quantum

algorithms due to the lack of QEC. Thus, NISQ computers can
perform useful computations only if the accumulated noiseR T
0 LðtÞk kdt is below a certain value. Our notion of scalabitility is
that under the contraint of moderate acumulated noise the KIK
method is scale independent. In particular, when

R T
0 LðtÞk kdt is

sufficiently small to satisfy Eq. (21), the exponential error
mitigation referred to above is applicable to circuits of any size
and topology. While achieving a low accumulated noise in big
circuits is technologically challenging, if this condition is met the
KIK method and the resources that it requires are agnostic to the
size of the circuit. Moreover, it is worth noting that Eq. (21)
represents a sufficient condition for scalable error mitigation. The
possibility of extending this scalability to values of

R T
0 LðtÞk kdt that

violate Eq. (21) depends on the tightness of the accuracy bounds
(18)–(20), and constitutes an open problem.
Equations (18)–(20) are applicable to both adaptive mitigation

and Taylor mitigation. In contrast, the tightest bound (18) is
exclusive of adaptive mitigation. The coefficients aðMÞ

Adap;m in this
bound are evaluated at g(μ)= μ. Importantly, (18) is upper
bounded by (19) and (20) for any 0 ≤ μ ≤ 1, as proven in
Supplementary Note 8. According to our experiments and

simulations, we believe that even tighter bounds can be obtained
for g(μ)= μ2 or other choices of g(μ). This topic is left for future
investigation.
Lastly, we stress that condition (21) does not imply that the KIK

method is restricted to error mitigation for weak noise. This is
related to the reiterated fact that Eqs. (18)–(20) and particularly
(20) probably overestimate the actual bias between the error-
mitigated expectation value and its ideal counterpart. More
importantly, we have shown experimentally and numerically the
substantial advantage achieved by the adaptive KIK strategy, as
compared to QEM under the assumption of weak noise. This
further indicates that the regime of validity of our method likely
goes beyond the prediction of Eq. (20).

Measurement cost of KIK error mitigation. For the sampling
overhead, we adopt the variance as the measure of statistical
precision. Let Var0 Að Þ denote the variance in the estimation of the
expectation value Ah i, without using error mitigation, and VarM Að Þ
the variance associated with KIK mitigation of order M ≥ 1. The
sampling overhead is defined as the increment in the number of
samples needed to achieve the same precision as in the
unmitigated case. Suppose that N measurements constitute the
shot budget for KIK mitigation. For a given value of M,
the sampling overhead is evaluated by minimizing VarM Að Þ over
the distribution of measurements between the different circuits
K KIKð Þm. If Nm measurements are allocated to K KIKð Þm, then

VarM Að Þ ¼
XM
m¼0

aðMÞ
m ðgÞ

� �2 varm Að Þ
Nm

; (22)

where varm Að Þ denotes the variance that results from measuring A
on the circuit K KIKð Þm.
Taking into account the constraint

PM
m¼0 Nm ¼ N, the mini-

mization of Eq. (22) with respect to fNmgm yields Nm ¼ jaðMÞ
m jN. Of

course, these values have to approximated to the closest integer
in practice. Now, we assume that varm Að Þ ¼ varn Að Þ for all
0 ≤m, n ≤M. Since, for reasons previously discussed, we are
interested in low mitigation orders 1 ≤M ≤ 3, KIKð Þm does not
deviate too much from the identity operation and therefore the
assumption stated above is reasonable. In this way, replacing
Nm ¼ jaðMÞ

m jN into Eq. (22) yields

VarM Að Þ ¼
XM
m¼0

aðMÞ
m ðgÞ�� �� var0 Að Þ

N
: (23)

The quantity var0 Að Þ
N is the variance obtained without using error

mitigation. Accordingly,

γMðgÞ ¼
XM
m¼0

aðMÞ
m ðgÞ�� �� (24)

represents the sampling overhead. In Fig. 5, we show the sampling
overheads for 1 ≤M ≤ 3, as a function of g= g(μ). As expected,
larger noise strengths (corresponding to smaller values of g) lead
to larger values of γM(g). However, as shown in Fig. 5, these
sampling overheads are quite moderate and do not represent an
obstacle for scalable error mitigation. In addition, we show in
Supplementary Note 3 that our method is robust to noise drifts
and miscalibrations that may result from larger sampling over-
heads, e.g. when higher mitigation orders (M ≥ 4) are considered.

DISCUSSION
Quantum error mitigation (QEM) is becoming a standard practice
in NISQ experiments. However, QEM methods that are free from
intrinsic scalability issues lack a physically rigorous formulation, or
are unable to cope with significant levels of noise. The KIK method
allows for scalable QEM whenever the noise accumulated in the
target circuit is not too high, as implied by our upper bounds on
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the QEM accuracy (cf. Eqs. (18)–(20)). This QEM technique is based
on a master equation analysis that incorporates time-dependent
and spatially correlated noise, and does not require that the noise
is trace-preserving. As such, based on elementary simulations we
observe that it can also mitigate leakage noise, which can take
place in superconducting circuits. In the limit of weak noise, the
KIK method reproduces some features of zero noise extrapolation
using circuit unitary folding, and outperforms it. This is achieved
thanks to the use of pulse-based inverses for the implementation
of QEM circuits, and the adaptation of QEM parameters to the
noise intensity for handling moderate and strong noise.
The shot overhead of our method depends only on the noise

level and not on the size of the target circuit. For moderate noise,
the sampling overhead for mitigation order three or lower is
smaller than ten. While the KIK method can be adapted to the
strength of the noise, this only requires measuring a single
experimental parameter whose sampling cost is negligible and
independent of the size of the system. Usually, the performace of
QEM techniques may be compromised in experiments involving a
large number of samples. When considering long runs, the system
needs to be recalibrated multiple times, and noise parameters can
undergo significant drifts. This poses challenges in the context of
noise learning for QEM protocols that rely on this approach. We
show in Supplementary Note 3 that our approach is resilient to
drifts in the noise and calibration parameters (the latter holds if
randomized compiling is applied). This enables it to be applied in
calculations over runtimes of days or even weeks, including
pauses for calibrations, maintenance, or execution of supporting
jobs. On a similar basis, it is possible to parallelize the error
mitigation task, by averaging over data collected from different
quantum processors or platforms with spatially differentiated
noise profiles (see Supplementary Note 3).
We have demonstrated our findings using the IBM quantum

processors Quito and Jakarta. In Quito, we implemented KIK error
mitigation in a circuit composed of 10 swap gates (30 sequential
CNOTs). Despite the substantial noise in this setup, the tiny bias
between the error-mitigated expectation value and the ideal
result demonstrates that, at least in this experiment, our
theoretical approximations are quite consistent with the actual
noise in the system. Using the processor Jakarta, we also showed
that even the calibration of a basic building block of quantum
computing, such as the CNOT gate, can be affected by
unmitigated noise. As a consequence, calibrated gate parameters
feature erroneous values leading to coherent errors. These errors
can be avoided by incorporating the KIK method in the calibration
process. The integration of randomized compiling into our
technique also enables the mitigation of coherent errors in the

CNOT gates. This is possible because randomized compiling
transforms coherent errors into incoherent noise, which can be
addressed by the KIK method.
Despite these successful demonstrations, we believe that there is

room for improvement by exploring some of the possibilities
mentioned in the Section ‘QEM in the strong noise regime’. We also
hope that the performance shown here can be exploited for new
demonstrations of quantum algorithms on NISQ devices, with the
potential of achieving quantum advantage in applications of interest.
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