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All-photonic one-way quantum repeaters with measurement-
based error correction
Daoheng Niu1,2, Yuxuan Zhang 1,2,3, Alireza Shabani4 and Hassan Shapourian 1✉

Quantum repeater is the key technology enabler for long-distance quantum communication. To date, most of the existing quantum
repeater protocols are designed based on specific quantum codes or graph states. In this paper, we propose a general framework
for all-photonic one-way quantum repeaters based on the measurement-based error correction, which can be adapted to any
Calderbank–Shor–Steane code including the recently discovered quantum low-density parity check (QLDPC) codes. We present a
decoding scheme, where the error correction process is carried out at the destination based on the accumulated data from the
measurements made across the network. This procedure not only outperforms the conventional protocols with independent
repeaters but also simplifies the local quantum operations at repeaters. As an example, we numerically show that the [[48, 6, 8]]
generalized bicycle code (as a small but efficient QLDPC code) has an equally good performance while reducing the resources by at
least an order of magnitude.
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INTRODUCTION
Quantum network is one of the key quantum technologies and
plays a central role in enabling unconditionally secure commu-
nication, distributed quantum computing, and quantum sen-
sing1,2. Being an active area of research, the exact requirements
and applications of a large-scale quantum network remain to be
better understood. At the fundamental level, nevertheless, a
putative quantum network needs to provide a way for quantum
communication, i.e., transfer of quantum information, among
different network nodes where photons constitute the medium
of choice. Realizing a large-scale quantum network requires
transmitting quantum information over long distances, which is
challenging due to the photon loss, which grows exponentially
with distance. To circumvent this issue, quantum repeaters
have been proposed3, and there have been tremendous efforts
over the past decade4–18. The basic idea is to place a number of
repeater stations at intermediate distances and use quantum
correlations in multi-qubit entangled states to effectively
enhance the transmission rate between two distant nodes.
Quantum repeater protocols are generally divided into two

categories: The first category3,4 is based on the heralded
quantum entanglement distribution, where a pairwise entan-
glement between adjacent repeater nodes is established so
that a long-range entanglement between the end nodes can be
achieved via the entanglement swapping, i.e., performing Bell-
state measurement at each intermediate node. Quantum
information is then transferred via the quantum teleportation.
The success of a teleportation attempt relies on successfully
establishing entanglement links between neighboring nodes
and performing Bell measurements. Hence, a two-way classical
channel is required to communicate the success of both
processes to the adjacent nodes for every iteration. Two-way
communication limits the performance of these protocols and
may necessitate long-lived quantum memories at repeater
stations, although the latter requirement, in principle, can be
relaxed in all-photonic schemes10,11, provided that there is a

synchronization along the path. The second category of
repeater protocols12–17 involves sending encoded quantum
information in the form of multi-qubit loss-tolerant states,
which are received and (typically) error corrected at inter-
mediate repeater stations. Such protocols only involve one-way
communication and hence their performance is not impacted
by the two-way communication requirement in the first
category. Therefore, the one-way protocols are far more
efficient than the two-way protocols when it comes to network
throughput and handling multi-user traffic in a large-scale
quantum network.
In this paper, we introduce an all-photonic architecture for

one-way quantum repeaters based on stabilizer codes realized
by graph states of photons, where the photon loss is treated as
a qubit erasure error and corrected through a measurement-
based error correction scheme. Our proposed architecture
provides a general formalism that can be adapted to any
Calderbank–Shor–Steane (CSS) stabilizer code. In particular,
one can leverage the remarkable properties (including large
code distance) of the recently developed quantum low-density
parity check (QLDPC) codes19,20 in this formalism. We should
contrast our repeater protocol with previous code-specific
protocols such as those based on the quantum parity code
(QPC)11–16, where a teleportation-based error correction is
performed to deal with erasure and possible operational errors,
or other protocols based on tree graph states17,18,21, which can
be viewed as teleportation path multiplexers. Our repeater
architecture in short involves encoding logical qubits in a
graph state of photons corresponding to a CSS code and
performing logical Bell-state measurements at each repeater.
The classical information obtained from measurement out-
comes (which also contains loss events) is not processed until
received by the recipient party who performs the error
correction22,23 across the quantum network based on the
accumulated data (Fig. 1). This feature is fundamentally
different from conventional methods, where the error
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correction is performed at every repeater node, and offers
several advantages. First, the overall performance is improved
over doing error correction at each repeater (the intuitive
reason behind this fact is that loss events can be corrected not
only at the repeater node where the loss was observed but also
through other stabilizers at neighboring repeater nodes).
Second, since there is no decoding at each repeater, there is
no need for matter qubits and adaptive measurements. Third,
for the same reason, the quantum gates and measurements
within each repeater is independent of the choice of the
stabilizer code. The latter two properties are in stark contrast
with the previous studies where both the quantum and
classical hardware as well as the error correction software
were designed for specific encoding schemes such as the
QPC12,13 or tree graph state17. This flexibility of our protocol
would lead to a long-term advantage as the hardware
technology is improved and a new generation of quantum
codes will be available.
As we explain, the error correction in our architecture is

