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Exhaustive search for optimal molecular geometries using
imaginary-time evolution on a quantum computer
Taichi Kosugi 1,2✉, Hirofumi Nishi 1,2 and Yu-ichiro Matsushita1,2,3

This study proposes a nonvariational scheme for geometry optimization of molecules for the first-quantized eigensolver, which is a
recently proposed framework for quantum chemistry using probabilistic imaginary-time evolution (PITE). In this scheme, the nuclei
in a molecule are treated as classical point charges while the electrons are treated as quantum mechanical particles. The electronic
states and candidate geometries are encoded as a superposition of many-qubit states, for which a histogram created from repeated
measurements gives the global minimum of the energy surface. We demonstrate that the circuit depth per step scales as
Oðn2epolyðlog neÞÞ for the electron number ne, which can be reduced to Oðnepolyðlog neÞÞ if extra Oðne log neÞ qubits are available.
Moreover, resource estimation implies that the total computational time of our scheme starting from a good initial guess may
exhibit overall quantum advantage in molecule size and candidate number. The proposed scheme is corroborated using numerical
simulations. Additionally, a scheme adapted to variational calculations is examined that prioritizes saving circuit depths for noisy
intermediate-scale quantum (NISQ) devices. A classical system composed only of charged particles is considered as a special case of
the scheme. The new efficient scheme will assist in achieving scalability in practical quantum chemistry on quantum computers.
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INTRODUCTION
Modern computational designs for materials1, proteins2, and drug
discovery3 often include atomistic simulations instead of coarse-
grained models for distinguishing microscopic subtleties.
Electronic-structure calculations based on the density functional
theory4,5 or wave function theory6 must be performed to optimize
the geometries of solids and molecules in their ground states to
ensure that simulations are as quantitatively reliable as possible.
Although target systems with a diverse number of atoms and
elements are found in physics, chemistry, and biochemistry, there
are two main approaches for determining the optimal geometry
of a molecule using a classical computer: energy- and force-based.
The energy-based approach is based on the calculated total

energies of all the candidate geometries. The procedure in a naive
form typically begins by determining the discretization of the
positions for each nucleus and calculating the total energies of all
possible geometries. This approach leads to an exhaustive search
for the optimal geometry among all candidates and the search
can be easily parallelized for many classical computers. However,
the required computational resources grow exponentially with
respect to the size of the target molecule. This extensive scaling
makes the naive energy-based approach impractical for systems
of practical interest.
The force-based approach is based on the forces acting on the

nuclei within the Born–Oppenheimer (BO) approximation. This
optimization procedure for a target molecule is performed by
calculating the total energy and forces acting on the constituent
nuclei. More precisely, the procedure typically calculates the
Hellmann–Feynman forces7. If necessary, the Pulay forces are
calculated to compensate for the incompleteness of the adopted
basis set8. These forces can be calculated using only a small
amount of additional computational resources for the total energy
calculation. The nuclear positions are iteratively updated until

convergence according to the forces. The steepest-descent and
conjugate-gradient methods are force-based approaches in the
simplest forms. However, the updating process used in these
methods is not parallelizable in principle. In addition, the search is
prone to becoming stuck in a local minimum on the energy
surface. Various elaborate force-based approaches have been
proposed to achieve the efficient and robust optimization of
molecular geometries. For details, refer to ref. 9.
While quantum computation has been regarded as a promising

alternative for storing many-electron wave functions living in a
huge Hilbert space10 since long before the advent of quantum
computers, we find that geometry optimization of electronic
systems is still going through the phase of establishing basic
techniques, on the contrary to classical computation. Hirai et al.11

proposed recently a method within the first-quantized formal-
ism12–14 by finding the lowest-energy geometry based on the
imaginary-time evolution (ITE) with variational parameters15–17 for
nonadiabatically coupled electrons and nuclei. Their approach,
which we refer to as the variational ITE (VITE) in what follows, is a
kind of variational quantum eigensolver (VQE)18,19. The major
difference between our approach described later and their
approach exists in how the qubits for nuclear degrees of freedom
are used: we use them to encode the nuclear positions as classical
data instead of their femtometer-scale wave functions so that we
perform an exhaustive search for the optimum among candidates
via quantum parallelism. We point out here that a quantum
algorithm for force-based geometry optimization has been
proposed20.
Since the prevalent paradigm of electronic-structure calcula-

tions on classical computers has been developed primarily for
computing the total energies of systems built up of electrons and
nuclei, we might overlook the important fact, that is, there is no
need for knowing the values of the total energies of candidate
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geometries to find the optimal one. We can find it only by
knowing which geometry has the unknown lowest energy. Given
this fact and the first-quantized eigensolver (FQE)21, this study
presents a quantum algorithm for efficient geometry optimization
that outperforms classical algorithms. FQE is a recently proposed
framework based on probabilistic ITE (PITE) for nonvariational
energy minimization in quantum chemistry21. For a brief review of
generic PITE, see Supplementary Note 1. The second-quantized
formalism is useful for calculating the dynamical properties related
to the excitation processes of a molecule, where the electron
number can increase and decrease22,23. However, the first-
quantized formalism for finding the ground state offers better
scaling of operation numbers21. This characteristic is inherited
even when geometry optimization is involved, as will be
demonstrated later.

