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Multi-state quantum simulations via model-space quantum
imaginary time evolution
Takashi Tsuchimochi 1,2✉, Yoohee Ryo3, Siu Chung Tsang1 and Seiichiro L. Ten-no1

We introduce the framework of model space into quantum imaginary time evolution (QITE) to enable stable estimation of ground
and excited states using a quantum computer. Model-space QITE (MSQITE) propagates a model space to the exact one by retaining
its orthogonality, and hence is able to describe multiple states simultaneously. The quantum Lanczos (QLanczos) algorithm is
extended to MSQITE to accelerate the convergence. The present scheme is found to outperform both the standard QLanczos and
the recently proposed folded-spectrum QITE in simulating excited states. Moreover, we demonstrate that spin contamination can
be effectively removed by shifting the imaginary time propagator, and thus excited states with a particular spin quantum number
are efficiently captured without falling into the different spin states that have lower energies. We also investigate how different
levels of the unitary approximation employed in MSQITE can affect the results. The effectiveness of the algorithm over QITE is
demonstrated by noise simulations for the H4 model system.
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INTRODUCTION
Variational quantum algorithms1–3 are expected to play a key role
on noisy intermediate-scale quantum (NISQ) devices4. Especially,
variational quantum eigensolver (VQE)5–10 has attracted much
attention for its application to quantum chemistry where quantum
entanglement is essential11,12. The scope of VQE has extended
from ground state simulations of molecular systems7,9,13 to
condensed matters14–16 and excited states17–22.
Building on the concept of imaginary time evolution (ITE), which

aims to drive an arbitrary initial state to the exact ground state,
several variants of quantum algorithms have recently been
developed. McArdle and co-workers proposed variational ITE
(VITE)23, which employs a fixed ansatz and then determines the
optimal parameters using McLachlan’s variational principle. There-
fore, VITE can be regarded as an optimizer not only for variational
algorithms such as VQE24, but also for algorithms that employ pre-
processed non-Hermitian Hamiltonians such as transcorrelated
methods25–27. Probabilistic ITE (PITE) exploits measurements to
perform the non-unitary operation of ITE on quantum devices
probabilistically28–30. This can be achieved by introducing one
ancilla qubit and embedding the ITE operator acting on an N-
qubit system in an (N+ 1)-qubit unitary gate28. In principle, ITE
can be exactly performed on the N-qubit system by accepting (or
discarding) the resultant state if the ancilla qubit is measured to
be 0j i (or 1j i). However, the exact PITE generally requires the
singular-value-decomposition of the N-qubit Hamiltonian, which
hinders its practical applications in chemistry. Furthermore, the
success probability decays exponentially with the number of
imaginary time steps and the system size N. As such, there have
been several proposals to circumvent these problems29,30.
Yet another scheme, Quantum ITE (QITE)31, approximates the

non-unitary short evolution of ITE by a unitary evolution that is
determined by solving a set of linear equations. Therefore, it
circumvents the high-dimensional noisy optimizations in varia-
tional algorithms, while driving a quantum state towards the

ground state at each evolution step. The promise of QITE has been
demonstrated experimentally31–33, and numerous authors have
extended the algorithm34–40. In our own recent study, a modified
equation for the unitary approximation was presented, which
enables faster convergence of QITE, thereby reducing the overall
quantum resources.
Although QITE is a powerful tool for determining the ground

state, there have been fewer developments that aim for obtaining
excited states, especially when compared to variational algorithms
that have seen a wide variety of developments17–21,39,41–46. The
reason for this is perhaps that quantum Lanczos diagonalization
(QLanczos) is expected to find reasonable excited states by
increasing the size of the Krylov subspace31,32. However, our
recent study showed that the component of excited states
encoded in the initial state vanishes with imaginary time β at an
exponential rate in general, and is lost in the numerical noise that
is caused by the strong linear dependence of the chosen Krylov
subspace39. This is particularly true if the excited states are
separated from the ground state by large energy gaps, i.e., higher
energy eigenstates.
Historically, there have been broad interests in obtaining

excited states from classical ITE47–51, and we can gain many
insights from them. For instance, to retain the excited state
signature throughout the QITE simulation, we followed the work
of Booth and Chan48 and adopted the folded-spectrum propa-
gator e�β2ðĤ�ωÞ2 in ref. 39, an approach coined FSQITE. It was
shown that FSQITE can in principle yield the desired excited states,
and its convergence rate can be drastically accelerated with
QLanczos. Nevertheless, FSQITE requires to estimate the target
energy ω in advance and to treat the Hamiltonian squared Ĥ

2
,

which can be quite challenging in general.
In this work, we develop the model-space QITE (MSQITE)

algorithm to deliver stable and accurate solutions for excited
states. MSQITE evolves an orthogonal model space to the
complete subspace by ITE, simulating multiple states
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simultaneously. It also improves the behavior and accuracy for the
ground states of strongly correlated systems, by directly
incorporating important configurations. Because the method has
many similarities to QITE and FSQITE, it can be also easily
combined with QLanczos.
Furthermore, we present a scheme to deal with spin

contamination in MSQITE. The spin quantum number is an
essential quantity that characterizes a non-relativistic electronic
state. Preserving spin symmetry is important but is more
challenging in quantum simulations52–57 than conserving other
symmetries such as point-group symmetry that can be usually
constrained by removing the qubits from the simulation58,59. It
should be easily imagined the problem of spin contamination is
exacerbated in excited state calculations because excited states
often exhibit more complicated electronic structures than the
ground state and thus are prone to spin contamination. In the
following, we provide a way to circumvent this difficulty.
As will be seen, there are two different flavors of MSQITE; one

uses the same unitary for all states in the model space, and the
other employs different unitaries for different states. We
investigate how such unitary approximations in the MSQITE
algorithm can affect its representability and accuracy, and report
difficulties with the former approach.
Since the quantum circuits of both QITE and MSQITE necessarily

elongate with imaginary time, their applicability on NISQ
computers might be severely limited due to quantum noise.
However, it is expected that MSQITE could potentially outperform
QITE in many respects, even on NISQ computers, providing not
only excited states but also faster convergence to the ground
state. We demonstrate the efficacy of MSQITE through noisy
simulations using a simple error mitigation protocol.

