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Robust and efficient verification of graph states in blind
measurement-based quantum computation
Zihao Li 1,2,3, Huangjun Zhu 1,2,3✉ and Masahito Hayashi 4,5,6✉

Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients. Measurement-
based quantum computation (MBQC) is a promising approach for realizing BQC. To obtain reliable results in blind MBQC, it is crucial
to verify whether the resource graph states are accurately prepared in the adversarial scenario. However, previous verification
protocols for this task are too resource-consuming or noise-susceptible to be applied in practice. Here, we propose a robust and
efficient protocol for verifying arbitrary graph states with any prime local dimension in the adversarial scenario, which leads to a
robust and efficient protocol for verifying the resource state in blind MBQC. Our protocol requires only local Pauli measurements
and is thus easy to realize with current technologies. Nevertheless, it can achieve optimal scaling behaviors with respect to the
system size and the target precision as quantified by the infidelity and significance level, which has never been achieved before.
Notably, our protocol can exponentially enhance the scaling behavior with the significance level.
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INTRODUCTION
Quantum computation offers the promise of exponential speed-
ups over classical computation on a number of important
problems1–3. However, it is very challenging to realize practical
quantum computation in the near future, especially for clients
with limited quantum computational power. Blind quantum
computation (BQC)4 is an effective method that enables such a
client to delegate his (her) computation to a server, which is
capable of performing quantum computation, without leaking any
information about the computation task. So far, various protocols
of BQC have been proposed in theory5–8 and demonstrated in
experiments9–12. Many of these protocols build on the model of
measurement-based quantum computation (MBQC)13–15, in which
graph states are used as resources and local projective measure-
ments on qudits are used to drive the computation.
To realize BQC successfully, it is crucial to protect the privacy of

the client and verify the correctness of the computation results.
The latter task, known as verification of BQC, has been studied in
various models as explained in the Methods section, among which
MBQC in the receive-and-measure setting is particularly con-
venient16–21. However, it is extremely challenging to construct
robust and efficient verification protocols, especially for noisy,
intermediate-scale quantum (NISQ) devices3,22,23. Actually, this
problem lies at the heart of the active research field of quantum
characterization, verification, and validation (QCVV)24–29.
In this work, we focus on the problem of verifying the resource

graph states in the following adversarial scenario16,30,31, which is
crucial to the verification of blind MBQC in the receive-and-
measure setting6,16–21: Alice is a client (verifier) who can only
perform single-qudit projective measurements with a trusted
measurement device, and Bob is a server (prover) who can
prepare arbitrary quantum states. In order to perform MBQC, Alice
delegates the preparation of the n-qudit graph state Gj i 2 H to
Bob, who then prepares a quantum state ρ on the whole space

H�ðNþ1Þ and sends it to Alice qudit by qudit. If Bob is honest, then
he is supposed to prepare N+ 1 copies of Gj i; while if he is
malicious, then he can mess up the computation of Alice by
generating an arbitrary correlated or even entangled state ρ. To
obtain reliable computation results, Alice needs to verify the
resource state prepared by Bob with suitable tests on N systems,
where each test is a binary measurement on a single-copy system.
If the test results satisfy certain conditions, then the conditional
reduced state on the remaining system is close to the target state
Gj i and can be used for MBQC; otherwise, the state is rejected.
Since there is no communication from Alice to Bob after the
preparation of the state ρ, the information-theoretic blindness is
guaranteed by the no-signaling principle6.
The assumption that the client can perform reliable local

projective measurements can be justified as follows. First, the
measurement devices are controlled by Alice in her laboratory and
are not affected by the adversary. So it is reasonable to assume
that the measurement devices are trustworthy. Second, in
practice, Alice can calibrate and verify her measurement devices
before performing blind MBQC, and the resource costs of these
operations are independent of the complexity of the quantum
computation and the qudit number of the resource graph state. If
high-quality measurements can be certified after calibration and
verification, then Alice can safely use them to verify the graph
state and perform blind MBQC.
As pointed out above, the verification of the resource graph

state in the adversarial scenario16,30,31 is a crucial and challenging
part in the verification of blind MBQC. A valid verification protocol
in the adversarial scenario has to meet the basic requirements of
completeness and soundness16,20,31. The completeness means
Alice does not reject the ideal graph state Gj i. Intuitively, the
verification protocol is sound if Alice does not mistakenly accept
any bad state that is far from the ideal state Gj i. Concretely, the
soundness means the following: once accepting, Alice needs to
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ensure with a high confidence level 1− δ that the reduced state
for MBQC has a sufficiently high fidelity (at least 1− ϵ) with Gj i.
Here 0 < δ ≤ 1 is called the significance level and the threshold
0 < ϵ < 1 is called the target infidelity. The two parameters specify
the target verification precision. The efficiency of a protocol is
characterized by the number N of tests needed to achieve a given
precision. Under the requirements of completeness and sound-
ness, the optimal scaling behaviors of N with respect to ϵ, δ, and
the qudit number n of Gj i are O(ϵ−1), Oðln δ�1Þ, and O(1),
respectively, as explained in the Results section. However, it is
highly nontrivial to construct efficient verification protocols in the
adversarial scenario. Although various protocols have been
proposed16,18,20,21,31–33, most protocols known so far are too
resource consuming. Even without considering noise robustness,
only the protocol of refs. 30,31 achieves the optimal scaling
behaviors with n, ϵ, and δ (see Table 1).
Moreover, most protocols are not robust to experimental noise:

the state prepared by Bob may be rejected with a high probability
even if it has a small deviation from the ideal resource state.
However, in practice, it is extremely difficult to prepare quantum
states with genuine multipartite entanglement perfectly. So it is
unrealistic to ask honest Bob to generate the perfect resource
state. On the other hand, if the deviation from the ideal state is
small enough, then it is still useful for MBQC20,32. Therefore, a
practical and robust protocol should accept nearly ideal states
with a sufficiently high probability; otherwise, Alice needs to
repeat the verification protocol many times to perform MBQC,
which substantially increases the sample complexity. Unfortu-
nately, no protocol known in the literature can achieve this goal.
Recently, a fault-tolerant protocol was proposed for verifying

MBQC based on two-colorable graph states17. With this protocol,
Alice can detect whether or not the given state belongs to a set of
error-correctable states; then she can perform fault-tolerant MBQC
on the accepted state. Although this protocol is noise-resilient to
some extent, it is not very efficient (see Table 1), and is difficult to
realize in the current era of NISQ devices3,22,23 because too many
physical qubits are required to encode the logical qubits. In
addition, this protocol is robust only to certain correctable errors
since it is based on a given error-correcting code. If the actual
error is not correctable, then the probability of acceptance will
decrease exponentially with the number of tests, which substan-
tially increases the actual sample complexity.
In this work, we propose a robust and efficient protocol for

verifying general qudit graph states with a prime local dimension
in the adversarial scenario, which plays a crucial role in robust and
efficient verification of blind MBQC. Our protocol is appealing to
practical applications because it only requires stabilizer tests
based on local Pauli measurements, which are easy to implement
with current technologies. It is robust against arbitrary types of
noise in state preparation, as long as the fidelity is sufficiently
high. Moreover, our protocol can achieve optimal scaling
behaviors with respect to the system size and target precision ϵ,
δ, and the sample cost is comparable to the counterpart in the

nonadversarial scenario as clarified in the Methods section. As far
as we know, such a high efficiency has never been achieved
before when robustness is taken into account. In addition to qudit
graph states, our protocol can also be applied to verifying many
other important quantum states in the adversarial scenario, as
explained in the Discussion section. Furthermore, many technical
results developed in the course of our work are also useful for
studying random sampling without replacement, as discussed in
the companion paper34 (cf. the Methods section).