RESULTS
Exhaustive search for optimal geometries
Let us consider a molecular system consisting of ne electrons as
quantum mechanical particles and nnucl nuclei as classical point
charges fixed at Rν(ν= 0,…, nnucl−1), as depicted in Fig. 1. These
two kinds of particles interact with each other via pairwise
interactions v dependent only on the distance between two
particles. The Hamiltonian is given by

H fRνgνð Þ ¼
Xne�1

ℓ¼0

p̂2ℓ
2me|fflfflfflffl{zfflfflfflffl}

�T̂

þ 1
2

Xne�1

ℓ;ℓ0¼0
ðℓ≠ℓ0 Þ

v ĵrℓ � r̂ℓ0 jð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�V̂ee

þ
Xne�1

ℓ¼0

Xnnucl�1

ν¼0

�Zνv ĵrℓ � Rνjð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�V̂en

þ 1
2

Xnnucl�1

ν;ν0¼0
ðν≠ν0 Þ

ZνZν0v jRν � Rν0 jð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�Enn

þ
Xne�1

ℓ¼0

vext r̂ℓð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�V̂ext

;

(1)

where the nuclear positions appear as parameters. T̂ is the kinetic-
energy operator of electrons having the mass me= 1. All the
quantities in this paper are in atomic units unless otherwise stated.
r̂ℓ and p̂ℓ are the position and momentum operators, respectively,
of the ℓth electron. Zν is the charge of the νth nucleus, while that

of an electron is−1. We can introduce a position-dependent
external field vext felt by each electron. Although we have adopted
the common interaction v for V̂ee; V̂en, and V̂nn for simplicity,
distinct interactions for them could be introduced with only small
modifications to the following discussion. Also, the formulations
for one- and two-dimensional spaces will be possible similar to the
three-dimensional case.
We encode the ne-electron wave function in real space by using

nqe qubits for each direction per electron, as usual in the first-
quantized formalism12–14,21,24,25, or equivalently the grid-based
formalism. We refer to the 3nenqe qubits collectively as the
electronic register. We generate uniform grid points in a cubic
simulation cell of size L to encode the normalized many-electron
spatial wave function ψ by using the register as

ψj i ¼ ΔVne=2
P

k0 ;¼ ;kne�1

ψðrðk0Þ; ¼ ; rðkne�1ÞÞ�

� k0j i3nqe � � � � � kne�1j i3nqe ;
(2)

where kℓ is the three integers specifying the position eigenvalue
(kℓxex+ kℓyey+ kℓzez)Δx for the ℓth electron. Δx≡ L/Nqe is the
spacing of Nqe � 2nqe grid points for each direction. We
introduced the volume element ΔV≡ Δx3 for the normalization
of ψj i:
We construct a composite system consisting of the electrons

and nuclei and define an appropriate Hamiltonian, for which we
perform energy minimization based on PITE to find the optimal
combination fΔRðoptÞ

ν gν of displacements from the original
positions fRν0gν: To this end, we first decide upon the largest
possible displacement ΔRνμmax ðμ ¼ x; y; zÞ in each direction μ for
each nucleus ν. We introduce nqn qubits for encoding the
displacement in each direction for each nucleus. Specifically, we
define the x position operator R̂νx of the νth nucleus such that
each of the computational basis jνxj inqn ðjνx ¼ 0; ¼ ; 2nqn � 1Þ is
the eigenstate as follows:

R̂νx jνxj inqn � Rν0x þ jνx
ΔRνxmax

Nqn

� �
jνxj inqn ; (3)

where Nqn � 2nqn : The operators R̂νy and R̂νz for the y and z
positions, respectively, are defined similarly. We refer to the
3nnuclnqn qubits for the nuclear positions as the nuclear register.
There exists one-to-one correspondence between the N3nnucl

qn
computational basis vectors and the possible molecular geome-
tries. It is noted that nqn is a parameter that determines the
resolution of the search for the optimal geometry and has no
direct relation to the physical properties of the nuclei. Also, we
emphasize here that we have introduced the nuclear register and
the operators fR̂νgν not for encoding quantum states of nuclei,
but for encoding the data for the nuclei as distinguishable classical
particles. Having defined the nuclear position operators, we
rewrite the Hamiltonian in Eq. (1) by replacing the nuclear
positions as c-numbers with the corresponding operators:
Hð Rνf gνÞ ! Hð R̂ν

