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Error-mitigated quantum simulation of interacting fermions
with trapped ions
Wentao Chen1,9, Shuaining Zhang 2,3,9✉, Jialiang Zhang1, Xiaolu Su1, Yao Lu 1,4, Kuan Zhang1,5, Mu Qiao1, Ying Li 6✉,
Jing-Ning Zhang 3✉ and Kihwan Kim 1,3,7,8✉

Quantum error mitigation has been extensively explored to increase the accuracy of the quantum circuits in noisy-intermediate-
scale-quantum (NISQ) computation, where quantum error correction requiring additional quantum resources is not adopted.
Among various error-mitigation schemes, probabilistic error cancellation (PEC) has been proposed as a general and systematic
protocol that can be applied to numerous hardware platforms and quantum algorithms. However, PEC has only been tested in two-
qubit systems and a superconducting multi-qubit system by learning a sparse error model. Here, we benchmark PEC using up to
four trapped-ion qubits. For the benchmark, we simulate the dynamics of interacting fermions with or without spins by applying
multiple Trotter steps. By tomographically reconstructing the error model and incorporating other mitigation methods such as
positive probability and symmetry constraints, we are able to increase the fidelity of simulation and faithfully observe the dynamics
of the Fermi–Hubbard model, including the different behavior of charge and spin of fermions. Our demonstrations can be an
essential step for further extending systematic error-mitigation schemes toward practical quantum advantages.
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INTRODUCTION
Recently, quantum computation in the noisy intermediate scale
quantum (NISQ) regime has been actively developed for the
possibility of reaching practical quantum advantages without
quantum error correction1,2. In this direction, quantum advantages
with random gate sampling algorithms in superconducting
systems have been demonstrated3,4. The possibility of surpassing
conventional classical computation in solving useful and practical
problems has been seriously explored5. In particular, a quantum-
classical hybrid method that combines the advantages of classical
and quantum computation, such as the variational quantum
algorithm (VQA), has been theoretically and experimentally
explored to reach higher performance than with only classical
computers6–9. One of the critical issues in NISQ computation is to
obtain results with high precision from quantum devices without
quantum error correction10,11.
Various error-mitigation methods without using additional

quantum resources for quantum error corrections have been
proposed and applied to improve the computation results of
quantum devices12–15. Representative error-mitigation methods
include zero-noise extrapolation12–17, probabilistic error cancella-
tion (PEC)12–15,18–21, measurement error mitigation22–24, symmetry
verification25,26, virtual distillation27,28, subspace expansion29–31,
N-representability methods32–34 and learning-based methods35,36.
In particular, PEC is considered the general and systematic method
for mitigating errors, which are not dependent on details of the
physical implementation as long as errors are properly character-
ized. PEC consists of characterizing errors of each quantum gate,
decomposing the inverse of the errors into combinations of basis

operations, and sampling the operations with the characterized
weights. In this way, we can estimate the expectation values of the
desired observables without errors. PEC has been theoretically
analyzed in detail and shown to be optimal for dephasing
dominant noise situations12,13,20,21. However, it has been experi-
mentally tested with only two-qubit systems of superconducting
circuits and trapped ions18,19 and a multi-qubit system of the
superconducting circuit via fitting a sparse error model motivated
by the processor topology37.
Systematic error-mitigation schemes like PEC would enhance

the performance of quantum computation in the NISQ regime
drastically. Many important quantum algorithms have been
developed based on the fact that quantum dynamics can be
efficiently simulated in quantum computation, which also inspires
VQA designs6–9. In digital quantum simulation, the time evolution
of a certain Hamiltonian is typically implemented by the
Trotter–Suzuki expansion38. Besides the errors in the expansion,
imperfect primitive quantum gates also degrade the fidelity of the
quantum simulation and eventually lead to faulty results. Due to
this reason, it is an essential and urgent task to design and
benchmark error-mitigation techniques that are both systematic
and efficient in the NISQ era. As an instance for benchmark, the
Fermi–Hubbard model39 is particularly interesting. This model is
one of the fundamental models for interacting electrons, and it
has been extensively studied in classical manners, either
analytically40–42 or numerically43. As experimental quantum
technologies develop, understanding and insights for strongly
correlated quantum systems and high-temperature superconduc-
tivity44 can be explored through quantum simulation of the
Fermi–Hubbard model eventually beyond the classical
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computational capability. This model has been utilized in
experimental demonstration of various quantum platforms45–48.
Recently, a combination of non-PEC methods has been applied to
enhance simulation performance and observe the dynamics of the
Fermi–Hubbard model in a superconducting system49.
In this paper, we experimentally study the possibility and

limitations of PEC by applying the method to a four-qubit system
with trapped ions50,51. In particular, we focus on simulating the
dynamics of the 1D Fermi–Hubbard model by using multiple
Trotter steps. We find the PEC method with a tomographically
reconstructed error model significantly improves the fidelity of the
simulation with up to three ion qubits. However, with four qubits,
the improvement of fidelity by the PEC method alone is much
worse than those for two- and three-qubit systems. This is because
the tomographic characterization of the noisy gates is not precise
enough to capture the time correlation and the cross-talk errors.
With the application of total-spin and particle-number conserva-
tion15,25,26 as well as positivity constraint, however, the enhanced
PEC method provides recovery for the ideal dynamics of the 1D
spin-Fermi–Hubbard model, where the spin and the charge
behave differently.