RESULTS
Model-space QITE
In MSQITE, one prepares an orthogonal subspace that consists of
zeroth-order ground and excited states, f ΦIj i; I ¼ 0; � � � ;
nstates � 1g, and evolves the entire subspace by the propagator
e�βĤ (which is Trotterized by a short time step Δβ). It is important
to note that the imaginary time evolution makes the basis states
nonorthogonal, hΦIje�2ΔβĤjΦJi≠ 0, and therefore the orthonorma-
lization of the subspace is necessary. Hence, in MSQITE, we
consider the following unitary approximation on the ℓth step:

Φ
ðℓþ1Þ
I

��� E
¼

X
J

dIJe
�ΔβðĤ�EJÞ ΦðℓÞ

J

��� E
� e�iΔβÂ Φ

ðℓÞ
I

��� E
(1)

where jΦðℓÞ
I i are the Ith state at the ℓth time step, and Â is a

Hermitian operator parameterized by the coefficients a,

Â ¼
X
μ

aμσ̂μ (2)

with Pauli strings σ̂μ, which are appropriately chosen31,34,39. In Eq.
(1), we have intentionally introduced the energy shift EJ ¼
hΦðℓÞ

J jĤjΦðℓÞ
J i for convenience. The transformation matrix d is also

introduced to ensure the orthonormality of the time-evolved
model space fjΦðℓþ1Þ

I ig.
This transformation matrix can be defined in infinitely different

ways; however, we require d→ I (identity matrix) as Δβ→ 0,

because this would allow us to correctly obtain jΦðℓþ1Þ
I i � jΦðℓÞ

I i.
We also wish the change in each state to be minimum at each
time step, to be able to “follow” the Ith state between the time
steps in order for Eq. (1) to be a meaningful approximation. To this
end, we employ the Löwdin symmetric orthonormalization60,61.
Remarkably, the so-obtained d is the one that minimizes the

distance in the Hilbert space, d ¼ argmind
P

IkjΦðℓþ1Þ
I i�

e�ΔβðĤ�EIÞjΦðℓÞ
I ik262,63. In other words, the property of Φ

ðℓÞ
I

��� E
is

maximally preserved in Φ
ðℓþ1Þ
I

��� E
on average, and therefore it is

expected that different states do not mix strongly. In particular,
when the energy shift EJ is introduced, d is diagonal dominant
with all the diagonal elements being equal to one. In the Methods
section, we have detailed the Löwdin symmetric orthonormaliza-
tion procedure in MSQITE and discussed other possibilities for the
definition of d.
In MSQITE, limℓ!1jΦðℓÞ

I i may not be the exact ground and
excited states. Instead, we retain them as a model space basis and
express the physical states ψIj i as a linear combination of these
states, ψIj i ¼ limℓ!1

P
KcKIjΦðℓÞ

K i. This corresponds to solving the
eigenvalue problem

HðℓÞc ¼ SðℓÞcE (3)

where

HðℓÞ
IJ ¼ hΦðℓÞ

I jĤjΦðℓÞ
J i (4)

SðℓÞIJ ¼ hΦðℓÞ
I jΦðℓÞ

J i (5)

and E contains the ground and excited state energies in the
diagonal. The eigenvalues become the exact energies if the entire
model space is propagated appropriately.
Now, we have two approaches to determine the unitary e�iΔβÂ.

In the so-called state-specific approach, a is different for different
ΦIj i (therefore, we write aI and Â

I
to indicate the state

dependence). Similarly to QITE31,39, we minimize the following
function

FIðaIÞ ¼
X
J

dIJe
�ΔβðĤ�EJÞ ΦðℓÞ

J

��� E
� e�iΔβÂ

I

Φ
ðℓÞ
I

��� E�����
�����
2

(6)

to the second-order of Δβ for each I. This results in the linear
equation

MIaI þ bI ¼ 0 (7)

with

MI
μν ¼ 2Re Φ

ðℓÞ
I

D ���σ̂μσ̂ν Φ
ðℓÞ
I

��� E
(8)

bIμ ¼ Im Φ
ðℓÞ
I

D ��� Ĥ; σ̂μ

� �
Φ

ðℓÞ
I

��� E
þ 2
Δβ

X
J

dJI Im Φ
ðℓÞ
I

D ���σ̂μ Φ
ðℓÞ
J

��� E
(9)

We have provided a detailed derivation in Supplementary Notes.
In contrast, the state-averaged approach uses the same a and Â

for all the states considered. This can be accomplished by solvingX
I

MIaþ
X
I

bI ¼ 0: (10)

Several important considerations have to be made with respect
to the above derivations. Eqs. (8) and (9) are essentially the same
as those corresponding to QITE39, except that bIμ has the
additional second term, which ensures the orthogonality of the
model space. For the state-specific method, the model space is
not exactly orthogonal, but it is almost so because of this term.
Indeed, without the second term, Eq. (3) quickly becomes
unsolvable because all elements of SðℓÞIJ tend to become one
(i.e., all states in the model space become the ground state). We
note that dIJ

Δβ ! 0 for I ≠ J as Δβ→ 0 and the diagonal term will not
contribute because σμ is Hermitian and thus the expectation value
is real; so the second term is stable. The importance of the term is
less pronounced in the state-averaged method.
The state-averaged method would be preferred to the state-

specific method because the model space fjΦðℓÞ
I ig is guaranteed

to be orthogonal (i.e., SðℓÞIJ ¼ δIJ), and also because its quantum
circuit is significantly simpler. However, despite the existence of a
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single unitary e�iΔβÂ that correctly transforms all the states
simultaneously to the desired states, it should be noted that the
corresponding Hermitian Â has to be quite complicated. In
practice, because it is desirable to employ a simple Â in Eq. (2), the
representability of the unitary is considerably limited, and
therefore the performance of the state-averaged MSQITE may
not be promising. This is quite similar to an issue recently reported
by ref. 64, that the multistate contracted VQE, which minimizes the
averaged energy of orthogonal states generated by the same
unitary19, experiences large errors for excited state calculations.
Indeed, below, we will show that with the state-specific MSQITE a
model space converges to almost the exact one using only single
and double excitations in Â, whereas the accuracy of the state-
averaged MSQITE is generally quite unsatisfactory and its errors in
energy can be substantial especially when the number of states
increases.