� �
ν
Þ; leading to the new Hamiltonian for

the (3nenqe+ 3nnuclnqn)-qubit system. Enn has become an
operator V̂nn.
The preparation of an initial state consists of Uguess and Uref

gates. Uguess generates the superposition of Ncand possible
geometries having nonzero desired weights, as in Fig. 2a. Uref is
designed to generate the desired reference electronic state for the
indistinguishable electrons26,27 in the specified geometry, as in
Fig. 2b. Possible implementation of the initial-state preparation
that expedites the convergence of subsequent energy minimiza-
tion is outlined in Supplementary Note 2. By using these two
gates, we construct the circuit Copt for the entire optimization
procedure within FQE, as shown in Fig. 2c. For details, see
Supplementary Note 2. The state of the composite system

Fig. 1 Setup of a geometry optimization problem considered in
this paper. We treat the ne electrons contained in a target molecule
as quantum mechanical particles having the kinetic energies T̂ ,
while the nnucl nuclei as fixed classical point charges. The
Hamiltonian of the total system involves the electron–electron
interactions V̂ee, the electron–nucleus interactions V̂en, and the
nucleus–nucleus interactions Enn. The electrons can feel an external
field V̂ext.
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undergoing this circuit is written in the form

Ψj i ¼
X
J

ffiffiffiffiffiffi
wJ

p
ψ½J�j i � Jj i3nnuclnqn ; (4)

where J is the collective notation of 3nnuclnqn integers specifying
one of the candidate geometries. ψ½J�j i is the normalized trial
electronic state for the geometry J, whose weight is wJ. When we
perform a measurement on the nuclear register comprising Ψsj i of
the form in Eq. (4) immediately after the sth step, the probability
for observing the molecular geometry corresponding to a specific
J is clearly wsJ, which is the weight of geometry contained in Ψsj i:
The composite state having undergone sufficiently many PITE
steps will thus provide the lowest-energy geometry with the
highest probability:

JðoptÞ ¼ argmax
J

wnstepsJ; (5)

from which the optimal displacements fΔRðoptÞ
ν gν are calculated

from Eq. (3). In practice, J(opt) can be found by drawing a
histogram of observed values of J from repeated measurements.
Our scheme is also applicable to a geometry optimization problem
for point charges as a classical system (see Supplementary Note 2).
Let us consider a plausible case of Ncand candidate geometries

for which good reference states are available from sophisticated
classical calculations. As considered in Supplementary Note 2, the
energy shift technique by Nishi et al.28 leads to the required
number of steps for obtaining the optimal state with a tolerance δ
estimated to be

nstepsðδÞ ¼ O 1
ΔEcandΔτ

log
Ncand

δ

� �
; (6)

where ΔEcand is the energy difference between the optimal and
second optimal geometries. Δτ is the amount of each imaginary-
time step. For a practical PITE circuit, an upper bound on Δτ needs
to be respected in order for the Taylor expansion of the ITE
operator to be justified (see Supplementary Note 1).

In the actual optimization procedure for a given molecule, we
will be confronted with a dilemma: while a more accurate
prediction of the optimal geometry requires finer discretization of
nuclear displacements, such discretization inevitably leads to
smaller energy differences between “neighboring” candidate
geometries, which are more difficult to detect via the finite
number of PITE steps. The histogram of observed geometries will
thus exhibit a shape formed by multiple maxima, each of which
has a finite width around it and corresponds to possibly one of the
local minima on the energy surface of the molecule. If we want to
predict one of the local-minima geometries more accurately, we
should start newly an optimization procedure by restricting the
nuclear displacements within the vicinity of the local minimum,
only for which the nuclear register is spent.
Kassal et al.14 demonstrated that nonadiabatic treatment of

nuclei as quantum mechanical particles in a molecule as well as
the electrons, is computationally much more efficient for a
chemical-reaction simulation than the BO approximation, except
for the smallest molecules. On the other hand, one finds that the
classical treatment of nuclei in our approach for geometry
optimization is more efficient than the nonadiabatic treatment
for the following reasons. If we used the 3nnuclnqn qubits for the
nuclei as quantum mechanical particles to encode their wave
function, the grid spacing in the simulation cell has to be on the
order of femtometer (fm) to detect the finite width of the wave
function of each nucleus. The grid spacing Δx for the electronic
wave function has also to be on the same order for a reliable
simulation, while that may be on the order of Å in our original
approach. The required number nqn of qubits for the nonadiabatic
treatment is thus larger than that for the classical treatment
roughly by log2 (Å/fm) ≈ 16.6, which is also the case for
nqe. Furthermore, we will then give up the superposition of
candidate geometries since the nuclear register has already been
reserved for the many-nucleus wave function. Therefore we have
to perform the energy minimization starting from some single
initial geometry. These considerations indicate that the classical

Fig. 2 Relevant partial circuits and entire procedure. a Initial-guess gate Uguess for assigning the weight w0J to each molecular geometry
specified by J. b Reference state gate Uref for generating the reference electronic state ψref ½J�j i for the geometry specified by J. c Circuit Copt for
the entire optimization procedure within FQE. It contains nsteps PITE steps for energy minimization governed by the Hamiltonian H of the
system made up of the electrons and the nuclei. The ancilla qubit is for observing the success or failure state at each PITE step.