RESULTS
Fermi–Hubbard model and experimental realization with
trapped ions
Here we consider the extended Fermi–Hubbard (eFH) model,
which describes a system of fermions moving in a one-
dimensional lattice, as illustrated in Fig. 1a, b for one-
component and two-component fermions. The one-component

fermions can be considered spinless ones. The Hamiltonian reads

ĤeFH ¼ �J
P
l;λ

ĉyl;λĉlþ1;λ þ h:c:
� �

þ V
P
l;λ;λ0

n̂l;λn̂lþ1;λ0 þ U
P
l
n̂l;"n̂l;#;

(1)

with n̂l;λ � ĉyl;λĉl;λ, where ĉl;λ (ĉyl;λ) annihilates (creates) a fermion
with spin λ (λ= ↑, ↓) on the l-th site. Here J is the nearest-neighbor
tunneling strength, and U and V respectively quantify the strength
of the on-site and the nearest-neighbor interaction.
We can map the fermion system to a qubit system by using the

Jordan–Wigner transformation,

ĉl;" ¼ Ql�1

n¼1
σ̂znσ̂

�
l ; n̂l;" ¼ 1

2 1� σ̂z
l

� �
;

ĉl;# ¼ QLþl�1

n¼1
σ̂z
nσ̂

�
Lþl ; n̂l;# ¼ 1

2 1� σ̂z
Lþl

� �
;

(2)

with σ̂ ±
n ¼ σ̂x

n ± iσ̂yn
� �

=2 and σ̂x;y;z
n being the Pauli operators on the

n-th qubit. Thus generally speaking, we need N= 2L qubits to
simulate the dynamics of an L-site fermionic chain.
As shown in Fig. 1c, we use 171Yb+ ions for qubit systems. The

171Yb+ ions are confined in a linear Paul trap. The hyperfine levels
in the 2S1/2 ground-state manifold, i.e. F ¼ 0;mF ¼ 0j i and
F ¼ 1;mF ¼ 0j i, are encoded as the qubit 0j i; 1j if g, which can
be initialized to 0j i by optical pumping and distinctively detected
by fluorescence measurement via multi-channel photo-multiplier
tube52.

Fig. 1 Schematics of digital quantum simulation of interacting fermion models. (a) Spinless and (b) spin-12 fermions moving in a one-
dimensional lattice. The system dynamics can be unified by the extended Fermi–Hubbard model in Eq. (1), with the tunneling strength
denoted by J and the on-site and the nearest-neighbor interaction strengths by U and V, respectively. c Trapped-ion system with four ion-
qubits. The ions form a 1-D crystal and each ion represents a qubit. The ion qubits can be manipulated by Raman laser beams, consisting of a
global beam and individual beams, with the former covering the whole ion crystal and each of the latter focusing on a single ion. Mølmer-
Sørensen gate YYφðm; nÞ � exp iφσ̂ym � σ̂yn

� �
can be implemented between any qubit pair (Qm, Qn) by modulating the phase of the individual

beams. d Quantum circuit for simulating the dynamics of a three-site single-component extended Fermi–Hubbard model. With the Trotter-
Suzuki expansion, the evolution is approximately implemented by M identical steps. e Quantum circuit for a two-site double-component
Fermi–Hubbard model. f Quantum circuit compilation. While the two-qubit entangling gate provided by the native gate set of the trapped-
ion system is YYφ, XXφ and ZZφ can be constructed by YYφ and appropriate single-qubit rotations, such as

ffiffiffi
Z

p � exp �i π4 σ̂z
� �

andffiffiffi
X

p � exp �i π4 σ̂x
� �

. The single-qubit gates (yellow squares) in (d, e) are the σ̂z-rotations, i.e. Z2φ � exp �iφσ̂zð Þ.
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The qubit-system Hamiltonian becomes

Ĥqb ¼ ĤX þ ĤY þ ĤZ ;

ĤX ¼ J
2

PL�1

l¼1
σ̂x
l σ̂

x
lþ1 þ σ̂x

Lþlσ̂
x
Lþlþ1

� �

ĤY ¼ J
2

PL�1

l¼1
σ̂y
l σ̂

y
lþ1 þ σ̂y

Lþl σ̂
y
Lþlþ1

� �

ĤZ ¼ V
4

PL�1

l¼1
1� σ̂z

l

� �
1� σ̂z

lþ1

� ��
þ 1� σ̂z

Lþl

� �
1� σ̂zLþlþ1

� ��
þ U

4

PL
l¼1

1� σ̂z
l

� �
1� σ̂z

Lþl

� �
:

(3)

Note that according to the orientation of the Pauli operators, we
divide the qubit-system Hamiltonian Ĥqb into three parts, each of
which contains mutually commutative terms.
To extract dynamical properties, the essential part is to simulate

the evolution operator ÛðtÞ ¼ exp �iĤqbt
� �

with a universal gate
set available in a certain quantum computational platform. One of
the well-known solutions is to use the Trotter-Suzuki decomposi-
tion. The first-order Trotter-Suzuki decomposition of ÛðtÞ reads

ÛðtÞ ¼ e�iĤZδte�iĤYδte�iĤXδt
� �M

þO Mδt2ð Þ; (4)

with the Trotter step size being δt= t/M. Figure 1d and e show
examples of the circuits for simulating the dynamics of 3-site
spinless and 2-site spin-1/2 fermionic systems, with the native gate
set including the Mølmer-Sorensen gates, i.e. XXφ, YYφ and ZZφ, and
single-qubit rotations. By applying the amplitude-shaped53 global
and individual laser beams on the desired ions and driving the
transverse motional modes54,55, we can realize the native Mølmer-
Sørensen YY-gate (YYφ). The gate XXφ and ZZφ are composed with
YYφ and corresponding single qubit rotations, as shown in Fig. 1f.
In this experiment, we consider two scenarios, one for spinless

fermions, and the other for two-component fermions. In the
former case, the on-site interaction strength naturally vanishes, i.e.
U= 0, due to the fermionic anti-commutation relation. In this case,
we use N= L ion-qubits to simulate the dynamics of a spinless
fermionic chain with L sites. While for the latter case, we only
consider the on-site interaction, since the interaction strength
decreases as the distance increases and thus U≫ V in most
circumstances.