effectively carried out on a one-dimensional cluster state
concatenated by the CSS code as depicted in Fig. 1c. We derive
the condition for a successful transmission of the logical states
across the cluster state and provide a decoding algorithm. We
illustrate details of our framework using the [[7, 1, 3]] Steane
code24 and [[48, 6, 8]] generalized bicycle code19, and numerically

show that their performance is equal or better than existing
protocols while requiring fewer resources.

RESULTS
Quantum repeater protocol
In this section, we introduce our quantum repeater architec-
ture. We focus specifically on the theoretical idea and do not
go into hardware implementation details. As we explain, we
use a measurement-based quantum error correction protocol
so that the photon loss is treated as unheralded, and there is
no need for long-lived matter-based quantum memory. As
shown in Fig. 1, quantum information is encoded in a graph-
state realization of a quantum code, and repeaters are placed
along the channel to correct errors occurring during the
transmission through a lossy channel. Our protocol requires an
RSG and single-photon detectors per repeater, which has a
similar quantum hardware requirement compared to the best
existing quantum repeater proposals. Furthermore, no classical
data processing is required within the repeaters, and measure-
ment outcomes are transmitted via a classical channel to the
receiver.
We consider using single photons in the discrete-variable

formalism, such as time-bin encoding, which is generally not
sensitive to dephasing error and is suitable for long-distance
quantum communication25. The main source of error in our case is
photon loss, which is detected during the measurement process
and can be viewed as a quantum erasure channel where the error
location is known but the error type is not. Besides the physical
motivation, from theoretical standpoint, erasure error decoder is
general enough and can be tailored to correct arbitrary errors26.
According to our protocol, the sender encodes the quantum
information (logical qubits) in multi-photon graph states. There
are two kinds of qubits in these graph states: data and ancilla
qubits. Data qubits collectively encode the logical information,
while ancilla qubits are used to measure the quantum code
stabilizers. The size and shape of the graph are determined by the
deployed CSS quantum code as will be explained in “Measure-
ment-based error correction”.
The graph states are sent sequentially from node to node (a

node may be the sender, the receiver or a repeater station). At
each repeater station (Fig. 1b), upon receiving the incoming graph
state (from the sender or previous repeater station), two graph
states (associated with the X and Z stabilizer generators of the CSS
code) are prepared by an RSG and form a (logical) Bell pair by
applying a transversal controlled-phase gate. We note that this
transversal gate can be incorporated into the state generation in
the RSG. Next, a transversal controlled-phase gate is applied
between the received logical qubit and the local logical qubit
corresponding to X stabilizer; then, both qubits are sent to single-
photon detectors where the physical qubits are all measured in
X-basis. This step effectively teleports the input state to the
remaining (unmeasured) local logical qubit, which is transmitted
to the next repeater. The teleportation process may seem to be
reminiscent of the teleportation-based error correction
schemes27,28; however, the usage of CSS error-correcting codes
across the network results in a significantly greater loss tolerance.
The key idea is that our decoder uses all the classical information
obtained by measuring qubits across all repeaters as opposed to
breaking it down to two-qubit measurements per repeater. In
other words, our measurement-based protocol leads to a loss-
tolerant channel by effectively realizing a linear cluster state of
logical qubits between the sender and receiver as shown in
Fig. 1c.
Our protocol corrects loss errors in the transmission via the

optical fiber as well as during the state generation process. In
terms of their loss probability, there are two groups of photonic

Fig. 1 All-photonic quantum repeater architecture. a Repeater
chain, where R1, R2,⋯ are the repeater nodes placed between Alice
(sender) and Bob (receiver). Curved lines represent the quantum
channel (optical fiber). b Inside a repeater station, where
measurement-based error correction occurs. Two graph states
associated with the X (yellow) and Z (red) stabilizers are generated
at RSG with a transversal controlled-phase gate applied to them. The
incoming logical qubit undergoes another controlled-phase gate
with the graph state corresponding to the X stabilizer. Measurement
outcomes are relayed to the classical channel. Here, the [[7, 1, 3]]
Steane code is used for illustration purposes, where missing qubits
are shown in light colors encircled with dashed lines (see Fig. 2 for
further information on graph-state representation). c Syndrome
graph for the error correction is realized at Bob’s location and
effectively forms a linear cluster state concatenated by the CSS
stabilizer code (a.k.a. foliated quantum code23).
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qubits: those qubits that travel between the successive repeaters
and others that are generated and measured within a repeater.
For instance, all ancilla qubits belong to the latter group. The
former qubits are subject to the erasure channel with an overall
transmission probability,