Fig. 3 RTE operator e�iHΔt for a time step Δt required in the CPITE circuit is decomposed into the kinetic part and the position-dependent
part via the first-order Suzuki–Trotter. The latter is shown in the left part of this figure, which is further decomposed into the evolution
operators generated by V̂ee; V̂en; V̂nn; and V̂ext separately, as shown in the right part. The scaling of depths with respect to the numbers of
electrons and nuclei is also shown.
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treatment of nuclei is practically more favorable than the
nonadiabatic one unless the result of the optimization is affected
qualitatively by the nonadiabatic treatment.

Circuit depths
The PITE circuit CPITE consists mainly of controlled real-time
evolution (RTE) operators.21 We implement the RTE operator
e�iHΔt for a time step Δt by employing the first-order
Suzuki–Trotter as usual to decompose it approximately into the
kinetic part e�iT̂Δt and the position-dependent part exp½�iðV̂ee þ
V̂en þ V̂nn þ V̂extÞΔt�: While the former can be implemented using
the quantum Fourier transform (QFT)-based techniques21,29,30 as
in the electrons-only cases, the latter is further decomposed
exactly into the four parts, as shown in Fig. 3. The evolution
e�iV̂κΔt ðκ ¼ ee; en; nnÞ is implemented by applying the pairwise
phase gate Uκ(Δt) that acts diagonally as

UκðΔtÞ sj i � s0j ið Þ ¼ e�ivðs;s0ÞΔt sj i � s0j ið Þ (7)

to every pair of interacting particles. sj i and s0j i are the position
eigenstates of the particles with the interaction energy vðs; s0Þ: On
the other hand, e�iV̂extΔt is implemented by applying the phase
gate Uext(Δt) that acts diagonally as UκðΔtÞ kj i3nqe ¼
expð�ivextðrðkÞÞΔtÞ kj i3nqe to each electron. The details of their
implementation and the scaling of circuit depths with respect to
the particle numbers are explained in Supplementary Note 3. It is
clear from Fig. 3 that the partial circuits for e�iV̂eeΔt and e�iV̂nnΔt are
deeper than those for e�iV̂enΔt and e�iV̂extΔt from the viewpoint of
scaling with respect to ne and nnucl.
While we will be focusing on the first-order Suzuki–Trotter with

the fixed Δt below, it is possible instead to employ a generic pth-
order product formula with controlling the error ε originating from
the noncommutativity between the kinetic and position-
dependent parts of the Hamiltonian. Specifically, the depth per
PITE step takes on a factor of Oðeα1=pcommΔt

1þ1=p=ε1=pÞ; where eαcomm
is a function of L and Δx31.
Although our PITE circuit does not assume specific implementa-

tion of the pairwise phase gates comprising e�iV̂eeΔt; e�iV̂enΔt; and
e�iV̂nnΔt; we propose here a plausible alternative by exploiting the
fact that the pairwise interaction v is common to these three types
of evolution and depends only on the distance between particles.
By dividing the task we have to go into the computation of
distances between the particles and that of the phases for
evolution, we find the systematic construction of the circuits, as
explained in Supplementary Note 3. Figure 4 shows the circuit that
implements the pairwise e–e phase gate Uee(Δt), defined in Eq.
(15) in Supplementary Note 3 as a building block of e�iV̂eeΔt

operation. The pairwise phase gates UðνÞ
en ðΔtÞ and Uðν;ν0Þ

nn ðΔtÞ as
building blocks of e�iV̂enΔt and e�iV̂nnΔt , respectively, can also be

implemented similarly. For example, the circuit for computing the
distance can be implemented efficiently by combining the
addition32–34, multiplication35–37, and square root38.
If we approximate the functional shape of the interaction v as a

simple or a piecewisely defined polynomial, the interaction phase
gates Uint,κ(Δt)(κ= ee, en, nn), defined in Eq. (26) in Supplementary
Note 3, can be implemented with polynomial depths30,39 in the
numbers nðdÞκ of qubits for the distance registers. (See also
Supplementary Note 4.) Although nðdÞκ can be set independently of
nqe and nqn, it is suitable to set them such that the resolutions
induced by the former are on the same order as by the latter:
nðdÞee ¼ OðnqeÞ; nðdÞen ¼ Oðmaxðnqe; nqnÞÞ; and nðdÞnn ¼ OðnqnÞ: These
considerations tell us that the pairwise phase gates
UeeðΔtÞ;UðνÞ

en ðΔtÞ; and Uðν;ν0Þ
nn ðΔtÞ can be implemented with

polynomial depths in nqe and nqn.
As discussed in ref. 21, the number of qubits for the electronic wave