RESULTS
Qudit graph states
To establish our results, first, we review the definition of qudit
graph states as a preliminary, where the local dimension d is a
prime. Mathematically, a graph G= (V, E, mE) is characterized by a
set of n vertices V= {1, 2, …, n} and a set of edges E together with
multiplicities specified by mE ¼ ðmeÞe2E , where me 2 Zd and Zd is
the ring of integers modulo d, which is also a field given that d is a
prime. Two distinct vertices i, j of G are adjacent if they are
connected by an edge. The generalized Pauli operators X and Z for
a qudit read

Z jj i ¼ ωj jj i; X jj i ¼ j þ 1j i; ω ¼ e2πi=d; (1)

where j 2 Zd .
Given a graph G= (V, E, mE) with n vertices, we can construct an

n-qudit graph state Gj i 2 H as follows33,35: first, prepare the state
þj i :¼Pj2Zd

jj i= ffiffiffi
d
p

for each vertex; then, for each edge e∈ E,
apply me times the generalized controlled-Z operation CZe on the
vertices of e, where CZe ¼

P
k2Zd

kj i kh ji � Zk
j if e= (i, j). The

resulting graph state has the form

Gj i ¼
Y
e2E

CZme
e

 !
þj i�n: (2)

This graph state is also uniquely determined by its stabilizer group
S generated by the n commuting operators Si :¼ Xi

N
j2Vi

Z
mði;jÞ
j for

i= 1, 2, …, n, where Vi is the set of vertices adjacent to vertex i.
Each stabilizer operator in S can be written as

gk ¼
Yn
i¼1

Skii ¼
On
i¼1
ðgkÞi; (3)

where k :¼ ðk1; ¼ ; knÞ 2 Zn
d , and ðgkÞi denotes the local general-

ized Pauli operator for the ith qudit.

Strategy for testing qudit graph states
Recently, a homogeneous strategy30,31 for testing qubit stabilizer
states based on stabilizer tests was proposed in ref. 36 and
generalized to the qudit case with a prime local dimension in
Sec. X E of ref. 31. Here we use a variant strategy for testing qudit
graph states, which serves as an important subroutine of our
verification protocol. Let S be the stabilizer group of Gj i 2 H and

Table 1. Comparison of various protocols for verifying the resource states of blind MBQC in the adversarial scenario.

Protocol This paper Ref. 31 Ref. 33 Ref. 17 Ref. 16 Refs. 18,20,21,32

Is the scaling optimal in n? Yes Yes No Yes Yes No

Is the scaling optimal in ϵ? Yes Yes Yes Yes Yes The choice of ϵ is restricted

Is the scaling optimal in δ? Yes Yes Yes No No The choice of δ is restricted

Is it robust to noise? Yes No No Yes* No No

Here n is the qubit (qudit) number of the resource graph state; ϵ and δ denote the target infidelity and significance level, respectively. The optimal scaling
behaviors of the test number N in n, ϵ, and δ are O(1), O(ϵ−1), and Oðln δ�1Þ, respectively. By ‘robust to noise’ we mean the verifier Alice can accept with a high
probability if the state prepared has a sufficiently high fidelity. The robustness achieved in ref. 17 is different from the current definition. The scaling behaviors
with respect to ϵ and δ are not clear for protocols in refs. 18,20,21,32. See Supplementary Note 3 for details.
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DðHÞ be the set of all density operators on H. For any operator
gk ∈ S, the corresponding stabilizer test is constructed as follows:
party imeasures the local generalized Pauli operator ðgkÞi for i= 1,
2, …, n, and records the outcome by an integer oi 2 Zd , which
corresponds to the eigenvalue ωoi of ðgkÞi ; then the test is passed
if and only if the outcomes satisfy

P
ioi ¼ 0mod d. By construc-

tion, the test can be represented by a two-outcome measurement
fPk; I� Pkg. Here I is the identity operator on H;
Pk ¼ 1

d

X
j2Zd

gjk (4)

is the projector onto the eigenspace of gk with eigenvalue 1 and
corresponds to passing the test, while I� Pk corresponds to the
failure. It is easy to check that Pk Gj i ¼ Gj i, which means Gj i can
always pass the test. The stabilizer test corresponding to the
operator I 2 S is called the ‘trivial test’ since all states can pass the
test with certainty.
To construct a verification strategy for Gj i, we perform all distinct

tests Pk for k 2 Zn
d randomly each with probability d−n. The

resulting strategy is characterized by a two-outcome measurement
f~Ω; I� ~Ωg, which is determined by the verification operator

~Ω ¼ 1
dn
X
k2Zn

d

Pk ¼ Gj i Gh j þ 1
d
ðI� Gj i Gh jÞ: (5)

For 1/d ≤ λ < 1, if one performs ~Ω and the trivial test with
probabilities p ¼ dð1�λÞ

d�1 and 1− p, respectively, then another
strategy can be constructed as30,31

Ω ¼ p ~Ωþ ð1� pÞI ¼ Gj i Gh j þ λðI� Gj i Gh jÞ: (6)

We denote by ν≔ 1− λ the spectral gap of Ω from the largest
eigenvalue. This strategy plays a key role in our verification
protocol introduced in the next subsection.
As shown in Supplementary Note 6A, the second equality in Eq.

(5) holds whenever d is a prime, but may fail if d is not a prime. In
the latter case, our strategy is no longer homogeneous in general,
and many results in this work may not hold since they are based
on homogeneous strategies. This is why we restrict our attention
to the case of prime local dimensions.

Verification of graph states in blind MBQC
Suppose Alice intends to perform quantum computation with
single-qudit projective measurements on the n-qudit graph state

Gj i generated by Bob. As shown in Fig. 1, our protocol for verifying
Gj i in the adversarial scenario runs as follows.

1. Bob produces a state ρ on the whole space H�ðNþ1Þ with
N ≥ 1 and sends it to Alice.

2. After receiving the state, Alice randomly permutes the
N+ 1 systems of ρ (due to this procedure, we can assume
that ρ is permutation invariant without loss of generality)
and applies the strategy Ω defined in Eq. (6) to the first N
systems.

3. Alice chooses an integer 0 ≤ k ≤ N− 1, called the number of
allowed failures. If at most k failures are observed among the
N tests, Alice accepts the reduced state σN+1 on the
remaining system and uses it for MBQC; otherwise, she
rejects it.