Quantum Circuit for MSQITE
The algorithmic difference between QITE and MSQITE is that the
latter requires the estimation of quantities like HðℓÞ

IJ for each pair
I, J. Whereas the state-averaged MSQITE has a simple quantum
circuit because all the states are evolved by the same unitary
e�iΔβÂ, one needs the controlled gate for e�iΔβÂðaIÞ for the state-
specific approach. Figure 1 illustrates how we implement the latter
using the Hadamard test. We prepare the state register and an
ancilla qubit as jΦð0Þ

I i and þj i, which controls UJI, e�iΔβÂ
I

, and
e�iΔβÂ

J

. Here, UJI comprises simple gates to generate jΦð0Þ
J i ¼

ÛJIjΦð0Þ
I i initially. In practice, the unitary e�iΔβÂðaIÞ is Trotter-

decomposed as

e�iΔβÂðaIÞ �
Y
μ

e�iθIμσ̂μ
(11)

with

θIμ ¼ ΔβaIμ: (12)

Since Â
I
and Â

J
only differ by the parameters aI and aJ and share

the same gate structure, it is convenient to order the controlled
gates in an alternating manner as shown in Fig. 1a, noting that the
controlled-e�iθIμσ̂μ and controlled-e�iθJν σ̂ν always commute. Without
the control qubit, each Pauli rotation is performed by using the
standard procedure65–67 as shown in Fig. 1b, where (i) the qubits
to be rotated are transformed to either of the X, Y, Z basis by the
corresponding single-qubit unitary gates (denoted by R), (ii) their

parities are passed to the last qubit (denoted by the CNOT gate
with a dotted line), and (iii) the Rz gate is applied followed by the
Hermitian conjugate of (ii) and (i). Since the two adjacent
controlled Pauli rotations carry out these unitary operations, the
operations (i) and (ii) between them cancel out, and we can
simplify the entire gate as depicted in Fig. 1c.
Therefore, the additional complexity in the quantum circuit of

the state-specific MSQITE arises from the two CNOT operations
and one additional Rz rotation. We consider this additional effort
may not be a significant overhead cost compared with the circuit
shown in Fig. 1b.
For the diagonal terms HðℓÞ

II , they represent energy expectation
values of jΦðℓÞ

I i, and therefore their quantum circuits are identical
to that of QITE, without any controlled-e�iΔβÂ operations. Hence,
for MSQITE with a model space comprising nstates states, one
needs to prepare nstates(nstates− 1)/2 circuits at each ℓ to measure
HðℓÞ
IJ (noting that H(ℓ) is Hermitian), in addition to nstates circuits to

perform the same measurements as QITE.
To investigate the relative complexity of the quantum circuits

required for the state-specific MSQITE, in Fig. 2, we have depicted
the number of CNOT gates for each noiseless simulation
conducted in this study, as a function of imaginary time β. It is
evident that the number of CNOT gates for the off-diagonal circuit
is generally approximately 1.2 to 1.3 times greater than that for
the diagonal circuit. This observation underscores the efficacy and
effectiveness of our quantum circuit designed for the Hadamard
test. Nevertheless, it should be mentioned that these quantum
circuits are too deep if noise is of concern, and in practice, we
need to introduce appropriate simplifications, which will be
discussed later.

MS-QLanczos
Similar to many other Krylov methods46,68–70, QLanczos forms and
diagonalizes the effective Hamiltonian to generate a wave
function as a linear combination of time-evolved states. Here,
we can generalize QLanczos to the model space formalism, which
we call MS-QLanczos. Let us consider to expand the Krylov model
subspace as

e�ℓΔβĤ Φ
ð0Þ
I

��� E
; ðℓ ¼ 0; � � � ; nÞ; ðI ¼ 0; � � � ; nstates � 1Þ

n o
(13)

which comprises the basis for the effective Hamiltonian to be

diagonalized. Here, we choose to use the normalized states Φ
ðℓÞ
I

��� E

(a)

(b) (c)

Fig. 1 Quantum circuit for obtaining matrix elements of state-specific MSQITE using the Hadamard test with an ancilla þj i. a UJI

transforms jΦð0Þ
I i to jΦð0Þ

J i. The unitary gates e�iΔβÂ
I

and e�iΔβÂ
J

are each decomposed into Pauli rotations. b The uncontrolled version of Pauli
rotation is typically implemented by using one-qubit unitary gates (R), and a sequence of CNOT gates, which is abbreviated by the CNOT gate
with a dotted line. Together with Rz, they perform e�iθμσ̂μ . c Two different controlled Pauli rotations by θIμσ̂μ and θJμσ̂μ can be summarized to
one controlled-Rz.
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to ease the derivation:

Φ
ðℓÞ
I

��� E
; ðℓ ¼ 0; � � � ; nÞ; ðI ¼ 0; � � � ; nstates � 1Þ

n o
(14)

Note that it spans the same space as Eq. (13). At an arbitrary time
step ℓΔβ, the Ith quantum state is given by,

Φ
ðℓÞ
I

��� E
¼ P

J
dðℓ�1Þ
JI e�ΔβðĤ�Eðℓ�1Þ

J Þ Φðℓ�1Þ
J

��� E

¼ P
J

~d
ðℓ�1Þ
JI e�ΔβðĤ�E0Þ Φðℓ�1Þ

J

��� E (15)

where E0 is some reference energy that is fixed throughout the
imaginary time evolution (e.g., the average energy of the initial
model space), and

ΔEðℓÞI ¼ EðℓÞI � E0 (16)

~d
ðℓÞ
JI ¼ dðℓÞJI eΔβΔE

ðℓÞ
J (17)

The global energy shift E0 is introduced to ensure that the
propagator is independent of both state and imaginary time,
while avoiding the vanishing norm due to eΔβE0 . Using the relation
(15) recursively, we find