function with a resolution Δx typically scales as nqe ¼
Oðlogðn1=3e =ΔxÞÞ: On the other hand, that for the nuclear displace-
ments scales as nqn ¼ OðlogðΔRmax=ΔRÞÞ for typical values of a
resolution ΔR and the maximal displacement ΔRmax: Recalling the fact
that ne is much larger than nnucl despite their common scaling for a
generic molecule, we find that e�iV̂eeΔt dominates the scaling of circuit
depth of the entire position-dependent evolution when ΔRmax and ΔR
are fixed. In fact, the e�iV̂nnΔt circuit does not contribute to the total
depth since it and e�iV̂eeΔt , which is much deeper than it, can be
performed in parallel, as seen in Fig. 3. The scaling coming from the
electron–electron interactions, given by Eq. (31) in Supplementary
Note 3, is dominant even in the entire RTE circuit:

depthðe�iHΔtÞ ¼ O n2epoly log
n1=3e

Δx

 ! !
: (8)

For details, see Supplementary Note 3. Since the single PITE step
contains the controlled RTE operations, its depth exhibits the
same scaling: depthðCPITEÞ ¼ Oðdepthðe�iHΔtÞÞ:
If the same number 3nenqe of extra qubits as in the electronic

register are available, the scaling of depth for e�iV̂eeΔt can be reduced.
Specifically, n2e on the RHS in Eq. (31) in Supplementary Note 3
becomes ne via the technique described therein (see also ref. 24). The
scaling of depth for e�iV̂nnΔt can be reduced similarly if the same
number of qubits as in the nuclear register are available. With these
techniques, the depth of the entire RTE circuit is

depthðe�iHΔtÞ ¼ O nepoly log
n1=3e

Δx

 ! !
; (9)

instead of Eq. (8). It is noted that, if the number of available extra
qubits is Oðn2enqeÞ, the technique proposed in ref. 24 leads to a
more drastic reduction of the depth: n2e on the RHS in Eq. (31) in
Supplementary Note 3 becomes 1.
Let us estimate the computational cost for finding the optimal

geometry for the case considered above [see Eq. (6)], where the
good reference states are available for the Ncand candidates. From
the required number of steps for a tolerance δ and the depth for
the single step [see Eq. (9)], the total depth scales as

depthðCPITEÞnstepsðδÞ ¼ O nepolyðlog neÞ logNcand

δ

� �
(10)

with respect to ne, Ncand, and δ. The RHS of this equation imposes
a lower bound on the coherence time of hardware being used.
Since the expected number nmeas(δ) of measurements performed
until we reach the optimal state (see Supplementary Note 2) is
larger than nsteps(δ) due to the probabilistic nature, the scaling of
computational time apart from Uref is estimated to be

depthðCPITEÞnmeasðδÞ ¼ O nepolyðlog neÞNcand log
Ncand
δ

� 	
: (11)

As for energy-based geometry optimization on a classical
computer, Ncand total-energy calculations are needed and each

Fig. 4 Circuit that implements the pairwise e–e phase gate Uee(Δt)
as a building block of e�i ̂VeeΔt operation. UðdÞ

ee defined in Eq. (23) in
Supplementary Note 3 computes the distance between two
electrons at r(k) and rðk0Þ, which is then stored into the distance
register consisting of nðdÞee qubits. The interaction phase gate
Uint,ee(Δt) defined in Eq. (26) in Supplementary Note 3 refers to
the distance register to generate the phase required for the
evolution coming from the electron pair. The inverse of UðdÞ

ee
performs uncomputation for disentangling the distance register
from the electronic register.
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of them involves the construction of Hamiltonian matrix of
dimension N3ne

qe : The classical-operation number for finding the
optimal geometry is thus at least OððN3ne

qe Þ2NcandÞ whether using
the good reference states or not. This should be compared with
the quantum scaling in Eq. (11). Specifically, the scaling in ne for
classical computational time is exponential, while that for
quantum computational time is at most polynomial. The scaling
in Ncand for classical computation is linear, while that for quantum
computation is OðNcand logNcandÞ: These observations imply that
our optimization scheme with a fixed number of candidates
exhibits quantum advantage in molecule size (ne and nnucl). When
the candidate number also varies independently of molecule size,
the quantum scaling is still at most polynomials. Since the
quantum scaling in Ncand is worse than the classical one only
logarithmically, it may not cause serious disadvantage that would
cancel the advantage in ne. In this sense, our scheme may offer
overall quantum advantage when molecule size and candidate
number vary, as long as we have an implementation of Uguess and
Uref that do not spoil this quantum scaling. Although the pursuit of
efficient preparation of reference states is a crucial and challen-
ging task not only for our optimization scheme but also for all the
first-quantized schemes, we do not go into further details than
Supplementary Note 2.
Quantum amplitude amplification (QAA)40,41, known as a

generalization of Grover’s search algorithm, can raise the success
probability at each PITE step42. This technique is also applicable
for multiple steps by delaying the measurements, as demon-
strated by Nishi et al.43 recently. If we introduce the QAA
technique to our optimization scheme, the total success
probability undergoes quadratic speedup, that is, it changes
from ~1/Ncand to � 1=