Probabilistic error cancellation in trapped ion system
Here, we introduce the PEC error-mitigation method, which
systematically recovers ideal expectation values of target quantum
circuits with the experimental noisy gates14. The essential idea is
to first characterize experimental noisy gates, then identify the
noise parts by comparing the ideal and the noisy gates, and then
decompose the inverse of the noise parts into combinations of
basis operations. Then, each of the ideal gates in target quantum
circuits is replaced by a corresponding noisy one followed by basis
operations sampled with probability distributions obtained from
the inverse-noise decomposition. At last, the ideal expectation
value can be obtained by adding up those of the sampled circuits
with appropriate weights.
In circuit quantum computation, a computational task can be

compiled into a quantum circuit consisting of single- and two-
qubit gates. In our system, the error of the two-qubit gate is an
order larger than that of the single-qubit gate19, and we mitigate
only the errors in two-qubit gates.
To characterize the experimental noisy gates, we perform

quantum process tomography (QPT) under the Pauli error
assumption. Different from gate-set tomography, quantum
process tomography does not account for state preparation

and measurement (SPAM) errors. Here, we assume the initial
state preparation is perfect and apply the detection error
correction method for the measurement results56, which enables
us to exclude SPAM errors. From the quantum process
tomography, we obtain the Pauli transfer matrices (PTMs) of
the Mølmer-Sørensen YY gates on different qubit pairs, i.e.
RYYns

φ ðm;nÞ for the qubit pair (Qm, Qn). Together with the ideal PTM
RYYφ

, we can formally define an error operator for each of the
noisy gates, with the PTM being

REφðm;nÞ ¼ RYYns
φ ðm;nÞR�1

YYφ
: (5)

Note that under the Pauli-error assumption, both RE and its
inverse R�1

E can be decomposed into linear superpositions of PTMs
of two-qubit Pauli operators Pi ∈ {II, IX, IY, . . . , ZZ}. As a result, ideal
PTMs can be rewritten in terms of the PTMs of the noisy gate and
the corresponding error operators,

RYYφ
¼ R�1

Eφðm;nÞRYYns
φ ðm;nÞ (6)

with the inverse-error decomposition

R�1
Eφðm;nÞ ¼

P15
i¼0

qiðm; nÞRPi : (7)

Here the quasi-probabilities qi(m, n) are real and satisfy ∑iqi(m,
n)= 1. The fact that qi(m, n) can be negative indicates that the
inverse of the error is not physical and thus can not be
implemented by a deterministic quantum operation. To cancel
the effect of the error operator, we rewrite the decomposition as
follows

R�1
Eϕðm;nÞ ¼ CYYφðm;nÞ

P15
i¼0

piðm; nÞsgn qiðm; nÞ½ �RPi ; (8)

where piðm; nÞ ¼ C�1
YYφðm;nÞ qiðm; nÞj j are well-defined probabilities

with the cost CYYφðm;nÞ ¼
P15

i¼0 qiðm; nÞj j, and sgnð�Þ is the sign
function.
Then, we can use the Monte-Carlo sampling to compute the

PEC error-mitigated results. Here we consider a target quantum
circuit consisting of Ng number of two-qubit gates YYφ(m, n),
with the g-th gate labeled as Gg, each of which is fully
characterized and the inverse-error decomposition is written
as RGg ¼

P
iqi;gRPi RGns

g
with qi,g being the quasi-probability of the

two-qubit Pauli operator Pi. The full set of the random circuits to
be implemented in the experimental device denoted as
Si : i ¼ i1; ¼ ; iNg

� �	 

, contains 16Ng different circuits, each of

which is obtained by adding Pig right after Gg. To obtain the ideal
expectation values, each random circuit Si is assigned with a
probability / Q

gjqig;gj and a sign sgni �
Q

gsgnðqig;gÞ. As it is
infeasible to implement all these circuits, we use the Monte
Carlo sampling to obtain average values over the random
circuits. Specifically, we generate Ns random circuits by sampling
Pig from the probability distribution / jqig;gj and obtain the
expectation value 〈μ〉i of an observable μ for the circuit Si by
averaging 300 repetitions. The ideal expectation value 〈μ〉 is
then calculated by

hμi ¼ C
Ns

PNs

s¼1
sgnishμiis ; (9)

where the cost is given by C � QNg

g¼1 Cg with the cost of the g-th
gate being Cg �

P15
i¼0 jqi;gj. Considering each expectation value

〈μ〉i has the standard deviation Δμi, the error bar of the ideal
expectation value 〈μ〉 is obtained by error propagation as

Δμ ¼ C
Ns

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNs
s¼1Δ

2μis

q
; (10)

which is approximately C times larger than the error bar of one
general circuit with Ns × 300 repetitions12–14.
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Error mitigation and simulation of two spinless
fermionic modes
We now discuss the simulation of two spinless fermionic modes,
where the qubit-system Hamiltonian Eq. (3) reduces to

H ¼ J
2 σ̂x

1σ̂
x
2 þ σ̂y

1σ̂
y
2

� �þ V
4 σ̂z

1σ̂
z
2 þ σ̂z

1 þ σ̂z
2

� �
: (11)

With the Trotter-Suzuki expansion of Eq. (4), the evolution of
Hamiltonian for two spinless fermionic modes can be experimen-
tally realized with the specific quantum circuit shown in Fig. 2a.
For the singly occupied fermion in one of the sites, the fermion
oscillates between two sites caused by the nearest-neighbor
tunneling. For the doubly occupied fermions, there will be no
dynamics due to the Pauli exclusion principle of fermions. We
apply M= 8 Trotter steps and each step consists of three YYφ
gates and ten single-qubit rotations. The whole quantum circuit
consists of twenty-four two-qubit gates and eighty-one single-
qubit gates, where the additional one is for the initial state
preparation. We set the nearest-neighbor tunneling and interac-
tion strength as V= 2J.