ηðLÞ ¼ ηr10
�α0

10L; (1)

where α0 is the signal attenuation rate per unit length in the
optical fiber (which we set to be 0.2 dB/km and may report as
e�L=Latt with the attenuation length of Latt ¼ 10=ðα0 lnð10ÞÞ � 22
km), L is the travel distance, and ηr denotes the repeater efficiency
(or transmittance) which collectively includes photon-source/
detector efficiency, on-chip loss, and in/out coupling losses.
Although the main contributing factor to the repeater efficiency
depends on the details of the generation/detection scheme, it is
usually the case that in/out coupling at the chip-fiber interface is
the dominant factor. For this reason, we assume that the
transmission efficiency of the latter group of qubits (i.e., internal
qubits) is given by

ffiffiffiffi
ηr

p
.

Measurement-based error correction
As mentioned, we use graph states to implement an all-photonic
quantum code. A graph state (see ref. 29 for a detailed review)
associated with graph G of N vertices (i.e., qubits) is defined as a
quantum state of N qubits ΨGj i ¼ Q

ði;jÞ2GCZi;j þj i�N; where
subscripts are qubit labels i, j= 1,⋯, N, qubit state þj i denotes
the eigenstate of X Pauli operator, and CZi,j is a controlled-phase
gate between qubits i and j for every edge (i, j) on graph G. An
important property of graph states is that they can be
characterized as stabilizer states with N stabilizer generators,
where the ith stabilizer generator associated with the ith vertex on
G is defined by Pi= Xi⊗ (i, j)∈GZj. In other words, the ith stabilizer is
a product of the X Pauli operator on ith vertex and Z Pauli
operators on the adjacent (in the sense of graph) vertices. We
should note that a graph state is a stabilizer state (as opposed to a
stabilizer code), since there are N stabilizers which determine a
unique state for N qubits.
A quantum code of distance d, denoted by [[n, k, d]], encodes

k logical qubits into n data qubits and is stabilized by n− k
Pauli operators (stabilizer generators or parity check opera-
tors). In the case of CSS codes, the stabilizer group is divided
into two subgroups where the stabilizer operators are products
of either only X or Z Pauli operators. The stabilizer group
associated with X or Z operators can conveniently be
represented by a bipartite graph (called Tanner graph) as
shown for example in Fig. 2a for the [[7, 1, 3]] Steane code. A
straightforward implementation of a CSS quantum code in an
all-photonic scheme is as follows: Construct the Tanner graph
associated with Z stabilizers as a graph state where parity
check operators as well as data qubits are represented as
vertices, which we call ancilla and data qubits, respectively. By
definition, measuring the ancilla qubits in X basis then fixes the
value of Z parity checks (see, e.g., Fig. 2b for the 7-qubit code).
Similarly, one can prepare a graph state (in Hadamard basis) in
terms of the Tanner graph of X operators and fix the X parity
checks by measuring the ancilla qubits.
As mentioned in the previous part, we prepare two graph states

associated with Z and X check operators in each repeater and the
receiver and apply controlled-phase gates to data qubits. This
effectively realizes a linear cluster state of logical qubits (Fig. 1c),
where we run our error correction scheme to ensure that the input
state from Alice is transmitted to Bob. In the remainder of this
part, we explain the emergent stabilizer operators of the linear
cluster state and discuss our decoding algorithm. We denote the
stabilizer groups and the logical operators of the underlying CSS
quantum code by Sσ ¼ fSσ;1; Sσ;2; � � � ; Sσ;ðn�kÞ=2g and

Lσ ¼ f~σ1; � � � ; ~σkg, respectively, where σ= X, Z and tilde is added
to distinguish the logical Pauli operators from the operators acting
on the physical qubits.
Having N− 1 repeater stations between Alice and Bob implies a

(2N+ 1)-site cluster state where graph states in odd (even) layers
are used for Z (X) stabilizer measurements (Fig. 1c). Each graph
state consists of (3n− k)/2 qubits where there are n data qubits
and (n− k)/2 ancilla qubits (Fig. 2c). We use superscripts to denote
the site number and reserve subscripts to label data/ancilla qubits.
For instance, XðlÞ

q with q= 1,⋯, n and XðlÞ
a;i with i= 1,⋯, (n− k)/2

refer to X Pauli operators on data qubit q and ancilla qubit i on site
l, respectively. Following this notation, we write the on-site graph-
state stabilizers as

GðlÞ
a;i ¼ XðlÞ

a;i �
q2S

σðlÞ ;i
ZðlÞ
q ; (2)

and inter-site graph-state stabilizers23 as

GðlÞ
q ¼ XðlÞ

q Zðl�1Þ
q Zðlþ1Þ

q �
i s:t: q2S

σðlÞ ;i
ZðlÞ
a;i; (3)

where σ(2j)= X and σ(2j+1)= Z. This gives overall (2N+ 1)(3n− k)/2
stabilizer generators. We are measuring all physical qubits in