ffiffiffiffiffiffiffiffiffiffiffi
Ncand

p
: The scaling of computational time

in terms of the candidate number is then Oð ffiffiffiffiffiffiffiffiffiffiffi
Ncand

p
logNcandÞ

instead of Eq. (11). The optimization scheme for this case offers a
quantum advantage with respect to Ncand itself, in addition to ne.
It should be noted that for a case where all the possible

displacements of all the nuclei are candidates (Ncand ¼ N3nnucl
qn ) with

uniform initial weights, the quantum scaling of computational

time is exponential in nnucl as well as the classical scaling. This
comes from the exponential decrease in the initial weight of the
optimal geometry following the increase in the molecule size,
lowering the success probability at each step. A situation in which
such quantum computation is demanded is, however, actually
unlikely. It is because the uniform distribution of weights for the
N3nnucl
qn geometries means that we are completely ignorant of the

relative stability among them. The modern sophisticated techni-
ques for electronic-structure calculations and molecular dynamics
are, as assumed in our resource estimation, able to enumerate a
very small number (compared to N3nnucl

qn ) of promising candidates
by spending moderate classical resources. Implementation of
Uguess that assigns significant weights to those candidates will be a
practical strategy.

PITE simulation for a model LiH molecule
We consider here an effective model of a lithium hydride molecule
in one-dimensional space used in ref. 44. This model regards the 1s
electrons of the Li atom to be frozen so that the system consists of
the two valence electrons, the H ion with ZH= 1, and the Li ion
with ZLi= 1. The interactions between the particles are modeled

basically by the soft-Coulomb interaction vsoftðr; λÞ � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ r2

p
;

where r is the distance between two particles and the parameter λ
measures the softness of the interaction. This family of potentials
is often used for avoiding the singular behavior of the bare-
Coulomb potential45. The adopted values for the interactions are
as follows: vee(r)= vsoft(r; λee) between the electrons with λ2ee ¼ 0:6,
veH(r)= vsoft(r; λeH) between each electron and the H ion with
λ2eH ¼ 0:7, veLi(r)= vsoft(r; λeLi) between each electron and the Li ion
with λ2eLi ¼ 2:25, and vLiH(r)= vsoft(r; λLiH) between the ions with
λ2LiH � λ2eH þ λ2eLi � λ2ee ¼ 2:35: The potential felt by each electron
is thus ven(x)=−ZHveH(∣x−XH∣)−ZLiveLi(∣x−XLi∣), where XH and XLi
are the positions of the H and Li ions, respectively. The details of
the following simulations are described in Supplementary Note 6.

Fig. 5 Energy curves and electron density of the model LiH molecule. a Energy eigenvalues of the LiH model system as functions of the
bond length d obtained by numerical diagonalization. ϕgs



 �
; ϕex1j i; and ϕex2j i are the ground state, the first excited state, and the second

excited state, respectively. The horizontal dashed line indicates the dissociation limit, that is, the sum of total energies for the isolated H and Li
atoms. b Left panel shows the electron densities of the energy eigenstates for the equilibrium bond length deq. The vertical lines indicate the
positions of the ions. The potential ven felt by each electron due to the nuclei is also shown. The right panel is a similar plot for d= 4. The x
coordinates in the figures have been shifted so that the midpoint of the bond is at the origin.
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Figure 5a shows the energy eigenvalues of the molecule as
functions of the bond length d≡ ∣XLi−XH∣ obtained by numerical
diagonalization of the Hamiltonian matrix. By using nqe= 6 qubits
per electron for a simulation cell with L= 15, we obtained the
equilibrium bond length deq= 1.55, in reasonable agreement with
that in the earlier paper44. Figure 5b shows the electron densities
of the energy eigenstates obtained by numerical diagonalization
for d= deq, 4. For d= deq, the electrons are localized near the H
ion to exhibit the single-peak shape. For d= 4, on the other hand,
they are localized at each ion, indicative of dissociation. We found
for both bond lengths that the ground state ϕgs



 �
and the second

excited state ϕex2j i are symmetric under the exchange of the
spatial coordinates x0 and x1 of the two electrons, while the first
excited state ϕex1j i is antisymmetric under the exchange.
Recalling that our encoding of wave functions does not
incorporate explicitly the spin parts [see Eq. (2)], the ground state
and the second excited state are spin-singlet states, while the first
excited state is a spin-triplet state.
We performed simulations of geometry optimization among

eight candidates represented by nqn= 3 qubits. To be specific, we
tried the bond lengths dJ= 0.55+ 0.5J(J= 0,…, 7). The amount of
imaginary-time step does not need to be constant. For example,
we can define it for the kth PITE step as Δτk ¼ ð1� e�k=κÞðΔτmax �
ΔτminÞ þ Δτmin; so that it changes gradually from Δτmin to Δτmax: κ
determines the rate of change. We adopted Δτmin ¼ 0:2;Δτmax ¼
0:3; and κ= 8 for the following simulations.
To find the optimal bond length for the ground state, we

assigned a uniform weight distribution to the candidate
geometries, for which we generated the initial spatial wave
functions