With this verification protocol, Alice aims to achieve three
goals: completeness, soundness, and robustness. Recall that Gj i
can always pass each test, so the completeness is automatically
guaranteed. The soundness is characterized by the target
infidelity ϵ and significance level δ as explained in the
introduction. For verification protocols working in the nonadver-
sarial scenario, where the source only produces independent
states with no correlation or entanglement among different runs,
the optimal scaling behaviors of the test number N with respect
to ϵ, δ, and n are O(ϵ−1), Oðln δ�1Þ, and O(1), respectively31,36. The
adversarial scenario studied in this work has a weaker assumption
on the source31,36, so the scaling behaviors in ϵ, δ, and n cannot
be better. Although the condition of soundness looks quite
simple, it is highly nontrivial to determine the degree of
soundness. Even in the special case k= 0, this problem was
resolved only very recently after quite a lengthy analysis30,31.
Unfortunately, the robustness of this protocol is poor in this
special case, as we shall see later. So we need to tackle this
challenge in the general case.
Most previous works did not consider the problem of

robustness at all, because it is already very difficult to detect the
bad case without considering robustness. To characterize the
robustness of a protocol, we need to consider the case in which
honest Bob prepares an independent and identically distributed
(i.i.d.) quantum state, that is, ρ is a tensor power of the form
ρ= τ⊗(N+1) with τ 2 DðHÞ. Due to inevitable noise, τ may not
equal the ideal state Gj i Gh j. Nevertheless, if the infidelity
ϵτ≔ 1− 〈G∣τ∣G〉 is smaller than the target infidelity, that is, ϵτ < ϵ,
then τ is still useful for quantum computing. For a robust
verification protocol, such a state should be accepted with a high
probability.
In the i.i.d. case, the probability that Alice accepts τ reads

piidN;kðτÞ ¼ BN;k 1� tr ðΩτÞð Þ ¼ BN;kðνϵτÞ; (7)

where N is the number of tests, k is the number of allowed failures,

and BN;kðpÞ :¼
Pk

j¼0
N
j

� �
pjð1� pÞN�j is the binomial cumulative

distribution function. To construct a robust verification protocol, it
is preferable to choose a large value of k, so that piidN;kðτÞ is
sufficiently high. Unfortunately, most previous verification proto-
cols can reach a meaningful conclusion only when
k= 016,18,30,31,33, in which case the probability

piidN;k¼0ðτÞ ¼ ð1� νϵτÞN (8)

decreases exponentially with the test number N, which is not
satisfactory. These protocols need a large number of tests to
guarantee soundness, so it is difficult to get accepted even if Bob
is honest. Hence, previous protocols with the choice k= 0 are not
robust to noise in state preparation. Since the acceptance
probability is small, Alice needs to repeat the verification protocol
many times to ensure that she accepts the state τ at least once,
which substantially increases the actual sample cost.

We accept the remaining state iff 

at least tests are passed.

systems
Random 

permutation

Fig. 1 Schematic view of our verification protocol. Here the state ρ
generated by Bob might be arbitrarily correlated or entangled on
the whole space H�ðNþ1Þ. To verify the target state, Alice first
randomly permutes all N+ 1 systems, and then uses a strategy Ω to
test each of the first N systems. Finally, she accepts the reduced state
σN+1 on the remaining system iff at least N− k tests are passed.
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When ϵτ ¼ ϵ
2 for example, the number of repetitions required is

at least Θ exp½ 14δ�
� �

for the HM protocol in ref. 16 and Θ 1ffiffi
δ
p
� �

for the

ZH protocol in refs. 30,31 (see Supplementary Note 3 for details). As
a consequence, the total number of required tests is at least

Θ 1
δ exp½ 14δ�
� �

for the HM protocol and Θ ln δ�1ffiffi
δ
p

� �
for the ZH protocol,

as illustrated in Fig. 2. Therefore, although some protocols known
in the literature are reasonably efficient in detecting the bad case,
they are not useful in verifying the resource state of blind MBQC in
a realistic scenario.

Guaranteed infidelity
Suppose ρ is permutation invariant. Then the probability that Alice
accepts ρ reads

pkðρÞ ¼
Xk
i¼0

N

i

� �
tr Ω�ðN�iÞ � Ω

�i � I
h i

ρ
� �

; (9)

where Ω :¼ I� Ω. Denote by σN+1 the reduced state on the
remaining system when at most k failures are observed among the
N tests. The fidelity between σN+1 and the ideal state Gj i reads
Fk(ρ)= fk(ρ)/pk(ρ) [assuming pk(ρ) > 0], where

f kðρÞ ¼
Xk
i¼0

N

i

� �
tr Ω�ðN�iÞ � Ω

�i � Gj i Gh j
h i

ρ
� �

: (10)

The actual verification precision can be characterized by the
following figure of merit with 0 < δ ≤1,

ϵλðk;N; δÞ :¼ 1�min
ρ

FkðρÞ j pkðρÞ � δf g; (11)

where λ is determined by Eq. (6), and the minimization is taken
over permutation-invariant states ρ on H�ðNþ1Þ .
If Alice accepts the state prepared by Bob, then she can

guarantee (with significance level δ) that the reduced state σN+1

has infidelity at most ϵλðk;N; δÞ with the ideal state Gj i.
Consequently, according to the relation between the fidelity and
trace norm, Alice can ensure the condition16

trðEσNþ1Þ � hGjEjGij j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵλðk;N; δÞ

p
(12)

for any POVM element 0 � E � I; that is, the deviation of any
measurement outcome probability from the ideal value is not
larger than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵλðk;N; δÞ

p
.

In view of the above discussions, the computation of ϵλðk;N; δÞ
given in Eq. (11) is of central importance to analyzing the
soundness of our protocol. Thanks to the analysis presented in the
Methods section, this quantum optimization problem can actually
be reduced to a classical sampling problem studied in the
companion paper34. Using the results derived in ref. 34, we can
deduce many useful properties of ϵλðk;N; δÞ as well as its
analytical formula, which are presented in Supplementary Note
1. Here it suffices to clarify the monotonicity properties of
ϵλðk;N; δÞ as stated in Proposition 1 below, which follows from
Proposition 6.5 in ref. 34. Let Z�j be the set of integers larger than
or equal to j.

Proposition 1. Suppose 0 ≤ λ < 1, 0 < δ ≤ 1, k 2 Z�0, and
N 2 Z�kþ1. Then ϵλðk;N; δÞ is nonincreasing in δ and N, but
nondecreasing in k.

Verification with a fixed error rate
If the number k of allowed failures is sublinear in N, that is,
k= o(N), then the acceptance probability piidN;kðτÞ in Eq. (7) for the
i.i.d. case approaches 0 as the number of tests N increases, which
is not satisfactory. To achieve robust verification, here we set the
number k to be proportional to the number of tests, that is,
k= ⌊sνN⌋, where 0 ≤ s < 1 is the error rate, and ν= 1− λ is the
spectral gap of the strategy Ω. In this case, when Bob prepares i.i.d.
states τ 2 DðHÞ with ϵτ < s, the acceptance probability piidN;kðτÞ
approaches one as N increases. In addition, we can deduce the
following theorem, which is proved in Supplementary Note 6B.

Theorem 1. Suppose 0 < s, λ < 1, 0 < δ ≤ 1/4, and N 2 Z�1. Then

s� 1
νN

< ϵλðbνsNc;N; δÞ � sþ 1
νλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s ln δ�1

N

s
þ ln δ�1

2ν2λN
þ 2
λN

: (13)

Theorem 1 implies that ϵλðbνsNc;N; δÞ converges to the error
rate s when the number N of tests gets large, as illustrated in
Fig. 3. To achieve a given infidelity ϵ and significance level δ,
which means ϵλðbνsNc;N; δÞ � ϵ, it suffices to set s < ϵ and choose
a sufficiently large N. By virtue of Theorem 1 we can derive the
following theorem as proved in Supplementary Note 6C.