Φ
ðℓÞ
I

��� E
¼

X
J

~d
ðℓ0 Þ � � � ~dðℓ�1Þ� �

JI
e�ðℓ�ℓ0 ÞΔβðĤ�E0Þ Φðℓ0Þ

J

��� E
(18)

for arbitrary ℓ0<ℓ.
Then, one can write the overlap matrix among the model space

(14) as

SIðℓÞ;Jðℓ0Þ � hΦðℓÞ
I jΦðℓ0Þ

J i

¼ D
ℓþℓ0
2 !ℓ�1ð Þ� �>

S
ℓþℓ0
2ð Þ Dðℓ0!ℓþℓ0

2 �1Þ
� ��1

� 	
IJ

(19)

where

Dðℓ0!ℓÞ � ~d
ðℓ0Þ~d

ðℓ0þ1Þ � � � ~dðℓÞ ðℓ>ℓ0Þ (20)

Since we expect nstates to be small, the computational cost of D is
negligible. The MS-QLanczos Hamiltonian matrix elements are
similarly derived as

HIðℓÞ;Jðℓ0Þ � hΦðℓÞ
I jĤjΦðℓ0Þ

J i

¼ D
ℓþℓ0
2 !ℓ�1ð Þ� �>

H
ℓþℓ0
2ð Þ Dðℓ0!ℓþℓ0

2 �1Þ
� ��1

� 	
IJ
:

(21)

and one simply solves the generalized eigenvalue problem using
H and S. Note that the derivation reduces to that of the modified
single-state QLanczos39 when nstates= 1.

Illustrative noiseless simulations
Here, we assess the performance of MSQITE and MS-QLanczos,
using molecular systems without the impact of noise. For this
reason, we use the unitary coupled-cluster generalized singles and
doubles (UCCGSD) ansatz66,71, which was found to be suitable for
Â in simulating molecules39. Since the UCCGSD ansatz has the
same number of parameters as the given Hamiltonian, the gate
complexity for each time step in UCCGSD-based (MS)QITE scales
similarly to the real time evolution. Therefore, the cost of UCCGSD-
based MSQITE is expected to be comparable to algorithms that
exploit real time evolution68,70.
We first consider the BeH2 molecule at equilibrium (Re= 1.334

Å). As the initial model space for MSQITE, we choose the following
three configurations: the HF configuration, and the configurations
where two electrons are promoted from the highest occupied
orbital to πu orbitals, as listed in Fig. 3. In the same figure, the
performances of various methods for the ground and excited
states are depicted. Because the ground state of the system is only
weakly correlated, QITE and especially QLanczos quickly converge.
Also shown in the figure is the results of FSQITE (using the exact
target energy E2Σþg ¼ 15:2263 Hartree) and its extension to
QLanczos (FS-QLanczos). Although FSQITE and FS-QLanczos
eventually converge to the exact states, their evolutions are
rather slow. Moreover, it cannot determine the ground state
because it is far from the target state.
In contrast, clearly, MSQITE delivers remarkably fast conver-

gence to the desired excited states when compared with FSQITE.
Nevertheless, we note the convergence profile is state-dependent.
For example, while the ground state XΣþg converged rapidly, the
convergence of the second excited state 1Δg required approxi-
mately β= 5 a.u., followed by the convergence of the first excited
state 2Σþg approximately 5 ~ 6 a.u. later. This difference is
attributed to the fact that these excited states are strongly
correlated. To see this, we have tabulated the coefficients of the
exact eigenstates in Supplementary Table 1. It is verified that the
initial configurations (ii) 000000110011j i and (iii) 000011000011j i
are the dominant ones for 1Δg, each with a coefficient of about
0.5, but it also contains other dominant configurations such as
000000111100j i (see the Methods section for our qubit mapping:
here, two electrons are promoted from 2σg to 1πu with respect to
HF). Such additional configurations need to be generated by the
(MS)QITE procedure, and the imaginary time evolution typically
takes more steps if their coefficients are non-negligible. From
Supplementary Table 1, it is seen that the 2Σþg state is even more
strongly correlated than 1Δg, resulting in slower convergence in
MSQITE.
We can expect a better performance of MSQITE if these

additional configurations are included in the initial model space;
however, of course, such detailed information may not be
accessible a priori. Instead, MS-QLanczos can automatically detect
and extract these states much earlier than MSQITE, as shown in
Fig. 3. In contrast to FS-QLanczos, MS-QLanczos was not able to
obtain the 3Σþg state. This is simply because we have truncated the
Krylov vectors to avoid numerical instabilities. If such higher states
are desired, one needs to add more states in the model space, and
MSQITE (MS-QLanczos) can find the eigenstates in the energy
order.
It should be noted that the MSQITE method should bring a

certain advantage not only for excited states but also for strongly
correlated ground states, because the model space by definition
can naturally provide multi-configuration states. To observe this
advantage, we take the square H4 molecule with a bond length of
1 Å as an example. As shown in Fig. 4, QITE and QLanczos take

Fig. 2 Number of CNOT gates required for each of noiseless
simulations. The number of CNOT gates required to estimate the
energy expectation value (diagonal) hΦIjĤjΦIi and coupling (off-
diagonal) hΦIjĤjΦJi are plotted as circles and crosses, respectively, as
a function of imaginary time. The blue, orange, and green plots
represent the results for simulations of H4, BeH2, and N2,
respectively.
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more than 10 and 4 a.u. in imaginary time, respectively, to reach
the ground state within the 1 mHartree accuracy. The slow
convergence of the former is ascribed to the strong correlation in
H4, which is a two-determinant system with 00001111j i and
00110011j i.
The energies of MSQITE with the model space comprised of

00001111j i and 00110011j i approach the (near) exact energies
very rapidly, within less than a few a.u. in imaginary time; MS-
QLanczos convergence is even faster. We emphasize, however,
that each of the resulting MSQITE basis states ΦIj i are not the
exact eigenstates. They are rather states that have either
00001111j i or 00110011j i as the dominant configuration, but
possess almost no component of the other configuration. Never-
theless, the model space is developed to the complete space
during the MSQITE procedure, such that linear combinations of
f ΦIj ig are the exact states, as described in the preceding section.