Fig. 2 Graph-state construction of CSS codes. a Tanner graph of
the parity-check matrix HX (or HZ) and b the corresponding graph
state for the [[7, 1, 3]] Steane code. Circles with integer labels denote
the data qubits and squares with labels S1,2,3 denote the ancilla
qubits to measure stabilizers. c Part of the graph state is associated
with the three consecutive sites on the 1D cluster state (Fig. 1c).
Ancilla qubits for two different sets of stabilizers are shown as red
and yellow for Z and X stabilizers, respectively. In (b) and (c), we use
graph-state representation where solid lines represent controlled-
phase gates. Dotted lines in (c) show an example of an inter-site
stabilizer operator23.
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X-basis, whereby the reduced stabilizer group can be constructed
by combining data qubit stabilizers of a given site with the ancilla
qubit stabilizers of its neighbors as shown by the dashed line in

Fig. 2c, PðlÞi ¼ Gðl�1Þ
a;i Gðlþ1Þ

a;i �q2S
σðlþ1Þ ;i

GðlÞ
q , which is further simplified

into

PðlÞi ¼ Xðl�1Þ
a;i Xðlþ1Þ

a;i �
q2S

σ
ðlÞ

;i

XðlÞ
q ; (4)

where we adopt the notation σðlÞ ¼ HσðlÞH to denote the Pauli
operators after the Hadamard transformation (e.g., X ¼ Z and
Z ¼ X). The above simplification is due to the fact that SX
stabilizers commute with SZ stabilizers; hence, ancilla qubits
associated with σ stabilizers appear even number of times and

cancel out. We should note that there is no Xðl�1Þ
a;i (Xðlþ1Þ

a;i ) in the
above formula at the left (right) boundaries of the cluster state (c.f.
Fig. 1c). There are (2N+ 1)(n− k) stabilizer generators associated
with (n− k) ancilla qubits per site. Hence, the logical subspace
contains (2N+ 1)k logical qubits consistent with (2N+ 1)-site
linear cluster state of k logical qubits.
Our goal is to transfer logical qubits across the linear cluster

state. To this end, the necessary logical operators to realize the
measurement-based identity gate for ith logical qubit are given by

PZi ¼
N2N

l¼2k

~X
ðlÞ
i ¼ N2N

l¼2k

N
q2~Xi

XðlÞ
q ;

PXi ¼
N2N

l¼2k�1

~X
ðlÞ
i ¼ N2N

l¼2k�1

N
q2~Xi

XðlÞ
q ;

(5)

which are the logical qubit versions of the identity gate in
measurement-based quantum computation30.
As mentioned earlier, loss in our protocol is detected during the

measurement process and is viewed as a quantum erasure
channel. When it comes to applying controlled-phase gates, if a
qubit is lost at an earlier point, then the gate will not be active.
Mathematically, loss error corresponds to partial tracing over the
missing qubits. For instance, a loss (or erasure) channel for qubit a
is described by the following quantum channel,

DaðρÞ ¼ ηaρþ ð1� ηaÞtraðρÞ � ej i eh j; (6)

where ηa is the qubit transmission, ej i denotes an unknown
state outside the computational basis for qubit a, which in our
case corresponds to an empty (vacuum) state with no photon in
either bins. Alternatively, partial tracing is identical to con-
jugating with the Pauli group, because traðρÞ � 1a ¼ 1

2 ðρþ
XaρXa þ YaρYa þZaρZaÞ. Hence, after a loss event, only logical
and stabilizer operators that commute with the Pauli operators
of the erased qubits remain valid. The loss tolerance is achieved
in the following way: As long as the Pauli operators acting on
the erased qubits commute with the logical operators (5)
modulo the stabilizer group (4), a successful transfer is
guaranteed.
Lastly, we propose a simple decoding algorithm to determine

the successful transmission of the input quantum states. First, we
note that the stabilizer group (4) and the logical operators (5) form
two disjoint sets associated with even and odd sites (a.k.a., primal
and dual syndrome graphs), which can be decoded indepen-
dently. Then, for each set of stabilizers and logical operators the
decoder checks whether or not logical operators can be combined
with the stabilizer group such that they commute with Pauli
operators acting on erased qubits. The details are shown as
pseudo codes in Algorithm 1.