Ψsðx0; x1Þ / exp �ðx0 � XmÞ2 þ ðx1 � XmÞ2
w2

 !
(12)

for the geometries. Xm≡ (XH+ XLi)/2 is the midpoint of the bond
and w= 3 is the width of the wave function. Since Ψs is symmetric
under exchange of the electrons, it is for obtaining a spin singlet
state. Figure 6a shows the weight wJ of each geometry J during
the steps contained in the state Ψj i for the composite system of

the electrons and nuclei. The weight wJ,gs of the ground state
ψgs



 �
for each geometry is also shown in the figure. It is seen that

the uniform distribution of weights in the initial state undergoes
deformation via the PITE steps. It has the peak around the
geometry for J= 2 already after the 9th step, corresponding to the
equilibrium bond length deq. This peak structure becomes more
prominent after the 19th step. These observations corroborate the
validity of our generic scheme.
Using the fact that the ground state and the first excited state

ψex1j i of this system have different symmetry, we can perform
geometry optimization for the first excited state. To this end, we
adopted the initial spatial wave functions

Ψaðx0; x1Þ / x0 � x1
w

Ψsðx0; x1Þ (13)

for the geometries. Since Ψa is antisymmetric under exchange of
the electrons, it is for obtaining a spin triplet state. The results are
shown in Fig. 6b. In contrast to the case of the ground state, the
resultant weight distribution does not have a peak between J= 0
and 7, which lets the observer recognize that there exists no
equilibrium bond length among the candidate geometries.
Although the non-optimal geometries in Fig. 6a were found to

have significant weights even after the 19th step, our scheme
worked thanks to the detectable peak in the histogram. This
means that a severe tolerance δ for quashing the near-optimal
geometries that would lead to more steps threatening the
coherence time [see Eq. (6)] is not necessary for this small system.
If it is also the case for a generic large molecule whose energy
surface possibly has many local minima, one practical strategy is
to continue to pile up data points on a histogram using a
moderate tolerance until the optimal and near-optimal geome-
tries become detectable via statistical data processing. How
practical compromise between the tolerance for PITE steps and
the number of data points for a histogram is met and quantum
advantage taking it into account should be examined in the
future.

Fig. 6 Simulation results of geometry optimization for the LiH molecule. a Those for eight candidates starting from the symmetric spatial
wave function in Eq. (12).
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VITE simulation for a model Hþ
2 molecule

Since the essence of our approach is the superposition of nuclear-
register states where the candidate geometries are encoded,
geometry optimization based on VITE instead of PITE is
straightforwardly formulated. To demonstrate that, we consider
here an effective model of a hydrogen molecular ion in a one-
dimensional space used in Ref. 46. The charge of each ion is ZH= 1.
Here, we also use the soft-Coulomb interaction to model the
interactions between the particles. We adopt the softness λ2eH ¼ 1
for the interaction veH(r) between the electron and each ion and
λ2HH ¼ 1 for vHH(r) between the ions. The potential felt by the
electron is thus ven(x)=−ZHveH(∣x−XHα∣)−ZHveH(∣x−XHβ∣), where
XHα and XHβ are the positions of the H ions.
The VITE approach is explained briefly in Supplementary Note 5.

Figure 7 shows our ansatz circuit for geometry optimization of the
Hþ
2 model system. We adopted the hardware-efficient connectiv-

ity47 for the circuit simulations48, which is desirable for noisy
intermediate-scale quantum (NISQ) devices due to shallow circuit
depths. In addition, the accuracy of the quantum computation
systematically improves by incrementing the repetition d of the
layer. Here, we use the full coupling model; CZ gates connect
every pair of qubits for entangling all qubits. We allocated
nqnucl= 3 qubits for encoding the nuclear positions and nqe= 6
qubits for encoding the single-electron wave function in a
simulation cell with L= 15. As demonstrated below, the VITE-
based scheme can, despite the absence of Uguess and Uref, find the
optimal geometry going through more than a thousand of steps,
while the PITE-based scheme finds the optimal one in much fewer
steps (see Supplementary Note 6). Such many steps are practically
possible since the circuit depth is related not to the number of
steps, but to the depth of the ansatz. This feature renders the VITE-
based scheme NISQ-friendly, in contrast to the PITE-based one.
The VITE calculation was performed for candidates whose bond

lengths were specified by dJ= 0.5+ (7.5/8)J (J= 0,…, 7). We
simulated the updating process of variational parameters with
d= 12 for 6000 VITE steps with Δτ= 0.01. All the initial values of
the variational parameters were set to random values. The
expected energy of the trial state Ψj i at each VITE step measured
from the numerically exact ground state energy is shown in Fig.
8a. We recognize the monotonic but slow decrease in the energy
difference. Figure 8b shows the weights wJ of candidate
geometries contained in the trial wave function at each VITE step.
The weight of the most stable geometry labeled by J= 2
monotonically increases and reaches close to unity at the final
step. The second most stable structure, J= 3, is amplified once in
the first 1500 steps and then turns to decrease. We draw the
electronic wave function component contained in the most stable