Avoiding spin contamination with shifted propagator
For a non-relativistic molecular Hamiltonian, the exact wave
function is an eigenstate of the number operator N̂ and the spin
operators Ŝ

2
and Ŝz. However, since each of the Pauli rotations

applied in QITE does not necessarily commute with these
symmetry operators, both the number of electrons and spin
quantum numbers fluctuate during the evolution. Nevertheless,

for the one-particle symmetry operators (N̂ and Ŝz), such
fluctuations are moderate and do not affect the result in our
numerical experiments. It is also relatively easy to constrict the
quantum state to the fixed quantum numbers by using fermionic
operators instead of Pauli operators, i.e., one can employ the
parametrization of Eq. (2) and treat linear combinations of Pauli
operators57.
However, we found that the Ŝ

2
symmetry is difficult to preserve,

especially for excited states. Usually, the initial model space is
prepared such that only the target spin states (e.g., singlets in the
above cases) are included. However, due to the approximate
nature of (MS)QITE, the model space often starts to leak into
different spin symmetry spaces and finds higher spin states (e.g.,
triplets s= 1 and quintets s= 2) with lower energies than states
with the desired spin, by virtue of imaginary time propagation. For
variational simulations, one can use the projection operator55–57,
but it is not straightforward to apply it in the framework of ITE.
Such spin-contamination, and the resulting “spin-collapse”, are

practical yet significant issues in MSQITE, as demonstrated below.
In essence, when spin-collapse occurs, it becomes necessary to
increase the number of states in a model space, nstates, and rerun
the calculation to obtain the true target states with low spins.
However, it is important to emphasize that states with higher spin
(s) than the target spin (i.e., singlet) can be obtained much more
efficiently through a separate calculation, in which the initial states
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are prepared with s=ms= (Nα− Nβ)/2, where Nα and Nβ are the
numbers of α and β electrons, respectively. Such simulations
preclude the convergence of low-spin states (the fluctuation of Ŝz
and hence ms is negligible in MSQITE). In fact, this protocol is a de
facto standard frequently employed in quantum chemical
calculations to track different spin states.
As an example, here we consider N2 at a stretched bond

distance of 1.6 Å. We employed three configurations (i), (ii), and
(iii) given in Fig. 5 to make an initial model space, and aimed to
obtain the lowest singlet states with the Σþg symmetry including
the ground state.
Figure 6a plots the changes in energy of MSQITE state along

with the exact energies of different spin symmetries (shown in

different colors). Whereas the lowest state of MSQITE converges to
the singlet ground state quickly, the two excited states suffer from
slow convergence. More importantly, both converge to the
quintet 15Σþg state. It is worth reiterating that this lowest quintet
state can be obtained simply by preparing an initial state with
ms= 2 in QITE, rather than adopting the more intricate MSQITE
with ms= 0. In Fig. 6b, we monitor the change in hŜ2i, and the
third state is trapped in some unphysical spin state with hŜ2i � 2.
The problem here is that, in general, the exact eigenstates are
unknown and therefore, one may get confused as if the MSQITE
state achieved a stationary triplet state, as ∥bI∥ ≈ 0 for
90 < β < 120. However, this is an artifact of spin contamination.
In fact, this contaminated state was found to be a half-and-half
mixture between 31Σþg and 15Σþg : the exact energies are E31Σþg ¼
�108:293193 and E15Σþg ¼ �108:463729, and the energy expecta-
tion value of the state is trapped at about �108:378 �
ðE31Σþg þ E15Σþg Þ=2.
Moreover, note that there exist several spin states (triplets and

quintets) that have lower energies than singlet states as is clear
from the figure. Hence, the convergence of MSQITE to these
wrong spin states is highly likely. Of course, one could add more
configurations in the model space to obtain higher singlet states;
however, one can easily imagine that this approach is inefficient
and is best avoided. We should also mention that, as the
representability and flexibility of Â increase, MSQITE would
become even more prone to spin-contamination.
Hence, we introduce the spin-shift to the propagator,

e�βĤ ! e�β ĤþλðŜ2�sðsþ1ÞÞ

 �

(22)

where λ is an arbitrary positive number and s is the designated
spin quantum number. Because MSQITE is expected to transform
the initial model space into the complete subspace, the use of the
spin-shift should also be able to fix the spin at the same time. The
trick here is that, while the target spin component with s in the
model space remains unaffected by the shifted propagator, the
spin contaminants with s0>s rapidly vanish. Note that we can
always assume s0 � s by appropriately constructing the initial
model space (namely, we set ms= s). Thereby, the model space
will be projected to spin s. We would like to emphasize that this
effect shares similarities with the widely-used penalty function
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Fig. 5 Configurations used in MSQITE for N2. In the MSQITE
simulation of N2, we have used up to six electronic configurations as
the model space. Configuration (i) is the HF determinant. Two
electrons are excited from πu to πg in configurations (ii), (iii), (iv), and
(v), and four electrons are excited in configuration (vi). All
configurations belong to Σþg .
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method in variational algorithms, which penalizes the energy
associated with incorrect spin states7,55,72,73.
As λ becomes large, the spin-projection acts more strongly;

however, it could spoil the convergence of MSQITE because of the
large Trotter error. In principle, it suffices to use λ>Es0 � Es where
Es0 is the energy of excited state with spin s0.
In Fig. 6c, we show the results of MSQITE with the spin-shift

using λ= 0.5. As expected, all the states nicely converge to the
desired singlet states. Throughout all imaginary time, these states
retain hŜ2i ¼ 0 approximately, and get rid of spin contamination
appropriately (Fig. 6d). We notice that the third state of MSQITE
initially approaches the 11Δg state instead of directly converging
to the 31Σþg state, and then starts to find the latter state as the
lower state. However, this is not the weakness of the method; it is
rather an indication of the ability of MSQITE to find the lowest
states.