Algorithm 1. Erasure decoder

Performance and resource costs
In this section, we investigate the performance of our proposed
repeater architecture in terms of the effective transmission rate
(ETR), denoted by ηeff, which is defined by the success probability
of receiving the quantum information at the destination.
Obviously, ETR has to outperform the direct transmission of single
photons; however, placing too many repeaters at short distances
from one another is expensive and not a scalable solution. Along
this line, we discuss the trade-off between the number of
repeaters and the ETR. We emphasize that our protocol can be
developed for any CSS code. Intuitively, we look for [[n, k, d]] codes
with large code distance d, but we do not want to introduce too
much overhead, i.e., we want the number of transmitted photons
per logical qubits, k/n, to be small. Lifted product QLDPC
codes19,20 with an almost linear distance k, d ~Θ(n) could be a
good candidate. However, we want practical solutions (at least for
near-term implementations) where the size of on-site graph states
in the 1D cluster state (c.f., Fig. 1c), that is (3n− k)/2, is not too big.
Given the above heuristic considerations, in what follows, we

examine the performance of two example CSS codes: [[7, 1, 3]]
Steane code and [[48, 6, 8]] generalized bicycle code (more details
in Supplementary Note 1). The first example represents a minimal
quantum error-correcting code and could be a good candidate
(albeit with a limited performance) to consider for near-term
experimental realization of our protocol. The second example is a
representative quantum code with a decent code distance (which
implies better performance) and moderate number of physical
qubits. To investigate the performance of each implementation,
we carry out Monte Carlo simulations where a random instance of
erasure according to the loss probability for each type of qubits
(data and ancilla) is generated and we use Algorithm 1 to check if
the given instance is correctable or not. We run this process over
many iterations to accumulate statistics and evaluate the average
success probability ηeff (see “Monte Carlo simulation” for further
details).
We illustrate the loss tolerance of the two codes (without

repeaters) in Fig. 3, where for reference we also include the
performance of the graph-state implementation of 6 × 6 toric code
(i.e., [[72, 2, 6]]). This architecture corresponds to Fig. 1c with only
Alice and Bob and no repeaters, i.e., three-site cluster state. We
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consider two cases: one is when there is no loss other than the
channel attenuation ηr= 1 (shown as filled circles), and another
case is when ηr= 0.9 (shown as open circles). An immediate
observation is that the breakeven point for all encodings in the
former case is nearly 0.5; in other words, they outperform
the direct transmission up to 50% loss rate. The breakeven point
in the latter case is decreased as we consider repeater loss but
they still perform better than the direct transition over a wide
range of loss rates up to 0.4. We also observe that the
performance of the [[48, 6, 8]] code is close to or better than the
toric code while the number of transmitted qubits per logical
qubits is much less.
A simple way to characterize the overall performance of the

repeater protocol is to calculate the effective signal attenuation
αeff as a function of the repeater spacing. To this end, we fit the
ETR by an exponentially decaying function

ηeffðL0; LÞ / 10�
αeff ðL0Þ

10 L; (7)

where L0= L/N is the distance between two consecutive repeaters
out of total (N− 1) repeaters and plot them in Fig. 4 in which the
insets show some typical fits to the data. As expected, the
performance of the repeater protocol, regardless of the underlying
quantum code, degrades as we increase the repeater spacing. It is
worth noting that the effective attenuation of the [[7, 1, 3]] code
increases almost linearly with L0 as opposed to that of the
[[48, 6, 8]] code. This can be attributed to the large code distance
of the [[48, 6, 8]] code compared to the [[7, 1, 3]] code. Further-
more, the shaded regions in the plots are for reference and
indicate where the repeater scheme is no longer useful as it
underperforms the direct transmission, i.e., αeff > α0= 0.2 dB/km.
We observe that the onset repeater spacing to enter the
underperforming regime decreases with decreasing the repeater
efficiency ηr. Another important observation is that as long as
L0≲ 4 km the [[48, 6, 8]] code performs in an almost fully loss-
tolerant regime where αeff ≈ 0 despite the repeater photon loss of
up to 10%.
As mentioned before, repeater stations can be placed close to

each other to obtain a total ETR of almost unity. However, this is
not a practical approach for scalability and from the economic
standpoint. Therefore, we look for an optimization scheme to
maximize the repeater spacing while not sacrificing the ETR as
much. A natural choice for a cost function to be optimized is the
ratio of the amount of resources used to the overall performance.