Theorem 2. Suppose 0 < λ < 1, 0 ≤ s < ϵ < 1, and 0 < δ ≤ 1/2. If the
number N of tests satisfies

N � ϵ

λνðϵ� sÞ½ �2 ln δ�1 þ 4λν2
� �

; (14)

then ϵλðbνsNc;N; δÞ � ϵ.

Fig. 2 Number of tests required to verify a general qudit graph
state in the adversarial scenario within infidelity ϵ= 0.01,
significance level δ, and robustness r= 1/2. The red dots
correspond to Nminðϵ; δ; λ; rÞ in Eq. (18) with λ= 1/2, and the red
dashed curve corresponds to the RHS of Eq. (20), which is an upper
bound for Nminðϵ; δ; λ; rÞ. The blue dashed curve corresponds to the
HM protocol16, and the green solid curve corresponds to the ZH
protocol31 with λ= 1/2. The performances of the TMMMF protocol20

and TM protocol32 are not shown because the numbers of tests
required are too large (see Supplementary Note 3).

Fig. 3 Variations of ϵλðbνsNc;N; δÞ with the number N of tests and
error rate s [by Eq. (6) in Supplementary Note 1]. Here λ= 1/2 and
significance level δ= 0.05. Each horizontal line represents an error
rate. As the test number N increases, ϵλðbνsNc;N; δÞ approaches s.
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Notably, if the ratio s/ϵ is a constant, then the sample cost is
only Oðϵ�1 ln δ�1Þ. The scaling behaviors in ϵ and δ are the same
as the counterparts in the nonadversarial scenario, and are thus
optimal.

The number of allowed failures
Next, we consider the case in which the number N of tests is given. To
construct a concrete verification protocol, we need to specify the
number k of allowed failures such that the conditions of soundness
and robustness are satisfied simultaneously. According to Proposition
1, a small k is preferred to guarantee soundness, while a larger k is
preferred to guarantee robustness. To construct a robust and efficient
verification protocol, we need to find a good balance between the
two conflicting requirements. The following proposition provides a
suitable interval for the number k of allowed failures that can
guarantee soundness; see Supplementary Note 6E for a proof.

Proposition 2. Suppose 0 < λ, ϵ < 1, 0 < δ ≤ 1/4, and N; k 2 Z�0. If
νϵN ≤ k ≤ N− 1, then ϵλðk;N; δÞ> ϵ. If k ≤ l(λ, N, ϵ, δ), then
ϵλðk;N; δÞ � ϵ. Here

lðλ;N; ϵ; δÞ :¼ νϵN �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nϵ ln δ�1

p
λ

� ln δ�1

2λν
� 2ν

λ

$ %
: (15)

Next, we turn to the condition of robustness. When honest Bob
prepares i.i.d. quantum states τ 2 DðHÞ with infidelity 0 < ϵτ < ϵ,
the probability that Alice accepts τ is piidN;kðτÞ given in Eq. (7), which
is strictly increasing in k according to Lemma S4 in Supplementary
Note 2. Suppose we set k= l(λ, N, ϵ, δ). As the number of tests N
increases, the acceptance probability has the following asymptotic
behavior if 0 < ϵτ < ϵ (see Supplementary Note 6F for a proof),

piidN;lðτÞ ¼ 1� exp �DðνϵkνϵτÞN þ Oð
ffiffiffiffi
N
p
Þ

h i
; (16)

where DðpkqÞ :¼ p ln p
qþ ð1� pÞ ln 1�p

1�q is the relative entropy
between two binary probability vectors (p, 1−p) and (q, 1−q),
and l is a shorthand for l(λ, N, ϵ, δ). Therefore, the probability of
acceptance is arbitrarily close to one as long as N is sufficiently
large, as illustrated in Fig. 4. Hence, our verification protocol is able
to reach any degree of robustness.

Sample complexity of robust verification
Now we consider the resource cost required by our protocol to
reach given verification precision and robustness. Let ρ be the
state on H�ðNþ1Þ prepared by Bob and σN+1 be the reduced state
after Alice performs suitable tests and accepts the state ρ. To verify

the target state within infidelity ϵ, significance level δ, and
robustness r (with 0 ≤ r < 1) entails the following two conditions.

1. (Soundness) If the infidelity of σN+1 with the target state is
larger than ϵ, then the probability that Alice accepts ρ is less
than δ.

2. (Robustness) If ρ= τ⊗(N+1) with τ 2 DðHÞ and ϵτ ≤ rϵ, then
the probability that Alice accepts ρ is at least 1−δ.

The tensor power ρ in Condition 2 can be replaced by the
tensor product of N+ 1 independent quantum states
τ1; τ2; ¼ ; τNþ1 2 DðHÞ that have infidelities at most rϵ. All our
conclusions do not change under this modification.
To achieve the conditions of soundness and robustness, we

need to choose the test number N and the number k of allowed
failures properly. To determine the resource cost, we define
Nminðϵ; δ; λ; rÞ as the minimum number of tests required for robust
verification, that is, the minimum positive integer N such that
there exists an integer 0 ≤ k ≤ N−1 which together with N achieves
the above two conditions. Note that the conditions of soundness
and robustness can be expressed as

ϵλðk;N; δÞ � ϵ; BN;kðνrϵÞ � 1� δ: (17)

So Nminðϵ; δ; λ; rÞ can be expressed as

Nminðϵ; δ; λ; rÞ :¼ min
N;k

N j k 2 Z�0;N 2 Z�kþ1; ϵλðk;N; δÞ � ϵ; BN;kðνrϵÞ � 1� δ
n o

:

(18)

Algorithm 1. Minimum test number for robust verification
Input: λ, ϵ, δ∈ (0, 1) and r∈ [0, 1).
Output: kminðϵ; δ; λ; rÞ and Nminðϵ; δ; λ; rÞ.
1:if r= 0 then
2: kmin  0
3: else
4: for k= 0, 1, 2, … do
5: Find the largest integer M such that BM,k(νrϵ)≥1− δ.
6: if M ≥ k+ 1 and ϵλðk;M; δÞ � ϵ, then
7: stop
8: end if
9: end for
10: kmin  k
11: end if
12: Find the smallest integer N that satisfies N � kmin þ 1 and

ϵλðkmin;N; δÞ � ϵ.
13: Nmin  N
14: return kmin and Nmin.

Next, we propose a simple algorithm, Algorithm 1, for
computing Nminðϵ; δ; λ; rÞ, which is very useful for practical
applications. In addition to Nminðϵ; δ; λ; rÞ, this algorithm deter-
mines the corresponding number of allowed failures, which is
denoted by kminðϵ; δ; λ; rÞ. In Supplementary Note 7C we explain
why Algorithm 1 works. Algorithm 1 is particularly useful for
studying the variations of Nminðϵ; δ; λ; rÞ with the four parameters
ϵ, δ, λ, r as illustrated in Fig. 5. When δ and r are fixed,
Nminðϵ; δ; λ; rÞ is inversely proportional to ϵ; when ϵ, r are fixed and
δ approaches 0, Nminðϵ; δ; λ; rÞ is proportional to ln δ�1. In addition,
Fig. 5d indicates that a strategy Ω with small or large λ is not very
efficient for robust verification, while any choice satisfying
0.3 ≤ λ ≤ 0.5 is nearly optimal.
The following theorem provides an informative upper bound

for Nminðϵ; δ; λ; rÞ and clarifies the sample complexity of robust
verification; see Supplementary Note 6D for a proof.