State-specific and state-averaged MSQITE
In the preceding section, we have discussed the advantages that
MSQITE has to offer, focusing on the state-specific algorithm. As
the state-averaged scheme is more attractive in terms of circuit
complexity, we also carried out the state-averaged MSQITE to
evaluate its accuracy. To properly evaluate the potential of the
state-averaged MSQITE, we have performed noiseless simulations.
Table 1 compares the final energies obtained at convergence of

the state-specific and state-averaged MSQITE methods. In addition
to H4 and BeH2, N2 at equilibrium (a bond distance of 1.098 Å) was
tested with two configurations (i) and (ii) in Fig. 5, as an initial
model space. Whereas the state-specific MSQITE yields quite
accurate energies independent of systems, the state-averaged
MSQITE results become significantly inaccurate for larger systems.
Its accuracy is satisfactory for H4 but deteriorates for N2 with an

error of 47 mHartree for the 2Σþg state. In general, increasing the
model space tends to result in larger errors in energy, as shown in
Fig. 7.
Another prominent example of the failure of the state-averaged

MSQITE is the N2 molecule with two πu orbitals and two πg orbitals
and four electrons (comprising an eight qubit system). With a
model space comprising six configurations—HF and all five pair-
excited configurations derived from it (those listed in Fig. 5)—the
UCCGSD-based state-averaged MSQITE methods immediately
converge at β= 0, because ∑IbI= 0 by symmetry. Note that this
convergence does not indicate, of course, bI= 0 for each state; in
fact, the state-specific MSQITE performs quite well, yielding very
accurate energies. It is worth noting that ∑IbI is equivalent to the
averaged energy derivative that appear in the VQE-based state-
averaged UCCGSD method74; indeed, we applied the method to
this system and found that it suffers from the same problem and
no optimization of parameters was carried out. Overall, this
strongly implies the limitation of other state-averaged methods
for general systems19,64.
It should be clear that this ill-behavior of the state-averaged

MSQITE does not necessarily imply a possible theoretical flaw in
our derivation. The failure is rather ascribed to the limitation of the
form of Â that we employed, i.e., single and double substitutions.
In other words, it is unlikely the same UCCGSD amplitudes can
evolve any arbitrary states to the desired ones all at once through
e�iΔβÂ, even qualitatively. That being said, with triples (T) and
quadruples (Q) included, we can rigorously obtain the exact
eigenstates by definition: such UCCGSDTQ ansatz is complete for a
four-electron system. For this particular case, the UCCGSDT-based
state-averaged MSQITE already delivers almost the exact result
(with less than 10−12 Hartree error). Overall, therefore, we are led
to conclude that the state-averaged MSQITE does not seem
practical because one needs way more Pauli operators from
higher rank excitations than double excitations, to achieve a
satisfactory accuracy, and this will become quickly infeasible with
the increase in number of electrons.

Noise simulations
To investigate the effect of quantum noise in state-specific
MSQITE, here we conducted noise simulations on squared H4 with
each side being 2 Å. To simplify the quantum circuits, we have
used several techniques (refer to the METHODS section for
details). Figure 8 showcases both noiseless and noisy results for
QITE and MSQITE, using different error rates for depolarizing noise.
As is evident from the figure, both noisy QITE and noisy MSQITE
experience significant error accumulation as imaginary time
extends. For a relatively conservative error rate for each CNOT,

Table 1. Exact energy and error of MSQITE for each system (in
Hartree).

System Exact State-specific State-Averaged

H4 XAg −1.932 645 < 1 × 10−8 2 × 10−7

H4 2Ag −1.781 254 < 1 × 10−8 2 × 10−7

BeH2 XΣ
þ
g −15.759 026 < 1 × 10−8 2 × 10−4

BeH2 2Σþg −15.226 336 8 × 10−8 4 × 10−4

BeH2 1Δg −15.185 771 < 1 × 10−8 2 × 10−4

N2 XΣþg −108.669 173 6 × 10−5 5 × 10−3

N2 2Σþg −107.968 085 8 × 10−5 5 × 10−2

Fig. 7 Energy errors of the converged UCCGSD-based MSQITE states with the state-specific and state-averaged schemes for N2 at
equilibrium. States used for each MSQITE simulation are chosen from Fig. 5 in serial order.
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p2= 10−2, the energies for both noisy QITE and noisy MSQITE
become exceed that of HF already at β= 0.2 a.u. (see Fig. 8a).
Such large errors arise from the fact that the circuit depth

increases linearly with the imaginary-time step in these methods.
Figure 9 plots the number of CNOT gates required to estimate the
diagonal and off-diagonal matrix elements of the effective
Hamiltonian, H00 and H01, respectively, as a function of β. We
will omit the results for H11 because they are almost the same as
the results of H00. As discussed earlier, the quantum circuit for H01

is not significantly more complicated compared to that for H00.
Nevertheless, the number of CNOT gates exceeds 400 at β= 1 a.u.
(corresponding to five imaginary-time steps, as we used Δβ= 0.2
a.u. for these simulations), which introduces tremendous errors
even with a small error rate of p2= 10−3 for each CNOT gate
(Fig. 8c). Especially, as the noise accumulates, the expectation
values of off-diagonal matrix elements tend to zero, leaving
almost no advantage in performing MSQITE over QITE.
Therefore, it is essential to mitigate errors with NISQ compu-

ters75,76, and we have employed the simple protocol of zero-noise-
extrapolation (ZNE)77–79. The error-mitigated QITE and MSQITE
results are also presented in Fig. 8 as filled squares and circles,
respectively. Clearly, ZNE significantly improves the noisy results,

successfully approximating the noiseless energies at short β
values. Interestingly, we observe that error-mitigated MSQITE is
almost always as stable as mitigated QITE, despite the slightly
longer circuit required for H01.
This result can be rationalized by recognizing that the off-

diagonal elements generally have a much smaller absolute value
than the diagonal ones, serving as a correction to the QITE
energies. As a result, errors in the off-diagonal elements have a
less impact on the accuracy of the final energies of MSQITE,
compared to errors in the diagonal elements.
In order to examine this result further, we plotted the noisy

values (p2= 5 × 10−3) of H00 and H01 along side the extrapolated
values in Fig. 10a. The “ideal” noiseless estimates, generated using
the same quantum circuits and parameters a, are also shown. We
observe that the noisy H01 converges to 0, as expected. In most
instances, ZNE successfully approximates the noiseless values of
H00 and H01 with notable accuracy. Figure 10b illustrates the
differences between the ZNE and noiseless values, namely, ΔHIJ ¼
HIJðZNEÞ � HIJðNoiselessÞj j for IJ ∈ (00, 01), which serve as a metric
for the reliability of ZNE. Remarkably, both ΔH00 and ΔH01 exhibit
similar precision, even though H01 is presumed to be more
susceptible to noise due to its higher CNOT gate count. Therefore,
the errors introduced in the effective Hamiltonian are relatively
balanced between diagonal and off-diagonal elements, yielding
an overall noise impact on the MSQITE energies similar to that on
the QITE energies.
In conclusion, MSQITE continues to offer its advantages over

QITE even on NISQ computers, as long as suitable error-mitigation
techniques are utilized to minimize the effects of noise.