Errors caused by gate imperfection accumulate as the number of
Trotter steps increases and the fidelity of evolved dynamics is
degraded. We mitigate the errors and improve the results of
dynamics. Since it is a two-qubit system, only the one native YYπ/4
gate needs to be mitigated. The ideal YYπ/4 gate can be decomposed
as RYYπ=4

¼ P15
i¼0 qiRPi RYYns

π=4
under Pauli error assumption, which is

visualized as Fig. 2b. The experimental YYns
π=4 gate is characterized by

QPT. The experimental results of the PTMs of the YYns
π=4 gate and the

deviation from the ideal one obtained by RYYns
π=4

� RYYπ=4
are shown in

Fig. 2c and d, where the average gate fidelity of RYYns
π=4

is

0.9811 ± 0.004757,58. The quasi-probabilities, i.e. the coefficients qi of
the two-qubit Pauli operator Pi in the decomposition of R�1

E , are
shown in Fig. 2e. With the values of the quasi-probabilities qi, we
obtain the cost CYYπ=4

¼ 1:083 for RYYns
π=4
.

Then, we generate Ns= 1000 random circuits by Monte Carlo
sampling illustrated in Fig. 2f. With the method described in Eq.
(9), we obtain the dynamical evolutions of state populations P abj i
for two spinless fermionic modes, where the observables are μ ¼
abj i abh j with occupied fermion a(b)= 1 or no occupied fermion
a(b)= 0 for each mode. The error-mitigated state populations

Fig. 2 Error-mitigated quantum simulation. a Quantum circuit of Trotter expansion for the simulation of dynamics of two spinless fermions.
Two qubits are initialized to ð 11j i þ 10j iÞ= ffiffiffi

2
p

after the state preparation, then we apply M times of Trotter steps consisting of three two-qubit
gates YYns in each step, which is not perfect. Here, J and V represent the strength of nearest-neighbor tunneling and nearest-neighbor
interaction. b Probabilistic error cancellation (PEC) scheme. The imperfections of the gate YYns

φ can be described by error channels acting on
the ideal gate. The ideal gate YYφ can be realized by including the inverse of the error channels, which can be decomposed into combinations
of basis operations with quasi-probabilities. Under the Pauli error assumption, there are 16 basis operations, where the list is shown in (c–e).
c Pauli transfer matrix and (d) Deviation of the experimental YYns

φ gate, which is characterized through QPT. e Quasi-probabilities in the
decomposition of the inverse error operations of experimental YYns

φ gate. The error bars are around 0.002 on average. f Error-mitigated
quantum circuits by the PEC. We implement the inverse error operations by sampling with the renormalized probabilities of quasi-
probabilities as pi ¼ jqi j=

P15
i¼0 jqi j, where i indicates what number it corresponds to among basis operations. g Experimental data and (h)

error-mitigated data for V= 2J. The solid points represent the state populations measured from the experiment and the error-mitigated data
after applying PEC, MLE, and PS methods. The dash–dotted lines represent numerical simulation, where no Trotter errors exist. The colors of
the lines correspond to the experimental data points. i Population fidelity of experiment data and error-mitigated data. The fidelity is
calculated by jPk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pk;idealPk

p j2 , which k represents the state basis. The population fidelities after each error-mitigation method are presented.
All shadows in (g)–(i) represent the standard deviation of 1000 samples generated from the raw experimental data, using the bootstrapping
method.
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after PEC can be negative values, which are unphysical. We
address this problem by imposing constraints based on general
properties of probabilities, i.e. 0 � P abj i � 1 and

P
a;bP abj i ¼ 1, and

obtain physical state populations by the maximum-likelihood
estimation (MLE). Specifically, we minimize the norm distance
between the physical populations and the PEC error-mitigated
ones. On top of PEC and MLE, we also perform post-selection (PS)
with respect to the symmetry constraints of the model
Hamiltonian, i.e. the conservation law of the number of fermions.
To demonstrate the effect of each of the error-mitigation
techniques, i.e. PEC, MLE, and PS, we apply them step by step
and obtain a set of error-mitigated state populations after each
step.
The experimental results of fermionic dynamics are shown in

Fig. 2g and h for the cases without and with error mitigation,
respectively. We use the initial two-qubits state of
ð 11j i þ 10j iÞ= ffiffiffi

2
p

, which contains the superposition of two
occupied fermions and a single occupied fermion. This initial
state simultaneously reveals the time evolutions of both single
and double fermions, since no interference occurs between both
dynamics. As shown in both Fig. 2g and h, the state 11j i and 00j i
do not change and there is an oscillation between the states
01j i and 10j i, which is the hallmark of fermion dynamics46. We
can see that without error mitigation, the contrast between the
experimental populations (solid points) clearly decays compared
with the numerical simulation under the Trotter step (hollow
points) as shown in Fig. 2g, and the error-mitigated results are
closer to the ideal numerical simulations as shown in Fig. 2h. The
population fidelities depending on Trotter steps without and
with the three error-mitigation schemes are shown in Fig. 2i. The
fidelity of the gate without and with error mitigation are
0.9895 ± 0.0021 and 0.9975 ± 0.0009, which are obtained by
exponential fitting of data.
We note that the main improvement in fidelities comes from the