More explicitly, we consider the ratio of the number of repeater
stations per unit length to the total ETR. More details are explained
in “Cost function”. For a given repeater efficiency ηr and total
distance L, the ETR associated with the optimal repeater spacing is
plotted in Fig. 5. We note that the discontinuities in the optimal
values are due to the discrete optimization over the number of
repeaters. As expected, the optimal number of repeaters per
10 km generally increases to compensate the decreasing ETR as
the total distance increases. We also observe that the greater the
repeater photon loss rate the closer the repeater nodes and the
lower the ETR.
A few remarks are in order regarding the performance of our

protocol compared to that of the existing one-way protocols and
pioneering work of all-photonic two-way protocol10. As summar-
ized in Table 1, the [[48, 6, 8]] code delivers a similar value for ETR
at 103–104 km total communication distance while the repeater
spacing (in units of the attenuation length Latt) is equal or greater.
Furthermore, our repeater protocol is more efficient as there is less
constraint on minimum repeater efficiency ηr and most impor-
tantly, an order of magnitude smaller number of photons per
logical qubit n/k than other protocols. We believe that the
performance can even be improved further by utilizing more
efficient QLDPC codes or larger codes with larger n while keeping
n/k fixed. Compared to the two-way all-photonic protocol10, our

Fig. 3 Comparison of logical erasure probability of some
representative CSS codes. Loss tolerance of the [[7, 1, 3]] Steane
code, [[48, 6, 8]] generalized bicycle code and 6 × 6 toric code (as a
reference) are plotted for two different repeater efficiencies ηr= 0.9
and 1 which are shown as open and filled circles, respectively. The
case of ηr= 1 for the [[7, 1, 3]] code is analytically derived, as given in
Eq. (8). Each data point is averaged over Ns= 2 × 106 Monte Carlo
iterations, and the error bars are given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηeffð1� ηeffÞ=Ns

p
.

Fig. 4 Effective signal attenuation rate as a function of repeater
spacing. Using Eq. (7) the effective decay rate αeff is obtained by
fitting the data (see the insets for typical fits) and plotted against the
distance between two neighboring quantum repeaters L0 for
a [[7, 1, 3]] and b [[48, 6, 8]] codes at different repeater efficiencies
ηr= 0.95, 0.9, and 0.85. Error bars are not shown as they are
comparable with the data marker size. The inset in (a) shows the
effective transmission rate as a function of total distance L for
(L0, ηr)= (6.13 km, 0.95) (blue) and (11.41 km, 0.9) (orange). The inset
in (b) shows similar curves for (7.0 km, 0.95) (blue), (7.42 km, 0.9)
(orange), and (9.41 km, 0.85) (green). Each data point is averaged
over Ns= 5 × 105 Monte Carlo iterations.
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protocol has better or equal performance at similar total distances
while saving three orders of magnitude of photon count per
logical qubit at each repeater. In addition, in contrast to our one-
way protocol, the two-way all-photonic protocol10 requires
synchronization such that the quantum signals must arrive at
repeaters at the same time to perform Bell-state measurements
(this will readily get complicated if there are multiple parties in the
network and/or repeaters are not symmetrically spaced).

DISCUSSION
In conclusion, we proposed a general all-photonic one-way
architecture for quantum repeaters, which can be applied to any
CSS code. We presented an error correction scheme based on

measurement-based error correction, where one needs to only
make projective measurements in a fixed basis at each repeater
without further processing the outcomes, and the decoding
process is performed at the destination. An immediate benefit of
such error correction scheme is simplifying typical error-correcting
tasks involving feedforward processes in repeater nodes into
some fixed operations such as controlled-phase gates and
projective measurements in a fixed basis. Moreover, error
correction across the network has a better performance than
the common approach where repeaters correct errors indepen-
dently, because a local error can still be corrected along the
repeater chain. We study the performance of our architecture by
using [[7, 1, 3]] Steane code and [[48, 6, 8]] generalized bicycle
code. As we showed, the ETR at thousands of kilometers total

Fig. 5 Performance of optimized repeater architectures. a, b Effective transmission rate ηeff of a repeater chain based on [[7, 1, 3]] and
[[48, 6, 8]] codes after resource optimization (see main text for details) are plotted for different values of the repeater efficiency ηr. Inset of
panel (a) shows the long distance behavior of ηeff vs L in logarithmic scale which manifestly outperforms the direct transmission above 200 km
by at least three orders of magnitude. c, d Optimal number of repeaters per 10 km as a function of total distance obtained by minimizing the
cost function.

Table 1. Comparison with existing repeater protocols.

Ref. Characteristics ηr n/k ηeff L0/Latt(%)

Current work Measurement-based error correction on CSS QEC graph states 0.9 8 0.6–0.8 4–14

Muralidharan et al.12 QPC based on teleportation-based error correction with matter qubits 0.9 100–200 0.6 7.5

Ewert et al.15 All-photonic teleportation-based error correction based on QPC 1 100 0.78 10

Lee et al.11 All-photonic QPC with linear optics 0.95 400–500 0.7 4–9

Borregaard et al.17 Tree graph state using quantum emitter and 2 auxiliary spin qubits 0.95 200–300 0.6 13

Azuma et al.10 All-photonic two-way approach based on graph states 0.95 104 0.58–0.69 18