DISCUSSION
In this work, we introduced a model space into QITE to enable
excited state simulations. The orthogonality condition was
retained using the Löwdin symmetric orthonormalization, which
minimizes the state change during time steps and thus is suitable
for the short-time unitary approximation of the non-unitary
imaginary time propagation. MSQITE was shown to be a promising
route to obtaining both ground and excited states, and its
extension to QLanczos allowed for further acceleration in
obtaining approximate eigenstates.
This study also proposed the spin-shift in the propagator.

Because excited states frequently suffer from spin-contamination,
it is necessary to remove the irrelevant spin configurations from

(a) (b) (c)

Fig. 8 Noisy QITE and MSQITE for H4 using depolarizing error. The error rate for one-qubit gates p1 is set to 0.1 times the error rate for two-
qubit gates p2. (a) p2= 10−2 (b) p2= 5 × 10−3, and (c) p2= 10−3.

Fig. 9 Number of CNOT gates required for the noisy simulations
of H4. The numbers of CNOT gates required to estimate the energy
expectation value (diagonal) hΦIjĤjΦIi and coupling (off-diagonal)
hΦIjĤjΦJi in the noisy simulations of H4 are plotted as circles and
crosses, respectively, as a function of imaginary time.
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the MSQITE simulation. We have shown that the proposed spin-
shift approach achieves this feat by projecting out the desired spin
symmetry through ITE.
Based on the results obtained in this work, we conclude that the

state-averaged MSQITE is likely to necessitate substantially
complicated Â to appropriately evolve all the states considered
in a model space, compared to the state-specific scheme. Namely,
the former method requires fermionic excitations beyond double
excitations in Â for e�iΔβÂ to achieve reasonable accuracy in ideal,
noiseless computations; this is deemed unappealing because of
the increasing number of Pauli operators that need to be included.
It should be pointed out that the recently proposed state-
averaged orbital-optimized VQE74 shares the same difficulty
because it uses the same unitary for multiple orthonormal states
as in the state-averaged MSQITE; thus, the scalability of the
method with the increase in number of electrons and states
remains to be an open question. In contrast, the state-specific
MSQITE is potentially more promising than the state-averaged
one, requiring only single and double excitations (i.e., UCCGSD) to
achieve high accuracy.
We have also demonstrated that the effectiveness of state-

specific MSQITE compared to QITE remains unaffected by
quantum noise when appropriate error mitigation techniques
are applied. This resilience can be attributed to two main factors.
First, the quantum circuit for state-specific MSQITE was designed
to minimize the CNOT gate counts in the estimation of off-

diagonal elements. Second, both the diagonal and off-diagonal
elements display a comparative magnitude of errors. Overall, we
found that the impact of quantum noise on MSQITE is similar to
that on QITE.
Finally, many of the ideas developed in this work are versatile,

and we expect that they can be applied to fields beyond quantum
chemistry, such as nuclear physics. Moreover, MSQITE can be
extended to combine with adaptive algorithms32,34 and variational
algorithms23,35. This integration holds potential for new synergies
that can reduce the circuit depth. We are currently working along
these directions.

METHODS
Orthonormalization of model space
In the Results section, the transformation matrix d was introduced
in MSQITE to preserve the orthonormality of the model space after
a short-time propagation. We chose the Löwdin symmetric
orthonormalization for this purpose. First, we form the overlap
matrix of the target imaginary time evolved model space,

~S
ðℓÞ
IJ ¼ hΦðℓÞ

I je�ΔβðĤ�EIÞe�ΔβðĤ�EJÞjΦðℓÞ
J i

¼ SðℓÞIJ � 2Δβ HðℓÞ
IJ � 1

2 ðEI þ EJÞSðℓÞIJ

� �
þ OðΔβ2Þ

(23)

which is truncated after the first-order of Δβ to obtain the
approximate overlap. Note that here, we assume the model space
is orthonormal SðℓÞIJ ¼ δIJ ; however, even if this assumption is not
satisfied, one can still find such a basis and the argument does not
lose generality, see Supplementary Notes. Diagonalizing ~S gives

~SU ¼ U~s (24)

where s is the diagonal matrix with the eigenvalues and U the
eigenvectors. The d matrix from the Löwdin symmetric ortho-
normalization is then uniquely obtained as

d ¼ U~s�1=2Uy: (25)

We note that, instead of the above d, it would be also tempting
to employ the transformation that diagonalizes
hΦðℓÞ

I je�ΔβðĤ�EIÞĤe�ΔβðĤ�EJÞjΦðℓÞ
J i, such that limℓ!1jΦðℓÞ

I i is the
exact ground or excited state, ψIj i. However, it is easily seen that
the unitary matrix obtained from the diagonalization of such an
effective Hamiltonian matrix is inadequate because it can flip the
signs and even the ordering of the states, and thus Eq. (1) cannot
be a valid approximation.
Following Blunt et al.50, one may perform the Gram-Schmidt

orthogonalization to define d. However, the Gram-Schmidt
orthogonalization is not unique about the order of orthogonaliza-
tion steps and also leads to a biased update of f ΦIj ig. Importantly,
the propagation of the first state Φ0j i will remain unaffected by
the presence of other states ΦIj iðI > 0Þ. Therefore, it will naturally
become the exact ground state at β→∞. It is highly desirable
that Φ0j i is initially chosen to be the closest to the ground state
among all the states in the model space at β= 0. Otherwise, the
model space would experience large reorganization, which the
short-time unitary evolution of Eq. (1) would find difficult to
express. This requirement may be easily satisfied for the ground
state (i.e., HF may be the most reasonable starting point).
However, for excited states, the appropriate ordering is generally
unknown.