PEC method. It is because our characterization of the gate is a good
representation of the actual gate. We confirm it by simulating the
dynamics of two spinless modes with the experimentally
constructed PTM of RYYns

π=4
. The comparisons between the simula-

tion with the noisy PTM and experimental data clearly validate the
Pauli error assumption and accuracy of measured RYYns

π=4
(see

Methods). We also note that MLE reduces the error bar of the
results after PEC, which may compensate for the drawback of PEC
in the aspect of variance. All the error bars are estimated by
bootstrapping method (see Methods).

Simulation of three spinless fermionic modes
We implement the time evolution of three spinless fermionic
modes as shown in Fig. 1a. The quantum circuit in Fig. 1d,
obtained by the Trotter-Suzuki expansion, simulates the
dynamics of the system. We initialize the three-qubit state to
ð 101j i þ 110j iÞ= ffiffiffi

2
p

, which includes two fermions in three sites.
The fermions propagate in the system caused by the nearest-
neighbor tunneling to other sites. The dynamical evolution
would be restricted in the subspace spanned by
f 110j i; 101j i; 011j ig because of the conservation law of the
number of fermions.
The dynamics can be different depending on the existence of

nearest-neighbor interaction different from the previous case with
two sites. In the experiment, we choose V= 0 and V= 2J for the
scenarios without and with nearest-neighbor interactions, respec-
tively. In Fig. 3a, b, d, and e, dash–dotted lines show the results of
ideal numerical simulation. When V= 0, the initial state 110j i
mostly evolves to the state 101j i because of the Pauli exclusion
principle of fermions. On the other hand, the initial state 101j i can
evolve to both 110j i and 011j i states. Therefore, in the beginning,
the overall population of the state 110j i reduces, and the
population of the state 011j i increases as shown in Fig. 3a and

b. When V= 2J, we can see the population of 110j i is not rapidly
decreasing and the state 101j i is not populated compared to the
case of V= 0. It is because the interaction is effectively attractive
in our experiment.
In experiment, we set φ ¼ Jδt

2 ¼ π
8 of the YYφ gates and apply

M= 4 Trotter steps for both scenarios. With nearest-neighbor
interactions, each Trotter step consists of six YYφ gates and twenty
single-qubit rotations. The whole quantum circuit consists of
twenty-five two-qubit gates and eighty-one single-qubit gates,
where the additional single- and two-qubit gates are for the initial
state preparation. Then, we apply the error-mitigation methods to
the dynamic evolution of both scenarios. There are two types of
YY gates on different pairs of qubits, i.e., YYπ/8(1, 2) and YYπ/8(2, 3),
both of which require characterization and inverse-error decom-
position. In the PEC scheme, both YYπ/8(1, 2) and YYπ/8(2, 3) gates
are individually characterized by QPT and the inverse errors are
decomposed independently. The average gate fidelities are
0.9779 ± 0.0088 for RYYns

π=8ð1;2Þ and 0.9748 ± 0.0085 for RYYns
π=8ð2;3Þ

(see Methods).
For the case of V= 0, the experimental results without and with

error mitigation are shown in Fig. 3a and b, respectively. We can see
the error-mitigated results are more consistent with ideal numerical
simulations. The fitted population fidelities per gate without and with
error mitigation are 0.9792 ± 0.0161 and 0.9942 ± 0.0067, as shown in
Fig. 3c. We note that the main improvement comes from the PEC
method. This is consistent with the comparison results between the
simulation with the noisy PTMs of both YY gates and experimental
data, which indicates the measured PTMs properly characterize the
two-qubit gate errors (see Methods). Similar conclusions are obtained
for the scenario with the nearest-neighbor interaction of V= 2J, as
shown in Fig. 3d–f. The fitted population fidelities per gate without
and with error mitigation are 0.9827 ± 0.0142 and 0.9889 ± 0.0080.
The two-qubit gate errors in the three-qubit system are larger than
that in the two-qubit system, which leads to the larger cost as
CYYπ=8ð1;2Þ ¼ 1:157 and CYYπ=8ð2;3Þ ¼ 1:171. Therefore, we sample
more random circuits as Ns= 1500 to reduce the error bars of the
final error-mitigated results.
We note that the fitted population fidelities after PEC could be

unphysical because of the possible negative quasi-probabilities
and the cost being over 1. As shown in Fig. 3c, f, fidelities greater
than 1 after applying PEC exist at the beginning of the three-
fermion experiments. With the help of the MLE method based on
the general properties of probabilities, we can make the
population fidelities physical and reasonable, which is, below 1
as shown in green dots of Fig. 3c, f. In addition, MLE reduces the
error bars of the results after PEC, which may compensate for the
drawback of PEC in the aspect of variance. After applying PEC, the
standard deviation of the fourth Trotter step become unexpect-
edly large. However, the MLE method suppresses the standard
deviation by a few factors in this case.