The effective transmission rate ηeff is estimated for total communication distance 103–104 km from each reference. Here, n/k denotes the number of photons
per logical qubit transmitted to the channel from each repeater to the next, ηr is the repeater efficiency, and L0/Latt is the ratio of the repeater spacing to the
optical fiber attenuation length.
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distance is comparable with existing protocols at similar repeater
spacings, while our protocol can work with an order of magnitude
smaller number of photons per logical qubit and tolerate lower
repeater efficiencies.
In terms of hardware requirements at repeater stations, our

architecture requires three components: a graph-state generator,
a device for performing controlled-phase gate between the
photonic qubits, and single-photon detectors, all of which are
commonly used in previous architectures. Hence, we do not
introduce any extra hardware overhead. Nevertheless, in Supple-
mentary Note 2, we discuss how our loss decoder can be
combined with a QLDPC decoder based on belief propagation31,32

to correct operational errors in our scheme and present some
numerical simulations for a depolarizing channel. One can also
consider other types of decoders such as union-find decoder33

which can correct both erasure and Pauli errors simultaneously.
As for the graph-state generator, various architectures based on

solid-state quantum emitters coupled to nanophotonic wave-
guides have been proposed as deterministic generators34–40, and
there are ways to further optimize the graph-state generation
algorithm41. Deterministic controlled-phase gates can possibly be
realized by an array of (passive) quantum dots coupled to a
waveguide42. Alternatively, the controlled-phase gate can be
replaced by the fusion gates43,44, where small resource graph
states are generated per each graph vertex and fusion gates are
performed to construct a larger graph as shown in Fig. 6. Small
resource states can be generated either deterministically based on
quantum emitters or probabilistically using materials nonlinear-
ity45. We note that the fusion gates based on linear optics are
probabilistic and a fusion failure results in an erasure error (which
ultimately reduces ηr). However, this constraint can be alleviated
by increasing the success probability using boosted fusion gates46

with ancillary photons or inner encoding44, or completely
circumvented by using different hardware, e.g., nearly-
deterministic memory-assisted Bell-state measurement
devices47–49. In this regard, hybrid approaches to generate
arbitrary graph states50 can also be useful. All in all, we envision
a minimal hardware architecture based on few active elements
where we use delay lines to generate time-multiplexed entangled
photons. We postpone a more detailed discussion on hardware
designs, physical error models, and analysis of secret-key rate
using a quantum key distribution scheme to future work.
An important property of our architecture is being all-photonic,

where the major error is the qubit erasure, which is handled more
efficiently compared to the Pauli errors. This fact can be further
leveraged by constructing quantum codes with a larger code
distance and higher erasure threshold to design even more
efficient and loss-tolerant protocols. In a typical CSS code (CX, CZ)
corresponding to X (primal graph) and Z (dual graph) stabilizers,
respectively, we want both CX and CZ codes to have a large code
distance. However, our setup is asymmetric in the sense that only
layers associated with primal graph (CX) are subject to channel
loss. Therefore, it would be interesting to explore moderate-size
CSS codes with a large code distance in one code (e.g., CX) while
the other code (e.g., CZ) distance is not too large.
Using the stabilizer formalism, we have derived the criterion for

a successful transmission of logical qubits based on which we
presented a simple quantum decoder. In principle, more efficient
decoders26,48 may not only improve the performance but also
enable exploring many more codes and comparing their
performance as a repeater protocol.
Last but not least, the proposed quantum repeater architecture in

this paper permits concatenation with other encoding schemes. For
instance, one could replace each vertex in the graph state by a
small tree graph to further enhance the performance. Moreover,
similar architectures might be designed for continuous-variable
encodings where the graph vertices represent squeezed states or
the Gottesman–Kitaev–Preskill (GKP) Bosonic code, as it has been

done for conventional repeater protocols51–53 (while such protocols
feature no need for quantum memory, their realization is largely
hindered by the difficulty of generating GKP states in the optical
domain with large squeezing values). A unique advantage of the
latter scheme is that deterministic fusion gates can be constructed
in terms of beam splitters and homodyne measurements.

METHODS
Monte Carlo simulation
As discussed in “Performance and resource costs”, the perfor-
mance of the quantum repeaters is determined by the transmis-
sion rate of the quantum information, which is defined as the
average probability of the encoded logical qubit being success-
fully transmitted. We run Monte Carlo simulations to evaluate the
average probability given the number of repeaters. There is
however some simplifications when the repeater efficiency
is perfect, i.e., when ηr= 1; in this case, the expression for the
ETR is given by ηeff ¼ ðηeff;1ÞN where ηeff,1 is the ETR of directly
transmitting the code. This is because no loss for ancilla qubits
implies measuring the stabilizers perfectly so each layer in Fig. 2
operates independently. As a result, the overall ETR is given by the
product of individual success probabilities.
It is possible to derive a closed-form expression for the success

probability ηeff,1 as a function of the photon direct transmission
rate η for small codes using basic combinatorics. For example,
when considering the [[7, 1, 3]] ηeff,1 takes a polynomial form of
order seven as follows