Theorem 3. Suppose 0 < λ, ϵ < 1, 0 < δ ≤ 1/2, and 0 ≤ r < 1. Then
the conditions of soundness and robustness in Eq. (17) hold as

Fig. 4 The probability piidN;lðλ;N;ϵ;δÞðτÞ that Alice accepts i.i.d.
quantum states τ 2 DðHÞ. Here λ= 1/2, infidelity ϵ= 0.1, and
significance level δ= 0.01; ϵτ is the infidelity between τ and the
target state Gj i; and l(λ, N, ϵ, δ) is the number of allowed failures
defined in Eq. (15).
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long as

k ¼ λ
ffiffiffiffiffi
2ν
p þ r

λ
ffiffiffiffiffi
2ν
p þ 1

� �
νϵN

	 

; (19)

N � λ
ffiffiffiffiffi
2ν
p þ 1
λνð1� rÞ
� �2

ln δ�1 þ 4λν2

ϵ

& ’
: (20)

For given λ and r, the minimum number of tests is only
Oðϵ�1 ln δ�1Þ, which is independent of the qudit number n of Gj i
and achieves the optimal scaling behaviors with respect to the
infidelity ϵ and significance level δ. The coefficient is large when
λ is close to 0 or 1, while it is around the minimum for any value
of λ in the interval [0.3, 0.5]. Numerical calculation based on
Algorithm 1 shows that the upper bound for Nminðϵ; δ; λ; rÞ
provided in Theorem 3 is a bit conservative, especially when r is
small. In other words, the actual sample cost is smaller than what
can be proved rigorously. Nevertheless, the bound is quite
informative about the general trends. If we choose r= λ= 1/2 for
example, then Theorem 3 implies that

Nminðϵ; δ; λ; rÞ � d144 ϵ�1ðln δ�1 þ 0:5Þe; (21)

while numerical calculation yields Nminðϵ; δ; λ; rÞ � 67 ϵ�1 ln δ�1.
Compared with previous works16,30,31, our protocol improves the
scaling behavior with respect to the significance level δ
exponentially and even doubly exponentially, as illustrated in
Fig. 2.

DISCUSSION
Verification of resource graph states in the adversarial scenario is a
crucial step in the verification of blind MBQC. We have proposed a
highly robust and efficient protocol for achieving this task, which

applies to any qudit graph state with a prime local dimension. To
implement this protocol, it suffices to perform simple stabilizer
tests based on local Pauli measurements, which is quite appealing
to NISQ devices. For any given degree of robustness, to verify the
target graph state within infidelity ϵ and significance level δ, only
Oðϵ�1 ln δ�1Þ tests are required, which achieve the optimal sample
complexity with respect to the system size, infidelity, and
significance level. Compared with previous protocols, our protocol
can reduce the sample cost dramatically in a realistic scenario;
notably, the scaling behavior in the significance level can be
improved exponentially.
So far we have focused on the verification of resource graph

states with trustworthy and ideal local projective measurements.
According to Eq. (12), if the blind MBQC is performed with ideal
measurements after Alice accepts the state prepared by Bob, then
the precision of the computation results is guaranteed by the
precision of the graph state. However, in practice, it is unrealistic
to assume that the measurement devices are perfect. So we need
additional operations to guarantee the precision of the computa-
tion results when verifying blind MBQC in the receive-and-
measure setting. As mentioned in the introduction, the client can
calibrate her measurement devices before performing blind MBQC
with a small overhead. In addition, we can convert the noise in
measurements to noise in state preparation. To apply this method,
we need the assumption that any measurement used in MBQC
and graph state verification can be expressed as a composition of
a measurement-independent noise process and the noiseless
measurement. The detail of this conversion method is presented
in Supplementary Note 4. When the noise process depends on the
specific measurement, the situation is more complicated, and
further study is required to deal with such noise.
After obtaining a reliable resource graph state accepted by the

verification protocol, Alice can use it to perform MBQC. In this
procedure, she needs to adaptively select local projective
measurements to drive the computation. Nevertheless, these

Fig. 5 Minimum number of tests required for robust verification (by Algorithm 1). a Variations of Nminðϵ; δ; λ; rÞ with ϵ−1 and λ, where
robustness r= 1/2 and significance level δ= 0.01. b Variations of Nminðϵ; δ; λ; rÞ with ϵ−1 and r, where δ= 0.01 and λ= 1/2. c Variations of
Nminðϵ; δ; λ; rÞ with log10δ

�1 and r, where λ= 1/2 and infidelity ϵ= 0.01. d Variations of Nminðϵ; δ; λ; rÞ with λ and δ, where ϵ= 0.01 and r= 1/2.
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operations can be completed by using a classical computer, and
the classical computation complexity scales linearly with the size
of the original quantum computation13. Therefore, the most
challenging part in the verification of blind MBQC is the
verification of the resource graph state, which is the focus of
this work.
In the above discussion, we assume that the measurement

devices are controlled by the client and are trustworthy. It is also
desirable to construct robust and efficient protocols for verifying
blind MBQC when the measurement devices are not trust-
worthy. To this end, a device-independent (DI) verification
protocol was proposed in ref. 37. However, this protocol has a
quantum communication complexity of the order Oð~ncÞ, where ~n
is the size of the delegated quantum computation and c > 2048,
which is too prohibitive for any practical implementation. By
combining the CHSH inequality and stabilizer tests applied to a
qubit graph state, ref. 19 proposed a protocol for self-testing
MBQC in the receive-and-measure setting. This protocol requires
Oðn4 log nÞ samples with n being the qubit number of the
resource graph state, which is much more efficient than
previous protocols, but is still far from the optimal scaling
achieved in this work. In addition, it does not consider the
problem of robustness. To further reduce the overhead and
improve the robustness, it might be helpful to combine our
approach with DI quantum state certification (DI QSC) devel-
oped recently38. See Supplementary Note 5 for details.
In addition to graph states, our protocol can also be used to

verify many other pure quantum states in the adversarial scenario,
where the state preparation is controlled by a potentially
malicious adversary Bob, who can produce an arbitrary correlated
or entangled state ρ on the whole system H�ðNþ1Þ. Let Ψj i 2 H be
the target pure state to be verified. Then a verification strategy Ω
for Ψj i is called homogeneous30,31 if it has the form

Ω ¼ Ψj i Ψh j þ λðI� Ψj i Ψh jÞ; 0 � λ< 1: (22)

Efficient homogeneous strategies based on local projective
measurements have been constructed for many important
quantum states31,36,39–46.
If a homogeneous strategy Ω given in Eq. (22) can be

constructed, then the target state Ψj i can be verified in the
adversarial scenario by virtue of our protocol: Alice first randomly
permutes all systems of ρ and applies the strategy Ω to the first N
systems, then she accepts the remaining unmeasured system if at
most k failures are observed among these tests. Most results
(including Theorems 1, 2, 3, Algorithm 1, and Propositions 1, 2) in
this paper are still applicable if the target graph state Gj i is
replaced by Ψj i. Therefore, our verification protocol is of interest
not only to blind MBQC, but also to many other tasks in quantum
information processing that entail high security. More results on
quantum state verification (QSV) in the adversarial scenario are
presented in Supplementary Note 7.
Up to now, we have focused on robust QSV in the adversarial

scenario, in which the prepared state ρ can be arbitrarily
correlated or entangled, which is pertinent to blind MBQC. On
the other hand, robust QSV in the i.i.d. scenario is also important
to many applications. Although this scenario is much simpler than
the adversarial scenario, the sample complexity of robust QSV has
not been clarified before. In the Methods section and Supple-
mentary Note 8 we will discuss this issue in detail and clarify the
sample complexity of robust QSV in the i.i.d. scenario in
comparison with the adversarial scenario. Not surprisingly, most
of our results on the adversarial scenario have analog for the i.i.d.
scenario.