Simulation of four fermionic modes
We implement the simulation of four fermionic modes with spins
by encoding qubits Q1Q3 and Q2Q4 as two fermionic sites, where
each site can contain two fermionic modes with different spins, as
shown in Fig. 1b. We initialize the four qubits state to
ð 1001j i þ 1010j iÞ= ffiffiffi

2
p

, which is corresponding to the super-
position state between "j i1 #j i2 and "j i1 #j i1 as shown in Fig. 1b.
The two fermions interact and exchange on the four modes
caused by the nearest-neighbor tunneling and on-site interaction
on subspace states f 0101j i; 0110j i; 1001j i; 1010j ig with con-
served fermions and spins. The corresponding quantum circuit is
illustrated in Fig. 1e. Here, we expect the different dynamic
behaviors of spin and charge depending on the on-site interaction
strength. Spin and charge of the fermions are defined as
spin= nj,↑− nj,↓ and charge= nj,↑+ nj,↓ with nj,↑(↓) being the
fermion number of spin-up (down) on the j-th site.
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To demonstrate the different behavior of spin and charge, we
consider two scenarios U= 0 and U= 2J, which are related
without and with on-site interactions, respectively. For the case of
no on-site interaction, the spin and the charge of fermions should
show the same dynamics. But if there is on-site interaction, the
dynamics for spin and charge should show a different behavior,
which is related to spin-charge separation for low energy
excitation49,59–61. For the case of no on-site interaction, U= 0,
the dynamics of fermions with spins are similar to those without
spins, which are discussed in Fig. 2g and h. The state "j i1 #j i2
( 1001j i) is going back and forth with the other state "j i2 #j i1
( 0110j i). Likewise, the state "j i1 #j i1(j1010i) is oscillating with the
other state "j i2 #j i2( 0101j i). This leads to equal amounts of charge
and spin change at each site. However, when there exists on-site
interaction, the dynamics of those fermionic states are no longer
simple oscillations, and the state "j i1 #j i2, which is not affected by
the on-site interaction, and the state "j i1 #j i1, which is strongly
influenced by the on-site interaction, show completely different
dynamics.
In experiment, we set φ ¼ Jδt

2 ¼ π
8 and applyM= 4 Trotter steps for

both scenarios. With on-site interactions, each step consists of six YYφ
gates and twenty single-qubit rotations. The whole quantum circuit
consists of twenty-five two-qubit gates and eighty-two single-qubit
gates, where the additional single- and two-qubit gates are for the

initial state preparation. In order to apply error mitigations, in
particular, the PEC scheme, we characterize four types of YY gates on
different pairs of qubits, i.e., YYπ/8(1, 2), YYπ/8(3, 4), YYπ/8(1, 3), and
YYπ/8(2, 4), individually and decompose their inverse errors indepen-
dently. The average gate fidelities are 0.9755 ± 0.0096 for
RYYns

π=8ð1;2Þ; 0:9706 ± 0:0085 for RYYns
π=8ð3;4Þ; 0:9720 ± 0:0092 for

RYYns
π=8ð1;3Þ and 0.9744 ± 0.0091 for RYYns

π=8ð2;4Þ (see Methods).

For the case of U= 0, the experimental results without and with
error mitigation are shown in Fig. 4a and b, respectively. We can
see the error-mitigated results are more consistent with the
numerical simulation. The fitted population fidelities per gate
without and with error mitigation are 0.9658 ± 0.0426 and
0.9993 ± 0.0053, respectively, as shown in Fig. 4c. In Fig. 4d, the
same behaviors of spin and charge, where the amounts of charge
and spin changes are the same in the dynamics, are clearly shown
with error mitigation, where the net charge and the net spin at
site 1 are displayed. We can observe similar improvements in the
dynamics with on-site (U= 2J) interaction, as shown in Fig. 4e, and
f. In Fig. 4g, the fitted population fidelities per gate without and
with error mitigation are 0.9551 ± 0.0285 and 0.9925 ± 0.0081,
respectively. With on-site interaction, the different behaviors of
spin and charge are more clearly shown after error mitigations as
shown in Fig. 4h.

Fig. 3 Dynamics of three spinless fermionic modes. Output state population with the initial state of ð 101j i þ 110j iÞ= ffiffiffi
2

p
a–c for no

interaction V = 0 and d–f for V = 2J. a, d Experimentally measured populations without error mitigation and (b), (e) with error mitigation. The
solid points represent the experimentally measured state populations and the dashed–dotted lines represent the numerical simulation, which
contains the average Trotter errors of 3.2% in (a) and (b) and 10.4% in (d) and (e). c, f The population fidelities after each error-mitigation
method as PEC, MLE, and PS. All shadows in (a)–(f) represent the standard deviation of 1000 samples generated from the raw experimental
data, using the bootstrapping method.
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We note that the PEC scheme alone does not recover the
dynamics for the four fermionic modes as shown in Fig. 4c and g
different from the simulations with two and three fermionic
modes. The main improvements in fidelities come from the post-
selection methods based on the fermion-number-conservation
assumption. One reason is that the experimental PTMs of two-
qubit gates in the four-qubit system do not properly characterize
the imperfections of those gates. It can be seen from the
inconsistency of the numerically simulated data with the PTMs of
two-qubit gates and experimental results (see Methods). The PTMs
in our experiments cannot accommodate infidelities from cross-
talks between qubits and time-correlated errors, that is, the

performance of the gates during characterization can be different
from those of actual gates in the quantum simulation. We note
that coherent errors beyond the Pauli-error model assumption
also are not captured by our experimental PTMs, which partially
characterize errors related to Pauli errors. However, errors from
cross-talks and time-correlations would be more important factors
because coherent errors have no obvious reason to be seriously
worse with system size. We also note that the number of sampling
is greatly increased for applying the PEC method in the four-qubit
system. With the measured fidelities, the costs increase to
CYYπ=8ð1;2Þ ¼ 1:211; CYYπ=8ð3;4Þ ¼ 1:228; CYYπ=8ð1;3Þ ¼ 1:228 and
CYYπ=8ð2;4Þ ¼ 1:223. The experimental Monte-Carlo sampling as