Simulation details
MSQITE and MS-QLanczos were implemented in our Python-based
emulator package, QUKET80, which compiles other useful libraries
such as OPENFERMION81, PYSCF82, and QULACS83, to perform quantum
simulations. In all simulations, we used the STO-6G basis set and
HF orbitals. The Jordan-Wigner transformation was employed to

(a)

(b)

Fig. 10 Accuracy of effective Hamiltonian matrix elements in the
presence of noise. a Noisy, noiseless, and extrapolated values of the
diagonal and off-diagonal matrix elements H00 and H01 for
p2= 5 × 10−3. b Difference between extrapolated and noiseless
values.
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map the fermion operators to the qubit representation, such that
α and β spin orbitals were aligned alternately with the rightmost
qubit represents the lowest energy α spin orbital. Δβ was set to 0.1
a.u. for QITE and MSQITE, and 0.05 a.u. for FSQITE, and the
UCCGSD ansatz39,66,71 was employed for the form of Â, except for
the noise simulations, for which the computational details are
provided below. To ensure stable solutions to Eqs. (7) and (10), we
applied a truncation scheme to the singular values of the M
matrix. Specifically, we retained singular values that were greater
than 10−7 times the largest singular value, as implemented in
scipy.linalg.lstsq84. The Be 1s orbital and the N 1s and 2s orbitals
were not considered in the simulations. For H4, the initial HF
calculation was performed with the C2h symmetry instead of D4h,
to relax the orbitals.
To perform noisy QITE simulations, we used Qiskit85, and the

quantum noise was modeled by depolarizing error. The error rate
for two-qubit gates was set to p2= 10−2, 5 × 10−2, and 10−3, and
that for one-qubit gates was set to p1= p2 × 0.1. To mitigate the
error, we used the zero-noise-extrapolation technique with
exponential fitting79, only for two-qubit (CNOT) gates. For this
simulation, the Hamiltonian of H4 is transformed to the reduced
representation by using the tapering-off technique58,59. This
resulted in the following four-qubit-Hamiltonian:

Ĥ ¼ h0 þ h1Z2Z3 þ h2Z0Z2 þ h2Z1Z2 þ h3Z0Z1Z2Z3

þ h4Z0Z1 þ h5ðZ0Z3 þ Z1Z3Þ þ h6ðZ0Z1Z2 þ Z0Z1Z3Þ
þ h7ð�X1Y2Y3 þ Y1Y2X3 � X0Y2Y3 þ Y0Y2X3Þ
þ h8 �Y0Z1Y2Z3 þ Y0Z1Z2Y3 þ Y0Y2 þ X0Z1Z2X3ð
� Z0X1Z2X3 þ Z0Y1Y2Z3 � Z0Y1Z2Y3 � Y1Y2Þ
þ h9ð�X0Z1Z2 þ X0Z2Z3 � Z0X1Z2 þ X1Z2Z3Þ
þ h10ðX0X1Z2Z3 þ Y0Y1Z2Z3Þ
þ h11ðX0Y1Y2 � Y0X1Y2 þ Z0Z2X3 � Z1Z2X3Þ
þ h12ðZ0Z1Y2Y3 � Y2Y3Þ
þ h13ðZ0 þ Z1 þ Z0Z2Z3 þ Z1Z2Z3Þ
þ h14ð�Z2 � Z3Þ
þ h15ð�Y0X1Y3 þ X0Y1Y3 þ Z0X2Z3 � Z1X2Z3Þ

(26)

with

h0 ¼ �1:0613356242517709

h1 ¼ 0:3752318182963852

h2 ¼ 0:3736748877137335

h3 ¼ 0:3722054115496151

h4 ¼ 0:26033869205932514

h5 ¼ 0:22299864958557725

h6 ¼ 0:09825586237928423

h7 ¼ 0:07901175885991207

h8 ¼ 0:0746839486241239

h9 ¼ 0:07166447926823467

h10 ¼ 0:05690174793752179

h11 ¼ 0:05592385851947026

h12 ¼ 0:05496497155276822

h13 ¼ 0:03491578410706995

h14 ¼ 0:021711508654056723

h15 ¼ 0:018760090104653643

whose first two lowest eigenvalues are −1.91552763 and
−1.87493645. We also simplified the quantum circuit by using a
reduced form of UCCGD (neglecting single substitutes) where only
one of eight Pauli tensors arising from a double excitation is used.

The resulting form of the ansatz is comprised of 14 unitaries,

e�iΔβÂ ¼
Y13
i¼0

e�iΔβai P̂i (27)

with

P̂0 ¼ X1X2Y3

P̂1 ¼ X0X2Y3

P̂2 ¼ Z1Z2Y3

P̂3 ¼ X0Y1X2

P̂4 ¼ X2Y3

P̂5 ¼ X0Y3

P̂6 ¼ X1Y2

P̂7 ¼ Y0Z1X2Z3

P̂8 ¼ Z0Y1Z2X3

P̂9 ¼ Y0X1X3

P̂10 ¼ Z0Y2Z3

P̂11 ¼ X0Y1

P̂12 ¼ Y1

P̂13 ¼ Y0

where we have used Δβ= 0.2 a.u.. We used the stabilization
procedure for QLanczos as presented in ref. 39 to describe excited
states. However, for MS-QLanczos, the numerical instability arising
from the linear dependence in the Krylov subspace becomes even
more challenging compared with the standard QLanczos. Hence,
we adopted the same procedure as ref. 31, i.e., we use Krylov
vectors that satisfy Sℓℓ0<0:99 to alleviate the linear dependence.
However, we have made the following modifications: the selection
of Krylov vectors is performed backwards (i.e., starting from the
current time instead of from the initial time) in order to ensure the
latest states are always included in the basis, and the number of
states included in the subspace is limited to 5. The selection is
based on the assumption that excessively old time states do not
play an important role but only cause numerical instabilities.
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