METHODS
Protocols for realizing verifiable BQC
To put our work into context, here we briefly review existing
protocols for realizing verifiable BQC, which can be broadly
divided into four classes24. Many protocols in the four classes build
on the model of MBQC due to its convenience and flexibility.
The first class of protocols works in the multi-prover set-

ting8,37,47,48. These protocols can achieve a classical client (verifier),
but a trade-off is the requirement of multiple non-communicating
servers (provers) that share entanglement with each other, which
is very difficult to realize in practice.
The second and third classes of protocols need only a single

server, but assume that the client has limited quantum computa-
tional power. The second class of protocols works in the prepare-
and-send setting10,49–51, in which the client has a trusted
preparation device and the ability to send single-qudit quantum
states to the server. This class includes the protocol based on
quantum authentication49, protocol based on repeating indis-
tinguishable runs of tests and computations50, and protocol based
on trap qubits51, which has been demonstrated experimentally10.
The third class of protocols works in the receive-and-measure
setting16–18,20,21,37, in which the client receives quantum states
from the server and has the ability to perform reliable local
projective measurements. This class includes the protocol based
on CHSH games37, protocols based on QSV in the adversarial
scenario16–18,20,21, and our protocol. Notably, the above three
classes of protocols are all information-theoretically secure24.
Recently, the fourth class of protocols based on computational

assumptions has been developed52–55, which elegantly enables a
classical client to hide and verify the quantum computation of a
single server. However, these schemes are no longer information-
theoretically secure, and their overheads are too prohibitive for
any sort of practical implementation in the near future.

Simplifying the calculation of ϵλðk;N; δÞ
Here we show how to simplify the calculation of the guaranteed
infidelity ϵλðk;N; δÞ given in Eq. (11) by virtue of results derived in
the companion paper34.
Recall that Ω is a homogeneous strategy for the target state

Gj i 2 H as shown in Eq. (6). It has the following spectral
decomposition,

Ω ¼ Gj i Gh j þ λðI� Gj i Gh jÞ ¼ Π1 þ λ
XD
j¼2

Πj; (23)

where D is the dimension of H, and Πj are mutually orthogonal
rank-1 projectors with Π1 ¼ Gj i Gh j. In addition, ρ is a permutation-
invariant state on H�ðNþ1Þ. Note that pk(ρ) defined in Eq. (9) and
fk(ρ) defined in Eq. (10) only depend on the diagonal elements of ρ
in the product basis constructed from the eigenbasis of Ω (as
determined by Πj). Hence, we may assume that ρ is diagonal in
this basis without loss of generality. In other words, ρ can be
expressed as a mixture of tensor products of Πj. For i= 1, 2, …,
N+ 1, we can associate the ith system of ρ with a {0, 1}-valued
variable Yi: we define Yi= 0 (1) if the state on the ith system is Π1

(Πj≠1). Since the state ρ is permutation invariant, the variables
Y1, …, YN+1 are subject to a permutation-invariant joint distribu-
tion PY1;¼ ;YNþ1 on [N+ 1]≔ {1, 2, …, N+ 1}. Conversely, for any
permutation-invariant joint distribution on [N+ 1], we can always
find a diagonal state ρ, whose corresponding variables Y1, …, YN+1

are subject to this distribution.
Next, we define a {0, 1}-valued random variable Ui to express the

test outcome on the ith system, where 0 corresponds to passing
the test and 1 corresponds to failure. If Yi= 0, which means the
state on the ith system is Π1, then the ith system must pass the
test; if Yi= 1, which means the state on the ith system is Πj≠1, then
the ith system passes the test with probability λ, and fails with
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probability 1− λ. So we have the following conditional distribu-
tion:

PUi jYi
ð0j0Þ ¼ 1; PUi jYi

ð1j0Þ ¼ 0;

PUi jYi
ð0j1Þ ¼ λ; PUi jYi

ð1j1Þ ¼ 1� λ:
(24)

Note that Ui is determined by the random variable Yi and the
parameter λ in Eq. (6). Let K be the random variable that counts
the number of 1, that is, the number of failures, among U1, U2, …,
UN. Then the probability that Alice accepts is

pkðρÞ ¼ PrðK � kÞ; (25)

given that Alice accepts if at most k failures are observed among
the N tests. This probability only depends on the joint distribution
PY1;¼ ;YNþ1 . If at most k failures are observed, then the fidelity of the
state on the (N+ 1)th system can be expressed as the conditional
probability

FkðρÞ ¼ PrðYNþ1 ¼ 0jK � kÞ; (26)

which also only depends on PY1 ;¼ ;YNþ1 . Hence, the guaranteed
infidelity defined in Eq. (11) can be expressed as

ϵλðk;N; δÞ ¼ 1�minfPrðYNþ1 ¼ 0jK � kÞ j PrðK � kÞ � δg
¼ maxfPrðYNþ1 ¼ 1jK � kÞ j PrðK � kÞ � δg; (27)

where the optimization is taken over all permutation-invariant
joint distributions PY1 ;¼ ;YNþ1 .
Equation (27) reduces the computation of ϵλðk;N; δÞ to the

computation of a maximum conditional probability. The latter
problem was studied in detail in our companion paper34, in which
ϵλðk;N; δÞ is called the upper confidence limit. Hence, all
properties of ϵλðk;N; δÞ derived in ref. 34 also hold in the current
context. Notably, several results in this paper are simple corollaries
of the counterparts in ref. 34. To be specific, Proposition 1 follows
from Proposition 6.5 in ref. 34; Theorem S1 in Supplementary Note
1 follows from Theorem 6.4 in ref. 34; Lemma S6 in Supplementary
Note 2 follows from Lemma 6.7 in ref. 34; Lemma S7 in
Supplementary Note 2 follows from Lemma 2.2 in ref. 34;
Proposition S7 in Supplementary Note 7 follows from Lemma
5.4 and Eq. (89) in ref. 34.
Although this paper and the companion paper34 study

essentially the same quantity ϵλðk;N; δÞ, they have different
focuses. In ref. 34, we mainly focus on asymptotic behaviors of
ϵλðk;N; δÞ and its related quantities, which are of interest to the
theory of statistical sampling and hypothesis testing. The main
goal of ref. 34 is to show that the randomized test with parameter

λ > 0 can substantially improve the significance level over the
deterministic test with λ= 0. In this paper, by contrast, we focus
on finite bounds for ϵλðk;N; δÞ and its related quantities, which are
important to practical applications. In addition, the key result on
robust verification, Theorem 3, has no analog in the companion
paper. The main goal of this paper is to provide a robust and
efficient protocol for verifying the resource graph state in blind
MBQC and clarify the sample complexity. So the two papers are
complementary to each other.
It is worth pointing out that the ‘randomized test’ considered in

ref. 34 has a different meaning from the ‘quantum test’ in this
paper because of different conventions in the two communities.
The ‘randomized test’ in ref. 34 means the whole procedure that
one observes the N variables U1, U2, …, UN and makes a decision
based on the number of failures observed; while a ‘quantum test’
in this paper means Alice performs a two-outcome measurement
on one system of the state ρ, in which one outcome corresponds
to passing the test, and the other outcome corresponds to a
failure.