Fig. 4 Dynamics of four fermionic modes mapped by two fermion sites and spins. Ouput population with the initial state of ð 1001j i þ
1010j iÞ= ffiffiffi

2
p

a–d for no interaction U = 0 and e–h for U = 2J. a, e Experimentally measured population without error mitigations and (b, f) with
error mitigation. The solid points represent the experimentally measured state populations and the dashed–dotted lines represent the
numerical simulation, where no Trotter errors in (a) and (b) and the average Trotter errors of 10.4% in (e) and (f). c, g The population fidelities
after each error-mitigation method as PEC, MLE, and PS. d, h Fermionic spin and charge population. The hollow and filled symbols represent
the experimental data without and with error mitigations, respectively. The dashed–dotted lines represent the ideal numerical simulation with
Trotter errors. All shadows represent the standard deviation of 1000 samples generated from the raw experimental data, using the
bootstrapping method.
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Ns= 2000 is not sufficient, which is limited by the time-consuming
running of massive random circuits in physical hardware. After
applying PEC, the standard deviation of the fourth Trotter step
becomes unexpectedly large, which is related to the insufficient
samples as the Trotter step increases.

DISCUSSION
We have applied the PEC method to improve the simulation of
interacting fermions on up to four trapped ion qubits. We have
observed the improvement of the simulation close to an order of
magnitude in fidelities. With four qubits, we are able to observe
the different dynamics of spin and charges for the interacting
fermions.
Although PEC is the fundamental method in the experiment,

several other error migration methods have been developed and
applied. One of them is using the positive probability constraint.
One intrinsic problem in the PEC method is that the probabilities
of quantum states can be negative and not necessarily normal-
ized. We impose constraints such that the probabilities of fermion
states in the dynamics are positive and normalized, and determine
the probabilities through the maximum-likelihood method. This
method guarantees that observables are physically reasonable
and can suppress statistical errors.
We also apply the symmetry constraint such that the total

number of fermions and spins are conserved. In the simulation
with four qubits, the majority of infidelity comes from the
populations outside the number-conserving states. The con-
straints of total fermions conservation resolve the problem of
population leakages. However, it is questionable if the number-
conservation constraints would be scalable since the leakage can
increase with the system and circuit depth.
From our experimental demonstration, although PEC incorpor-

ating constraints recoveries the dynamics of four trapped-ion
qubits, it is clear that we need further improvements on the
method for large-scale implementation. In particular, time and
spatial correlations cause remaining errors after PEC as pointed
out in Ref. 35. Here, time correlation refers to the difference
between gates when characterizing and when implementing. This
can be caused by changes in laser parameters such as amplitude,
phase, and frequency over time, which determine the perfor-
mance of the gate. The spatial correlation is basically the crosstalk
of the gates to the neighboring ions, which can come from the
spillover of focused laser beams. Recently, several proposals and
experiments have been reported to tackle these correlations such
as using sparse Pauli-Lindblad models37, learning-based error-
mitigation35, matrix product operator representation62, etc. With
all these techniques combined together, NISQ computers can
potentially achieve the accuracy required for gaining the quantum
advantage in practical applications, such as model inference for

nuclear magnetic resonance (NMR) spectroscopy63 and large-
depth QAOA64.

METHODS
Estimating error bars with the bootstrapping method
We statistically estimated the uncertainty of experimental data
with and without error mitigations by using the bootstrapping
method. In order to estimate the variance of experimental data,
we repeatedly and randomly take out samples from our original
data and apply PEC, MLE, and PS methods step by step to
mitigate the population errors of each sample. In our work, the
size of the samples is the same as the original data sets, and the
total number of samples for each data point is usually chosen as
1000. Then we calculate the standard deviation of the state
population and the population fidelities after each step with the
sets of samples. In order to avoid the appearance of unphysical
fidelities (larger than 100% or less than 0% after MLE and PS
methods), we separated the sets of samples into two parts
according to the fidelities of the original data set and calculated
the standard deviation of each side, which resulted in
unsymmetrical error bars. Figure 5 shows the fidelity distribu-
tion (step 4 for the simulation of three spinless fermions, V=0)
after each error-mitigation step, which indicates an increasing
deviation from the normal distribution after more error-
mitigation steps are applied.

The PTMs and quasi-probabilities for three and four
qubit system
The quantum circuits for the simulation of the three spinless
fermionic modes (three-site single-component) and four fermionic
modes (two-site double-component Fermi–Hubbard model) are
shown in Fig. 1d, e. Here up to six two-qubit Mølmer-Sørensen
gates YYφ are applied in each Trotter step. We classify the gates
depending on related qubit pairs and benchmark each type of
gate with the QPT method. Under Pauli error assumption, we
measure 15 different components in RYYns

φ
to get the PTMs of each

type of gate as shown in Fig. 6a–f. The quasi-probabilities for YYφ
gates in the simulation of three spinless fermions and two
fermions with spins are shown in Fig. 6g–l, which decides the
probabilities of choosing Pauli operations in the Monte Carlo
method.