ηeff;1 ¼
X7

j¼3

ajη
jð1� ηÞ7�j; (8)

where the coefficients are (a3,⋯, a7)= (7, 28, 21, 7, 1). The above
expression is plotted as the solid blue curve Fig. 3 which matches
the numerical data points shown as filled circles.
For more complex quantum codes or when we consider finite

repeater efficiency ηr < 1, a closed-form expression cannot be
easily obtained. Hence, we resort to numerical simulations. To this
end, we perform Monte Carlo simulations and run our decoder on
a 2N-layer syndrome graph to determine how many logical qubits
are successfully transmitted. We note that the syndrome graph is
decomposed into two N-layer subgraphs, a.k.a. primal and dual,
associated with X and Z stabilizers as expected for any CSS code
(see “Measurement-based error correction” for more details). Thus,
each iteration involves psuedo-randomly generating a set of lost
photons, where the loss events are independent and their

Fig. 6 Fusion-based realization of graph state. corresponding to
the [[7, 1, 3]] Steane code. The resource state is a star graph with 3–5
branches where the central vertex (shown as black circles or orange
squares) could be a spin-qubit or photon which is measured during
the generation process. There are two unmeasured data qubits per
each vertex which are used to effectively implement the transversal
controlled-phase gate between two adjacent graph states on the 1D
cluster state.
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probability depends on whether the qubit type is data or ancilla
on primal or dual subgraph. As explained in “Quantum repeater
protocol”, the ancilla qubits on all layers as well as data qubits on
even layers are not transmitted through the channel. As a result,
we randomly generate loss events with probability 1� ffiffiffiffi

ηr
p �

ð1� ηrÞ=2 uniformly for all qubits on the dual syndrome subgraph
(i.e., data qubits on even sites and ancilla qubits on odd sites)
where the inter-site stabilizers are based on HZ parity-check matrix
of the input CSS code. In contrast, we randomly generate loss
events with probability η in Eq. (1) for data qubits on odd sites and
with probability 1� ffiffiffiffi

ηr
p

for ancilla qubits on even sites to form
the primal syndrome subgraph where the inter-site stabilizers are
based on HX parity-check matrix.
Finally, the overall ETR ηeff is found by multiplying the average

success probability of the two syndrome graphs. This process
constitutes how we generate the raw data; i.e., ηeff as a function of
number of repeaters, repeater efficiency ηr, and the channel loss
rate. To study the distance dependence of ETR and optimize the
repeater spacing, we translate channel loss to distance via Eq. (1)
and interpolate or extrapolate the data using Eq. (7) to obtain ηeff
for arbitrary distances. We justify this approximation numerically
in Fig. 4.

Cost function
In this section, we discuss how to define a reasonable cost
function that takes into account both the performance and the
resource cost in our repeater architecture. For a fixed total
distance L, as we increase the number of repeaters N, the repeater
spacing L0 is decreased, and the channel transmission rate η
approaches unity; as a result, the total ETR ηeff saturates to its
maximum value bounded by the repeater efficiency. However, this
is not a cost-effective approach as quantum repeaters are costly
resources. Therefore, we consider the trade-off between the
performance and the resource cost. For this purpose, a
quantitative measure of performance is simply the ETR. Moreover,
the resource cost can be taken into account in terms of the
number of repeaters per unit distance and the number of physical
qubits in the deployed quantum code. This naturally leads to the
following quantity for the cost function,

C ¼ N=L
ηeff

� nphysical
nlogical

; (9)

where nphysical= n, and nlogical= k are the total number of physical
qubits and the total number of logical qubits in a [[n, k, d]] CSS
code. We note that in our simulations we optimize the number of
repeaters using the same code; hence, the second factor in C is
fixed in practice and the cost function only depends on the first
factor.
With the definition of cost function, we explore the optimized

quantum repeaters arrangement over a wide range of total
distances, from L= 10 km to L= 104 km. For a given L, we
calculate the cost function over a range of numbers of repeaters
from 1 to Nmax, where Nmax is chosen to be large enough so that
the global minimum is contained. The resulting optimized number
of repeaters Nopt and the corresponding ETR as a function of total
distance are plotted in Fig. 5. To evaluate ηeff for arbitrary values of
N and L0, we run Monte Carlo simulations on a 2D grid within the
range 2 ≤ N ≤ 30 and 0 < η(L0) < 1, use the exponential ansatz (7)
to extract αeff(L0) (along with the proportionality coefficient) as a
function of L0, and interpolate the corresponding value of effective
decay rate. Finally, we plug in N= L/L0 into Eq. (7), obtain the ETR
as well as the corresponding value for the cost function (9).

DATA AVAILABILITY
All the data presented in this paper are the result of numerical simulations generated
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