Robust and efficient verification of quantum states in the i.i.d.
scenario
Up to now we have focused on QSV in the adversarial scenario, in
which the server Bob can prepare an arbitrary state ρ on the
whole space H�ðNþ1Þ . In this section, we turn to the i.i.d. scenario,
in which the prepared state is a tensor power of the form ρ= σ⊗(N

+1) with σ 2 DðHÞ. This verification problem was originally studied
in refs. 39,40 and later more systematically in ref. 36. So far, efficient
verification strategies based on local operations and classical
communication (LOCC) have been constructed for various classes
of pure states, including bipartite pure states42,43,56, stabilizer
states (including graph states)16,31,33,36,57, hypergraph states33,
weighted graph states58, Dicke states45,59, ground states of local
Hamiltonians60,61, and certain continuous-variable states62, see
refs. 28,29 for overviews. Verification protocols based on local
collective measurements have also been constructed for Bell
states40,63. However, most previous works did not consider the
problem of robustness. Consequently, most protocols known so
far are not robust, and the sample cost may increase substantially
if robustness is taken into account, see Supplementary Note 8A for
explanation. Only recently, several works considered the problem
of robustness29,64–67; however, the degree of robustness of
verification protocols has not been analyzed, and the sample
complexity of robust verification has not been clarified, although
this problem is apparently much simpler than the counterpart in
the adversarial scenario.
In this section, we propose a general approach for constructing

robust and efficient verification protocols in the i.i.d. scenario and
clarify the sample complexity of robust verification. The results
presented here can serve as a benchmark for understanding QSV
in the adversarial scenario. To streamline the presentation, the
proofs of these results [including Propositions 3–6 and Eq. (38)]
are relegated to Supplementary Note 8.
Consider a quantum device that is expected to produce the

target state Ψj i 2 H, but actually produces the states σ1, σ2, …, σN
in N runs. In the i.i.d. scenario, all these states are identical to the
state σ, and the goal of Alice is to verify whether σ is sufficiently
close to the target state Ψj i. If a strategy Ω of the form in Eq. (22)
can be constructed for Ψj i, then our verification protocol runs as
follows: Alice applies the strategy Ω to each of the N states, and
counts the number of failures. If at most k failures are observed
among the N tests, then Alice accepts the states prepared;
otherwise, she rejects. Here 0 ≤ k ≤ N− 1 is called the number of
allowed failures. The completeness of this protocol is guaranteed
because the target state Ψj i can never be mistakenly rejected.
Most previous works did not consider the problem of

robustness and can reach a meaningful conclusion only when

Fig. 6 Guaranteed infidelities in the i.i.d. scenario and adversarial
scenario. Here λ= 1/2 and δ= 0.05; the green, blue, and red dots
represent ϵλðbνsNc;N; δÞ [by Eq. (6) in Supplementary Note 1] for the
adversarial scenario, while the magenta, orange, and purple stars
represent ϵ iidλ ðbνsNc;N; δÞ [by Eq. (29)] for the i.i.d. scenario; each
horizontal line represents an error rate s.
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k= 031,33,36,39–45, i.e., Alice accepts if all N tests are passed.
However, the requirement of passing all tests is too demanding in
a realistic scenario and leads to poor robustness, as clarified in
Supplementary Note 8. To remedy this problem, several recent
works considered modifications that allow some failures29,64–67.
However, the robustness of such verification protocols has not
been analyzed, and the sample complexity of robust verification
has not been clarified.
Here we consider robust verification in which at most k failures

are allowed. Then the probability of acceptance is given by

piidN;kðσÞ ¼
Xk
j¼0

N

j

� �
½1� tr ðΩσÞ�jtr ðΩσÞN�j ¼ BN;k 1� tr ðΩσÞð Þ ¼ BN;kðνϵσÞ;

(28)

where ϵσ≔ 1− 〈Ψ∣σ∣Ψ〉 is the infidelity between σ and the target
state. Similar to Eq. (11), for 0 < δ ≤ 1 we define the guaranteed
infidelity in the i.i.d. scenario as

ϵ iidλ ðk;N; δÞ :¼ max
σ

ϵσ j piidN;kðσÞ � δ
n o

¼ max
ϵ

0 � ϵ � 1 j BN;kðνϵÞ � δ

 �

;

(29)

where the first maximization is taken over all states σ on H, and
the second equality follows from Eq. (28). By definition, if Alice
accepts the state σ, then she can ensure (with significance level δ)
that σ has infidelity at most ϵ iidλ ðk;N; δÞ with the target state
(soundness). Hence, ϵ iidλ ðk;N; δÞ characterizes the verification
precision in the i.i.d. scenario. Since the i.i.d. scenario has a
stronger constraint than the full adversarial scenario, the
guaranteed infidelity for the former scenario cannot be larger
than that for the later scenario, that is,

ϵ iidλ ðk;N; δÞ � ϵλðk;N; δÞ; (30)

as illustrated in Fig. 6.
The following proposition clarifies the monotonicities of

ϵ iidλ ðk;N; δÞ. It is the counterpart of Proposition 1.

Proposition 3. Suppose 0 ≤ λ < 1, 0 < δ ≤ 1, k 2 Z�0, and
N 2 Z�kþ1. Then ϵ iidλ ðk;N; δÞ is strictly decreasing in δ and N,
but strictly increasing in k.

Next, we consider the verification with a fixed error rate in the
i.i.d. scenario. Concretely, we set the number of allowed failures k
to be proportional to the number of tests, i.e., k= ⌊sνN⌋, where
0 ≤ s < 1 is the error rate, and ν= 1− λ is the spectral gap of the
strategy Ω. The following proposition provides informative bounds
for ϵ iidλ ðbνsNc;N; δÞ. It is the counterpart of Theorem 1.

Proposition 4. Suppose 0 < s, λ < 1, 0 < δ ≤ 1/2, and N 2 Z�1; then

s� 1
νN

< ϵ iidλ ðbνsNc;N; δÞ � sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s ln δ�1

νN

s
þ 2 ln δ�1

νN
: (31)

Similar to the behavior of ϵλðbνsNc;N; δÞ, the guaranteed
infidelity ϵ iidλ ðbνsNc;N; δÞ for the i.i.d. scenario converges to the
error rate s as the number N gets large, as illustrated in Fig. 6. To
achieve a given infidelity ϵ and significance level δ, which means
ϵ iidλ ðbνsNc;N; δÞ � ϵ, it suffices to set s < ϵ and choose a
sufficiently large N. By virtue of Proposition 4 we can derive
the following proposition, which is the counterpart of
Theorem 2.