The PTM simulation to understand experimental error models
To characterize our noisy two-qubit gates, a partial QPT with Pauli
error assumption is applied with 15 measurements out of 144. To
verify the assumption that the errors of our gates are consistent
with the increasing of Trotter steps, we perform the numerical
simulation of the extended Fermi–Hubbard model with the PTMs
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Fig. 5 Fidelity distribution at the fourth Trotter step in the simulation of three spinless fermions. All the samples are generated from the
bootstrap method after a PEC method, b MLE method, and c PS method. The black lines in all the figures represent the original calculated
results. Here each figure contains 1000 samples.
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of the noisy gates. The simulation results are shown in Fig. 7 for
two spinless fermions, three spinless fermions, and two fermions
with spins, respectively. For the simulation of two spinless
fermions, with no additional leakage to other states out of the
selected subspace, we can get a consistent simulation result with
the experimental data, which further convinced the significant
improvement of fidelity with the PEC method as shown in the
introduction of Trotter errors Fig. 2i. For the simulation results for
three spinless fermions and two fermions with spins, the
population in other states out of the ideal subspace is introduced
because of the Trotter errors. The leakage will be further increased

by the noisy gates in the experiment, which needs to be mitigated
by MLE and PS methods. As a result, the simulation results shown
in Fig. 8c–j have obvious deviations from the experimental data,
which can be considered as a result of the unexpected errors of
gates such as crosstalk error.

The infidelities of two-qubit gates from experimental
imperfections
We study the infidelities of the gates using numerical calculations
on experimental imperfections. The infidelities are expected to
mainly originate from the slow drift of laser frequency with

(1,2)
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Fig. 6 PTMs and quasi-probabilities measured in three and four qubits system. a, b PTMs in the simulation of three spinless fermions.
c–f PTMs in the simulation of two fermions with spins. g, h Quasi-probabilities in the simulation of three spinless fermions. i–l quasi-
probabilities in the simulation of two fermions with spins.
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Fig. 7 Experimental raw data compared with error-included simulation. We simulated the dynamics with noisy gates measured from QPT.
Populations and fidelities of experimental raw data and simulation in (a, b) two spinless fermions, (c, d) three spinless fermions V= 0, (e, f)
three spinless fermions V= 2J, (g, h) three spinless fermions U= 0 and (i, j) three spinless fermions U= 2J. The solid points represent the state
populations measured from the experiment, and the dashed–dotted lines represent numerical simulation data with noisy gates. All the
shadows in (a)–(j) represent the standard deviation of 1000 samples generated from the raw experimental data, using the bootstrapping
method. k Trotter error rates from numerical simulation.
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Fig. 8 Other state population of raw data and after applying PEC+MLE method. Populations in a two-qubit, b three-qubit V = 0, c three-
qubit V= 2J, d four-qubit U= 0, e four-qubit U= 2J case.
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respect to qubit energy level, intensity fluctuation, and slow
frequency drifts of vibrational modes. On the other hand,
infidelities from the spontaneous emission, solution imperfections,
off-resonant coupling to the carrier, and crosstalk are expected to
be smaller than 10−3. We note that SPAM errors should be
negligible in our experiment, since we assume the initial state
preparation is perfect and apply the scheme of detection-error
correction56.
As shown in the main text, the average fidelities of two-qubit

gates from quantum process tomography in two-, three-, and
four-ion systems are 0.981(5), 0.976(6), and 0.973(5), respectively.
We note that the infidelities of the two-qubit gates in our
experiments are comparable to those in refs. 65–68. The typical
coherence time of qubits is around 6 ms, and the dephasing time
of the center of mass vibrational mode for a single ion is around 4
ms. We estimate around 1% infidelity comes from the slow drift of
laser frequency close to 2 kHz; 0.8% from the frequency drifts of
vibrational modes around 1.5 kHz; and 0.1% from 5% of Rabi-
frequency fluctuations for two-qubit gates of the two-ion chain.
With three and four ions, the durations of two-qubit gates are
increased as shown in Table 1. Accordingly, the drifts of laser and
mode frequencies become larger, which leads to larger infidelities
for three- and four-ion chains. By stabilizing these slow drifts, the
fidelities of the gates in multiple ions can be increased to over
0.99.

The anaysis of crosstalk errors
The crosstalk errors come from the spillover of an individually
focused laser beam on the other ion. In the experiment, the inter-
ion distance is around 5 μm and the beam waist of the individual
beam is 1.5 μm. The measured ratios of Rabi frequencies from the
left and the right ions to the center one in a three-ion chain are
0.024 and 0.011, respectively. We analyze the crosstalk error with
the model that the spillover laser beams are applied to the
neighboring ions with the same frequency and phase on the
target ion with the different intensities quantified by the Rabi
ratios.
In our model, the laser-ion interaction Hamiltonian with

spillover laser beams can be written as

Ĥcross ¼ 2
P
j;m

ηj;m cosω0t âym þ âm
� �

σ̂jx

´ ΩjðtÞ cos μt þ ϕjðtÞ
� �þ γ

X
i2hi;jiΩiðtÞ cos μt þ ϕiðtÞ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

laser crosstalk

2
6664

3
7775;

(12)

with γ≪ 1 being the crosstalk ratio. Here all the symbols have
the same meaning as those used in Ref. 51. The linearity of the
constraints on the displacement of αj,m, j-th ion on m-th mode,
guarantees that αj,m = 0 after considering laser crosstalk. The
effect of the laser crosstalk manifests in the deviation of the
geometric phase for the pair of j-th and j0-th ions, θj;j0 to the

target values. Table 2 shows the average gate infidelities
induced by the laser crosstalk. Finally, we note that the effect of
cross-talk errors can be canceled by adjusting the subsequent
gate phases or adding an additional gate to reduce these
coherent errors69.
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