state, J= 2, in Fig. 8c. The ground state ϕgs



 �
for the geometry

J= 2 quickly increases, and the excited states decrease to zero
within 1000 steps. These results support our ideas of encoding
candidate geometries for optimization work and also for the
variational scheme. The convergence of nuclear states was rather
slow compared to that of the electronic states for the individual
geometries, as seen in Fig. 8b and c. This observation reflects the
generic fact that the continuous energy of classical nuclei leads to
a small energy difference between neighboring candidate
geometries, as discussed above.

PITE simulation for a classical C6H6–Ar system
As stated in Supplementary Note 2, our scheme is also applicable
to a geometry optimization problem for point charges as a
classical system. It is known that the improved Lennard-Jones
(ILJ)49,50 potentials describe the experimental data well for
hydrocarbon molecules interacting with rare-gas atoms. We adopt
here these model potentials to consider a classical system
consisting of a benzene molecule interacting weakly with an
argon atom49, as depicted in Fig. 9a. We perform simulations of
geometry optimization for this system by using our PITE scheme.

Fig. 8 Geometry optimization process for the Hþ
2 molecule.

a Expected energy of the trial state Ψj i at each VITE step measured
from the lowest energy eigenvalue of the molecule. b The weights
wJ of candidate geometries contained in the trial state at each step.
c The weight wJ=2,gs of the ground state ϕgs



 �
for the geometry J= 2

contained in the trial state at each step. Those of the first- and
second-excited states, wJ=2,ex1 and wJ=2,ex2, are also shown.

Fig. 7 Ansatz circuit for geometry optimization of the Hþ
2 model

system based on the VITE approach. The part inside the
parentheses is applied to the nuclear and electronic registers d
times. The purple boxes stand for single-qubit rotations whose
angles are specified by distinct variational parameters. The nuclear
register is measured at the end of the circuit to find the optimal
bond length.
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The C–C and C–H bond lengths are fixed at 1.39 and 1.09 Å51,
respectively, throughout the simulations. The explicit expressions
for the ILJ potentials are provided in Supplementary Note 6. Figure
9b shows the interaction energy between the C6H6 molecule and
the Ar atom on the xz plane as a function of the position of the Ar
atom. The interaction energy takes a minimum value at z= 3.57 Å
with x= y= 0Å49.
We performed simulations of geometry optimization among 64

candidates represented by nqn= 3 qubits for each of the x and z
coordinates of the Ar atom. Each of the candidates is specified by
two integers J= (Jx, Jz) with Jx, Jz= 0,…, 7, which generate the
coordinates xJ=−2.4+ 0.8JxÅ and zJ= 3.2+ 0.4JzÅ. We used a
constant amount Δτ= 0.004 meV−1 of each PITE step in the
following simulations.
In each simulation of the circuit shown in Supplementary Fig. 3,

we assigned a uniform weight distribution to the candidate
geometries for an initial state. Figure 9c shows the weight wJ of
each candidate during the steps contained in the state of the
nuclear register. It is seen that the uniform distribution of weights
in the initial state undergoes the deformation via the steps, as
expected. The largest weight is already seen after the 11th step at
J= (3, 1), which is closer to the true optimal geometry than any
other candidate is. This peak structure becomes more prominent
after the 19th step, as seen in the figure.

DISCUSSION
In summary, this study proposed a nonvariational scheme for
geometry optimization of a molecule within the framework of
FQE, where the electrons and nuclei are treated as quantum
mechanical particles and classical point charges, respectively. The
scheme encodes their information as a many-qubit state, for
which repeated measurements give the global minimum among
all the candidate geometries. We demonstrated that the total
computational time may exhibit an overall quantum advantage in
terms of molecule size and candidate number. The circuit depth of
RTE operation, which is the central component of each PITE step,
was found to scale as Oðn2epolyðlog neÞÞ for the electron number
ne. This can be reduced to Oðnepolyðlog neÞÞ if the same number
of extra qubits as in the original circuit are available. If Oðn2e log neÞ
extra qubits are available, the depth can be reduced to
Oðpolyðlog neÞÞ: The validity of the new scheme was verified

through numerical simulations. The scheme will assist in achieving
scalability in practical quantum chemistry on quantum computers.
Additionally, this approach will support the realization of
geometry optimization using NISQ devices.
There may be room for elaborating the sampling strategy for

candidate geometries for this scheme to be more efficient from a
practical perspective. That is, adaptively changing the range and
resolution of nuclear displacements under the constraint of a fixed
total number of measurements may more accurately determine
the optimal geometry, which could be examined in the future.
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