Proposition 5. Suppose 0 ≤ λ < 1, 0 ≤ s < ϵ < 1, and 0 < δ < 1. If the
number of tests N satisfies

N � ln δ�1

DðνskνϵÞ ; (32)

then ϵ iidλ ðbνsNc;N; δÞ � ϵ.

In the rest of this section, we turn to study the sample
complexity of robust verification in the i.i.d. scenario. To verify the
target state within infidelity ϵ, significance level δ, and robustness
r (with 0 ≤ r < 1) entails the following conditions,

1. (Soundness) If the device prepares i.i.d. states τ 2 DðHÞ with
infidelity ϵτ > ϵ, then the probability that Alice accepts τ is
smaller than δ.

2. (Robustness) If the device prepares i.i.d. states τ 2 DðHÞ
with infidelity ϵτ ≤ rϵ, then the probability that Alice accepts
τ is at least 1− δ.

Here the condition of robustness is the same as the counterpart
in the adversarial scenario, while the condition of soundness is
different. In the adversarial scenario, once accepting, only the
reduced state on the remaining unmeasured system can be used
for application, so the condition of soundness only focuses on the
fidelity of this state. In the i.i.d. scenario, by contrast, the prepared
states are identical and independent, so the condition of
soundness focuses on the fidelity of each state.
Given the total number N of tests and the number k of allowed

failures, then the conditions of soundness and robustness can be
expressed as

BN;kðνϵÞ � δ; BN;kðνrϵÞ � 1� δ: (33)

Let Niid
minðϵ; δ; λ; rÞ be the minimum number of tests required for

robust verification in the i.i.d. scenario. Then Niid
minðϵ; δ; λ; rÞ is the

minimum positive integer N such that Eq. (33) holds for some
0 ≤ k ≤ N− 1, namely,

Niid
minðϵ; δ; λ; rÞ :¼ min

N;k
N j k 2 Z�0;N 2 Z�kþ1; BN;kðνϵÞ � δ; BN;kðνrϵÞ � 1� δ
n o

:

(34)

It is determined by νϵ, δ, r, and is the counterpart of Nminðϵ; δ; λ; rÞ
in the adversarial scenario.
Next, we propose a simple algorithm, Algorithm 2, for

computing Niid
minðϵ; δ; λ; rÞ, which is very useful to practical

applications. This algorithm is the counterpart of Algorithm 1
for computing Nminðϵ; δ; λ; rÞ. In addition to the number of tests,
Algorithm 2 also determines the corresponding number of
allowed failures, which is denoted by kiidminðϵ; δ; λ; rÞ. In
Supplementary Note 8F we explain why Algorithm 2 works.

Algorithm 2. Minimum test number for robust verification in
the i.i.d. scenario
Input: λ, ϵ, δ∈ (0, 1) and r∈ [0, 1).
Output: kiidminðϵ; δ; λ; rÞ and Niid

minðϵ; δ; λ; rÞ.
1: if r= 0 then
2: kiidmin  0
3: else
4: for k= 0, 1, 2, … do
5: Find the largest integer M such that BM,k(νrϵ) ≥ 1− δ.
6: if M ≥ k+ 1 and BM,k(νϵ) ≤ δ then
7: stop
8: end if
9: end for
10: kiidmin  k
11: end if
12: Find the smallest integer N that satisfies N � kiidmin þ 1 and

BN;kiidmin
ðνϵÞ � δ.

13: Niid
min  N

14: return kiidmin and Niid
min.

Algorithm 2 is quite useful to studying the variations of
Niid
minðϵ; δ; λ; rÞ with λ, δ, ϵ, and r as illustrated in Fig. 7. When ϵ, r

are fixed and δ approaches 0, Niid
minðϵ; δ; λ; rÞ is proportional to ln δ�1.
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When δ and r are fixed, Niid
minðϵ; δ; λ; rÞ is inversely proportional to νϵ.

This fact shows that strategies with larger spectral gaps are more
efficient, in sharp contrast with the adversarial scenario.
At this point it is instructive to compare the minimum number of

tests for robust verification in the adversarial scenario with the
counterpart in the i.i.d. scenario. Numerical calculation shows that
the ratio of Nminðϵ; δ; λ; rÞ over Niid

minðϵ; δ; λ; rÞ is decreasing in λ, as
reflected in Fig. 8. For a typical value of λ, say λ= 1/2, this ratio is
smaller than 2, so the sample complexity in the adversarial scenario
is comparable to the counterpart in the i.i.d. scenario. When λ is
small, one can construct another strategy with a larger λ by adding
the trivial test [see Eq. (6)], which can achieve a higher efficiency in
the adversarial scenario. Due to this reason, the ratio of
Nminðϵ; δ; λ; rÞ over Niid

minðϵ; δ; λ; rÞ is not so important when λ ≤ 0.3.
The following proposition provides a guideline for choosing

appropriate parameters N and k for achieving a given verification
precision and robustness.

Proposition 6. Suppose 0 < δ, ϵ, r < 1 and 0 ≤ λ < 1. Then the
conditions of soundness and robustness in Eq. (33) hold as long as
s∈ (rϵ, ϵ), k= ⌊νsN⌋, and

N � ln δ�1

minfDðνskνrϵÞ;DðνskνϵÞg
� �

: (35)

For 0 < p, r < 1 we define functions

ζðr; pÞ :¼ p D
ln 1�p

1�rp
� �

ln r þ ln 1�p
1�rp
� �

������p
0
@

1
A

2
4

3
5
�1

; (36)

ξðrÞ :¼ lim
p!0

ζðr; pÞ ¼ r � 1
ln r

ln
r � 1
ln r

� �
þ 1� r � 1

ln r

� �� ��1
: (37)

By virtue of Proposition 6 we can derive the following informative
bounds (for 0 < δ, ϵ, r < 1),

Niid
minðϵ; δ; λ; rÞ �

ln δ�1

νϵ
ζðr; νϵÞ

� �
� ln δ�1

νϵ
ξðrÞ

� �
: (38)

These bounds become tighter when the significance level δ
approaches 0, as shown in Supplementary Figure 4. The
coefficient ξ(r) in the second bound is plotted in Supplementary
Figure 5. When r= λ= 1/2 for instance, the second upper bound
in Eq. (38) implies that

Niid
minðϵ; δ; λ; rÞ �

2 ξð1=2Þ ln δ�1
ϵ

� �
� 46:5 ln δ�1

ϵ

� �
; (39)

while numerical calculation shows that Niid
minðϵ; δ; λ; rÞ is smaller

than 41 ϵ�1 ln δ�1 for δ ≥ 10−10 and approaches 2 ξð1=2Þ ϵ�1 ln δ�1

when δ, ϵ→ 0. Therefore, our protocol can enable robust and
efficient verification of quantum states in the i.i.d. scenario.
Finally, it is instructive to clarify the relation between QSV in the

i.i.d. scenario, nonadversarial scenario, and adversarial scenario. In the
i.i.d. scenario, the assumptions on the source are the strongest, so
QSV is the easiest, and the sample cost is the smallest. In the
adversarial scenario, by contrast, the assumptions on the source are
the weakest, so QSV is the most difficult, and the sample cost is the
largest. For graph states with a prime local dimension, the sample
cost in the adversarial scenario is comparable to the counterpart in
the i.i.d. scenario thanks to our analysis above, which means the
sample costs in all three scenarios are comparable.
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